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ABSTRACT

High-throughput experimental technologies gradu-
ally shift the paradigm of biological research from
hypothesis-validation toward hypothesis-generation
science. Translating diverse types of large-scale ex-
perimental data into testable hypotheses, however,
remains a daunting task. We previously demon-
strated that heterogeneous genomics data can be
integrated into a single genome-scale gene network
with high prediction power for ribonucleic acid in-
terference (RNAi) phenotypes in Caenorhabditis el-
egans, a popular metazoan model in the study of
developmental biology, neurobiology and genetics.
Here, we present WormNet version 3 (v3), which is a
new network-assisted hypothesis-generating server
for C. elegans. WormNet v3 includes major updates
to the base gene network, which substantially im-
proved predictions of RNAi phenotypes. The server
generates various gene network-based hypotheses
using three complementary network methods: (i) a
phenotype-centric approach to ‘find nhew members
for a pathway’; (ii) a gene-centric approach to ‘in-
fer functions from network neighbors’ and (iii) a
context-centric approach to ‘find context-associated
hub genes’, which is a new method to identify key
genes that mediate physiology within a specific con-
text. For example, we demonstrated that the context-
centric approach can be used to identify potential
molecular targets of toxic chemicals. WormNet v3 is
freely accessible at http://www.inetbio.org/wormnet.

INTRODUCTION

Caenorhabditis elegans has many advantages, such as ge-
netic manipulability, as a model organism for the study of
development, neuroscience, and other complex metazoan

phenotypes. The study of C. elegans has provided numer-
ous insights for human disease research because many hu-
man disease pathways have been conserved in C. elegans (1).
Mapping gene-to-phenotype associations is widely consid-
ered to be the first step toward understanding the genetic or-
ganization of such phenotypes (2). Testing loss-of-function
phenotypes has been a major approach to mapping gene-to-
phenotype associations. Gene loss-of-function can be tested
by either the disruption of coding deoxyribonucleic acid
(DNA) (knockout) or the inhibition of messenger ribonu-
cleic acid (mRNA) translation (knockdown). Caenorhab-
ditis elegans has been a favored model in animal genetics
research due to an efficient knockdown protocol based on
RNA interference (RNAI) (3). In addition, recently devel-
oped CRISPR-Cas9 systems enable high-throughput gene
knockouts in C. elegans (4). Testing all ~20 000 genes of
the C. elegans genome, however, is expensive and may re-
quire years of screening experiments with potentially many
false negatives. Bioinformatics tools to prioritize candidate
genes or phenotypes are therefore highly desired.

Gene networks are useful for identifying novel genes that
are associated with specific phenotypes, including for hu-
man diseases, because genes for the same loss-of-function
phenotypes (e.g. diseases) tend to be proximal in a co-
functional network (2,5,6). Network-assisted hypothesis
generation has proven effective in the identification of genes
associated with phenotypes in C. elegans. The gene net-
work model, WormNet (7,8), and network-assisted predic-
tion methods have been previously implemented as a web
server. Since the publication of the last version of the Worm-
Net web server, WormNet version 2 (v2) (8), major up-
dates to publicly available genomics data as well as algo-
rithms for mapping co-functional gene links have occurred.
For example, while WormNet v2 contains co-expression
links derived mainly from low quality spotted microarray
platforms, the publicly available Gene Expression Omnibus
(GEO) database (9) currently contains more than 1600 C.
elegans expression profiles derived from Affymetrix DNA
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chips, a platform that provides more statistically control-
lable data. An update of WormNet to incorporate these new
data and algorithms would therefore further improve the
prediction power of our network-assisted prediction server.
Here, we present the web server, WormNet v3, which up-
dates the base gene network as well as the prediction meth-
ods from previous versions. The updates in WormNet v3
substantially improve the prediction power for RNAi phe-
notypes. A new prediction method, ‘find context-associated
hub genes’, that can identify key player genes that mediate
physiology within a particular biological context, including
chemical intoxication, is also introduced in WormNet v3.

UPDATES TO THE BASE GENE NETWORK

The base gene network for our network-assisted predic-
tion server is constructed by training heterogencous ge-
nomics data using machine learning techniques. The predic-
tion power of this server is determined mainly by the qual-
ity of the base gene network. There are three major com-
ponents that influence the quality of gene networks con-
structed by machine learning approaches: the training data,
the raw input data and the linkage mapping algorithms. We
have revised all three components in WormNet v3. These
changes are summarized in Supplementary Table S1; a few
of these changes are highlighted below.

To develop the training data for WormNet v3, we ex-
cluded gene pairs that share gene ontology biological pro-
cess (GO-BP) terms based on the IMP (inferred from mu-
tant phenotype) evidence code. Many GO-BP annotations
for C. elegans genes have been inferred from mutant phe-
notypes. We noticed that most GO-BP terms for C. ele-
gans phenotypes are related to the organism-level morphol-
ogy. We presumed that identical organism-level morphol-
ogy may result from perturbations of genes in unrelated
molecular pathways. For example, defects in embryo devel-
opment, larval development, growth, reproduction, loco-
motion and body morphogenesis may result from dysfunc-
tions in functionally unrelated molecular pathways. Pair-
ing genes by mutant phenotypes would therefore generate
many between-pathway links. Because the ultimate aim is
to reconstruct molecular pathways via co-functional gene
networks, these gene pairs that share GO-BP terms based
on IMP were excluded from the training data for the new
gene network. Using this modification on the training data,
we generated 78 739 positive and 2 909 054 negative gold
standard gene pairs. The likelihood scores for co-functional
links between genes were calculated using a Bayesian statis-
tics approach in which each link was assigned a log likeli-
hood score (LLS) as for the previous network (7).

The most notable update to the raw input data is the
use of new gene expression data for the co-expression net-
works. Over the past several years, a large amount of expres-
sion data has been generated by commercial DNA chips,
which provide more robust signals and more sophisticated
statistical analysis packages. We analyzed 34 expression
sets that contained no less than 10 gene expression sam-
ples (862 samples in total) from Affymetrix DNA chips
(GPL200 platform of GEO) and constructed co-expression
networks as for the previous network (7) from 12 sets con-
taining 456 samples in total (GSE numbers are listed in
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Supplementary Table S1). Similar co-expression networks
were constructed for Saccharomyces cerevisiae, Drosophila
melanogaster, Danio rerio and Homo sapiens, and these co-
expression links were transferred to C. elegans by orthology
(10). The number of protein—protein interactions in the raw
input data also was increased significantly due to the im-
proved databases and newly reported large-scale interaction
data (summarized in Supplementary Table S1). We also im-
proved methods for linkage mapping based on gene neigh-
borhood (11) and phylogenetic profiles (12) as described in
the Supplementary Online Methods.

A total of 19 different data types derived from five differ-
ent species were integrated by a weighted sum method as for
the previous network (7), which resulted in a gene network
of 762 822 links that cover 16 347 C. elegans genes [i.e. 80.2%
of the 20 389 coding genome in WormBase220 (13)]. The list
of edges in the integrated network as well as details about all
19 individual networks, which have been derived from dif-
ferent data types, are available for download from the ‘net-
work download’ page. Compared with the previous gene
network, the genome coverage of the new network increased
from 74.5 to 80.2% (1208 additional genes) while the num-
ber of network links was reduced. We also found that 171
291 links and 13 469 genes were common between Worm-
Net v2 and v3, 822 076 links and 1670 genes from Worm-
Net v2 were excluded from WormNet v3 and 591 531 new
links and 2878 new genes were added to WormNet v3 (Fig-
ure 1a). To test whether these changes improved the overall
prediction power of our server, we measured network pre-
cision by computing the proportion of the network gene
pairs that share the same RNAi phenotypes for different
coding genome coverage. We used a total of 478 RNAI phe-
notype sets, which contained between 5 and 500 genes, col-
lected from WormBase239 (13). From this assessment, we
found that the network precision is significantly improved
in WormNet v3 and that this improvement is largely at-
tributable to the new links included in WormNet v3 (Figure
1b). This large change in network links but not in prediction
power may be explained by the fact that pathway genes can
remain well-connected by different sets of links.

NETWORK-ASSISTED PREDICTION METHODS

The WormNet v3 server generates new hypotheses using
three complementary network methods, which are illus-
trated in Figure 2a. For each prediction method, WormNet
v3 server provides a toy example for a test run. The first
method, ‘find new members for a pathway’, is a phenotype-
centric method. This approach predicts new candidate
genes for a phenotype using known genes for that pheno-
type, namely seed genes, which are submitted by the user.
The server returns the top 200 ranked candidate genes for
the phenotype of interest using the sum of the network
edge weights (i.e. the LLS) on all the submitted seed genes.
The WormNet v3 server also reports the network predic-
tion power for the submitted seed genes using a receiver op-
erating characteristic (ROC) curve, the results of which are
summarized as a single score, the area under the ROC curve
(AUC). Perfect prediction power results in an AUC equal
to 1 and predictions that represent random chance result in
an AUC equal to 0.5. Generally, an AUC that is >0.7 in-
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Figure 1. (a) A Venn diagram of genes (the percentage coverage of the coding genome is indicated in the parenthesis) and links in WormNet v2 and
WormNet v3. (b) A comparison of the prediction power between WormNet v2 and WormNet v3 using a total of 478 RNAi phenotypes, which contain
between 5 and 500 genes, collected from WormBase239 (13). Network precision was measured by calculating the percentage of gene pairs that share RNA1
phenotypes for different coverage of the coding genome. WormNet v3 shows superior performance over the entire range of the genome coverage. The
assessment of new links in WormNet v3 (WormNet v3 specific links) and the excluded old links (WormNet v2 specific links) confirmed that the improved
precision of WormNet v3 is attributable to the new network links that have been included in this update.

dicates good prediction power. If a high AUC is observed
for the submitted seed genes, then the predicted candidate
genes are more likely to show the mutant phenotype upon
perturbation.

The second prediction method, ‘infer functions from net-
work neighbors’, is a gene-centric approach that predicts
GO-BP functional terms for a query gene that is submitted
by the user. The server collects all annotated GO-BP terms
for the query gene from connected network neighbors and
ranks the GO-BP terms using the sum of the network edge
weights (i.e. the LLS) on genes annotated by each GO-BP
term. The server returns the top 10 GO-BP terms as candi-
date functions for the query gene.

These two methods existed in previous versions of Worm-
Net. A new network prediction method has been incorpo-
rated in WormNet v3. This method is based on a context-
centric approach, ‘find context-associated hub genes’ that
can predict important genes for a given biological context.
For this analysis, the server uses pre-defined subnetworks,
which are composed of a hub gene and its connected neigh-
bors. These hub genes are hubs for each of the subnetworks,

not for the whole gene network. In the new base gene net-
work, we considered only subnetworks for hub genes that
have no >15 neighbors connected by LLS > 1, which re-
sulted in 7025 hub genes for the subsequent analyzes. Users
initiate a prediction by submitting a set of differentially ex-
pressed genes (DEGs) that characterize the biological con-
text. For example, the DEGs of C. elegans that have been
exposed to toxic chemicals can characterize the context of
intoxication for the organism. The server measures the as-
sociation between the hub genes and the context by sta-
tistical enrichment of the hub’s neighbors among the sub-
mitted DEGs using Fisher’s exact test, and returns all hub
genes that are significantly associated with the context (Fig-
ure 2b). In addition, the expression level of some of the
important genes for a particular biological context may
change. Therefore, the context-centric prediction method
often ranks DEGs highly, which highlights the ability of
this method to predict important genes. A more detailed
description of the concepts underlying the context-centric
prediction method is provided in the Supplementary Online
Methods (Supplementary Figure S1).
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Figure 2. (a) A schematic illustration of the three network-assisted prediction methods. (b) Screen shots of the prediction results that are returned by
the ‘“find context-associated hub genes’ method. The analysis returned a table of hub genes that are predicted to be associated with the biological context
characterized by the submitted differentially expressed genes (DEGs). If a user clicks a candidate hub (e.g. C14C10.1 shown in the table), a new web page
displays the network of the hub gene and its neighbors. The network shows all links among the submitted DEGs as well as links from the hub to its
neighbors that overlap with the given DEGs. By clicking a node or an edge of the network, users can also view in the lower panel detailed information
about the gene or the co-functional link.
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CASE STUDIES

To demonstrate the feasibility of useful hypothesis genera-
tion by the three network-assisted methods in WormNet v3,
we performed a case study for each prediction method with
query genes as toy examples in the server. First, we simu-
lated the prediction of 372 genes for ‘extended life span’ col-
lected from WormBase239 (13) using the phenotype-centric
method. For this simulation, we submitted genes for life
span extension that have been identified from genome-scale
RNAI screens by Hansen ez al. (29 genes) (14), Hamilton
et al. (85 genes) (15) and Curran et al. (61 genes) (16) to
the server, and then measured the success rate of the predic-
tions as the percentage of recapitulated non-seed genes from
the 372 known genes among the top candidates. We found
that the success rates ranged from 24 to 38% among the top
50 candidates for the three query sets; this success rate was
slightly lower among the top 100 or 200 candidates (Fig-
ure 3a). Given that the random discovery rate for these 372
genes from the pool of 20,389 genes is less than 2% (372/20
389 = 1.82%), this network-assisted prediction in WormNet
v3 achieved a more than 10-fold enrichment. In addition,
the success rate on this same set of 372 genes was signifi-
cantly reduced when the base network in WormNet v2 was
used, which confirms the improved quality of the base net-
work in WormNet v3.

Next, we systematically assessed the gene-centric predic-
tion method. In WormNet v3, this method is designed to
predict GO-BP terms. To test the predictive power of this
method, however, we used RNAIi phenotype annotations,
which are independent from the GO-BP annotations that
were used for the original training of WormNet. We col-
lected 42 831 annotations for 505 RNAi phenotypes from
6743 genes in WormBase239 (13). We used a leave-one-
out analysis method in which the known RNAi phenotype
annotations of a gene were masked and then newly pre-
dicted by the enriched RNAIi phenotypes among its net-
work neighbors for each round of simulated prediction. A
total of 17 915 known gene-phenotype associations (42% of
all known associations) were correctly predicted within the
top 20 predicted phenotypes (Figure 3b). We performed the
same analysis for WormNet v2 (8) as well as 100 random-
ized networks, and found that performance was improved
in WormNet v3 compared with WormNet v2 (17 539, 41%)
and the randomized networks (12 432, 29%)).

The effectiveness of the gene-centric prediction method
was also demonstrated using recently updated GO-BP an-
notations. WormNet v3 uses the GO-BP annotations that
were downloaded on November 2011. Since November
2011, many new GO-BP annotations have been added to C.
elegans genes. We found that 169 genes have been newly an-
notated by GO-BP terms with reliable GO evidence codes
(IDA, inferred from direct assay; IMP, inferred from mutant
phenotype; IGI, inferred from genetic interaction; IPI, in-
ferred from physical interaction; IEP, inferred from expres-
sion pattern; TAS, traceable author statement; ISS, inferred
from sequence or structural similarity) and that 42 of these
genes were correctly predicted as top 10 candidate functions
(~25% success rate). These successful predictions can be
demonstrated by running toy examples of 11 genes that were
newly annotated by the GO-BP term for ‘reproduction’ af-

ter November 2011, which were correctly predicted as top10
candidates by WormNet v3.

Finally, we tested a new context-centric prediction
method, ‘find context-associated hub genes’, using toxi-
cogenomics data derived from the exposure of C. elegans to
the organophosphate pesticide, dichlorvos (17). The princi-
ple mechanism of acute toxicity by organophosphate pes-
ticide is the inhibition of acetylcholinesterase. Molecular
mechanisms for the observed persistent and delayed toxic
effects, however, have remained largely unknown. We hy-
pothesized that an important gene for dichlorvos intoxica-
tion will be functionally connected with many DEGs upon
exposure to the pesticide. By testing DEGs that have been
detected from prolonged exposure to a low concentration of
dichlorvos, the hub genes that are tightly connected to the
context-associated DEGs may emerge as target genes that
mediate the delayed toxic effect. We therefore conducted an
analysis with 32 up-regulated genes (defined by >1.5-fold
increase of expression levels after 26 h) and identified gene
C14C10.1, which is a putative mitochondrial carrier pro-
tein, as the top candidate gene associated with prolonged
intoxication by dichlorvos. Mitochondrial dysfunction has
been suggested as a mechanism of intoxication (17) and
many human diseases, such as metabolic disorders, neu-
rodegenerative diseases, and muscle dystrophy, are associ-
ated with mutations of the mitochondrial carrier proteins
(18). C14C10.1 may therefore represent a potential target
for dichlorvos. Taken together, these results suggest that
WormNet v3 can predict target genes for a chemical when
appropriate toxicogenomics data are used as input. We pro-
vided the 32 DEGs used in this case study as a toy exam-
ple to simulate the context-centric prediction. Given the in-
creasing use of C. elegans in toxicology (19), this context-
centric prediction of WormNet v3 may prove to be useful in
the identification of potential targets or key modulators for
intoxication in the study of many toxic chemicals.

A more quantitative assessment of the context-centric
prediction method was performed using three contexts for
which both genome-wide expression data from GEO (9)
and RNAIi phenotype annotations are available: hypoxia re-
sponse, heat response and dauer development (see Supple-
mentary Online Methods for detailed descriptions). To gen-
erate a set of DEGs for each context, we ranked genes by
the expression change compared with control experiments,
and collected the top 200 genes for each context. We then
calculated probability of context-association of a gene for
each context using corresponding 200 DEG sets. Finally,
genes were prioritized for each context by either probability
of expression change for the context (i.e. DEG) or prob-
ability of being context-associated hub (i.e. CAH). Genes
relevant to each context as annotated by the RNAi pheno-
types were used to measure the true positive rate and false
positive rate of the ROC curve analysis (Figure 3¢ and Sup-
plementary Figure S2). For all three tested contexts, CAH
outperformed DEG in retrieving genes known to be associ-
ated with the context by RNAi phenotypes.

SUMMARY

WormNet v3 is a new network-assisted hypothesis-
generating server for C. elegans. Both the base gene
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Figure 3. (a) A bar graph that shows the success rates of the predictions for the ‘extended life span’ genes. To assess the effectiveness of the phenotype-centric
prediction, we performed a simulation in which 372 genes for ‘extended life span’ collected from WormBase239 (13) were predicted by network connectivity
to the seed genes derived from each of three independent genome-wide RNAI screens: 29 genes from Hansen e7 al. (14), 85 genes from Hamilton ez al. (15)
and 61 genes from Curran et al. (16). For each seed gene set, the WormNet server prioritized new candidate genes for extended life span. The efficiency
of each prediction was measured by the success rate, which was computed as the percentage of recapitulated non-seed genes of the 372 known genes for
extended life span among the top 50, 100 and 200 candidates. The success rates ranged from 24 to 38% among the top 50 candidates for the three query
sets. This range was slightly lower among the top 100 or 200 candidates. Notably, the success rate was significantly reduced when the base gene network
in WormNet v2 was used, which demonstrates the significant improvement in network quality in WormNet v3. (b) A performance is measured by the
number of correctly predicted RNAi phenotype annotations (y-axis) for the given rank threshold (x-axis). WormNet v3 performs slightly but consistently
better than WormNet v2. Both versions of WormNet outperform randomized predictions (the curve represents the average performance of 100 random
predictions). (¢) A ROC curve that shows high performance of the context-centric prediction method for hypoxia response for associated genes annotated

by the RNAI phenotype. Predictions based on context-associated hub (CAH) genes outperform those based on DEGs. TPR, true positive rate; FPR, false
positive rate; randomized, random prediction.
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network and the prediction methods have been updated
from previous versions. The improved quality of the base
gene network was validated by testing the prediction of
RNAIi phenotypes. In addition to the two pre-existing
prediction methods, ‘find new members for a pathway’
and ‘infer functions from network neighbors’, a new
context-centric prediction method, ‘find context-associated
hub genes’, was added to WormNet v3. This new method
may be useful in the study of molecular mechanisms of
intoxication given related toxicogenomics data. WormNet
v3 therefore provides a comprehensive network-assisted
prediction platform with three complementary approaches
to facilitate genetic dissections of complex phenotypes in
C. elegans.
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