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Abstract

To understand enzyme functions, identifying the catalytic residues is a usual first step. Moreover, knowledge about catalytic
residues is also useful for protein engineering and drug-design. However, to experimentally identify catalytic residues
remains challenging for reasons of time and cost. Therefore, computational methods have been explored to predict
catalytic residues. Here, we developed a new algorithm, L1pred, for catalytic residue prediction, by using the L1-logreg
classifier to integrate eight sequence-based scoring functions. We tested L1pred and compared it against several existing
sequence-based methods on carefully designed datasets Data604 and Data63. With ten-fold cross-validation, L1pred
showed the area under precision-recall curve (AUPR) and the area under ROC curve (AUC) of 0.2198 and 0.9494 on the
training dataset, Data604, respectively. In addition, on the independent test dataset, Data63, it showed the AUPR and AUC
values of 0.2636 and 0.9375, respectively. Compared with other sequence-based methods, L1pred showed the best
performance on both datasets. We also analyzed the importance of each attribute in the algorithm, and found that all the
scores contributed more or less equally to the L1pred performance.
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Introduction

Enzymes are very important because they act as catalysts for

almost all chemical reactions in a cell to make the reaction rates

sufficient for life. Identifying catalytic residues of enzymes is

a crucial step towards understanding their functions. The

knowledge on catalytic residues can further help design novel

proteins with new functions and hence be useful for drug-design.

Despite the importance, the number of proteins with known

catalytic sites compared with the huge number of enzymes is still

small, as it is often expensive and time consuming to experimen-

tally identify catalytic residues. Fortunately, computational

methods have become an important tool to predict catalytic

residues with more and more annotated enzymes available.

In the past decade and a half, many computational methods

have been developed to predict catalytic residues on given

enzymes. The forerunners only considered protein sequence

conservation information [1–12]. Prediction methods were then

improved by incorporating phylogenetic motifs [13,14], phyloge-

netic trees [15,16], predicted structural information [17], and

amino acids stereo-chemical properties [18–20] with conservation

information. With increasing number of solved protein structures,

structural information was also taken into account by many

algorithms, however, which were limited only to proteins with

known structures [21–31]. Meanwhile, Brylinski et al. developed

a method to recognize protein active sites based on the analysis of

hydrophobicity distribution in protein molecules [32]. In recent

years, machine learning algorithms, such as Support Vector

Machine-based (SVM) and Neural Network-based (NN), were

used to develop new catalytic residue prediction methods [33–40].

The machine-learning algorithms can easily integrate various

chemical and physical features of residues, such as sequence

conservation, residue types, cumulative hydrophobicity, secondary

structure, and relative solvent accessibility. For instance, Gutter-

idge et al. [33] used NN to incorporate six attributes extracted from

both protein sequences and structures. Petrova and Wu [35]

developed a similar method but using SVM. Zhang et al. [37]

proposed an SVM-based method, called CRpred, which used

sequence-derived attributes only. Youn reviewed several frequent-

ly used features and ranked their performance based on their

ability to distinguish catalytic residues from non-catalytic ones; the

top-ranked features are sequence conservation, structural conser-

vation, uniqueness of a residue’s structural environment, solvent

accessibility, and residue hydrophobicity [36]. The flourishing

efforts demonstrated promising potentials of computational

methods on this research front, yet higher prediction accuracy is

still needed for better performance.

In this manuscript, we developed a tool to predict enzyme

catalytic residues. This tool is called L1pred because it uses the L1-

logred classifier, which is an implementation of the interior-point

method for L1-regularized logistic regression [41]. Eight scoring

functions used by L1pred to abstract protein sequence chemical/

physical characteristics are residue type (RT), overlapping

properties (OP), averaged cumulative hydrophobicity (ACH),
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predicted protein secondary structure (SS), predicted accessible

surface area (ASA), Jensen-Shannon divergence (JSD) conserva-

tion score, the combination of relative entropy of Venn diagram

and JSD conservation score (VJSD), and Consurf score. We

compared our method with others, such as JSD [5], VJSD [19],

Consurf [42] and CRpred [37], and L1pred was shown to have

the highest AUPR and AUC value for the same datasets. The

curated datasets, the trained model, and the source code files are

available at http://sysbio.unl.edu/L1pred.

Results

Results on the Dataset Data604
The parameters of L1pred were trained on the dataset Data604.

The performance of L1pred achieved the optimal point at

window-size = 6 and l~0:002; the corresponding maximal AUPR

and AUC are 0.2198 and 0.9494, respectively. In the rest of the

study, we applied window-size = 6 and l~0:002 as the default

setting. Our method was compared against four sequence-based

methods JSD, VJSD, Consurf, and CRpred, on the dataset

Data604. JSD is a sequence conservation based method which

uses amino acid position specific frequencies [5]. VJSD takes both

stereo-chemical property and residues frequencies into account

[19]. Consurf incorporates both sequence conservation informa-

tion and evolutionary relations among the protein and its

homologous sequences [42]. CRpred is an SVM based method

which takes five types of attributes into account, including (1)

residue type, (2) position specific scoring matrix (PSSM), (3)

Shannon entropy computed over the weighted observed percent-

ages (WOP) vector, (4) averaged cumulative hydrophobicity and

(5) catalytic resides pairs [37]. Of the four methods used for

comparison, JSD, VJSD, and Consurf do not need a training

procedure, while CRpred does and therefore it was trained using

the same procedure as our method. The optimal parameters of

CRpred were obtained from [37], and we tested CRpred with the

same ten-fold cross validation procedure as L1pred. The

comparison results are shown in Table 1. L1pred shows the best

values in terms of both AUPR and AUC, in detail, resulting to

AUPR = 0.2198 and AUC = 0.9494. Moreover, L1pred is signif-

icantly better than the other four methods (with P-

value = 1:24|10{6,0.05), according to the ROC significance

test. Figure 1 shows the PR curves for all five methods, and the PR

curve of L1pred is constantly higher than that of the other PR

curves in the whole range of recall rate.

Results on the Independent Test Dataset Data63
All chosen methods were also compared using the independent

test set, Data63, and the results were in broad agreement with

what found on the dataset Data604. For L1pred and CRpred,

their trained models were generated on the whole Data604

dataset. All results are shown in Table 2, and L1pred shows the

best performance. For example, L1pred has the highest values of

AUPR and AUC of 0.2636 and 0.9375, respectively. We also

tested the statistical significance among different methods in terms

of the AUC values. L1pred is significantly better than the other

methods; all comparisons showed P-values v10{10, except with

CRpred method (P-value = 9:37|10{3), but it is still significant

for the cutoff of P-value = 0.05. From the PR curve, shown in

Figure 2, one may find that the PR curve of L1pred is notably

higher than that of CRpred, the second best method. Especially, if

using recall rate = 0.1, the precision of L1pred is more than 60%,

while the second best performer is less than 40%. However, all

precisions drop fast; at the maximal F-measure point, i.e. recall =

0.3571, even the precision of L1pred drops to only 0.3257. These

results indicate that L1pred achieves comparable performance on

independent dataset with the trained parameters.

CRpred and L1pred have different attribute sets and classifiers.

Additional analysis was conducted to figure out which one is

essential in prediction. We applied L1-logred classifier to the

attribute sets of CRpred method (CRpred-L1) and SVM to

attributes of L1pred (L1pred-SVM). All parameters were opti-

mized as the same procedure described in the section of Methods.

For the dataset Data604 with ten-fold cross validation, the AUC

value of CRpred-L1 is 0.9341, which is approximately equal to

that of CRpred, 0.9338. L1pred and L1pred-SVM also have close

AUC values on the dataset Data604; they are 0.9494 and 0.9480,

respectively. The situation for the dataset Data63 is similar as well.

These results indicate that the combination of those eight

attributes used by L1pred plays important role in the improvement

of prediction performance.

Moreover, L1pred is more efficient than other machine learning

methods, e.g. the SVM-based CRpred method, because L1-logred

Figure 1. PR curves of five methods on the Data604 dataset.
doi:10.1371/journal.pone.0035666.g001

Table 1. Performance on the dataset Data604.

Method AUPR AUC Recall Precision

JSD 0.0692 0.8443 0.3299 0.1016

Consurf 0.0778 0.8969 0.3515 0.0944

VJSD 0.1300 0.8700 0.3724 0.1593

CRpred 0.1819 0.9338 0.3805 0.2310

L1pred 0.2198 0.9494 0.3741 0.2752

doi:10.1371/journal.pone.0035666.t001

Table 2. Performance on the dataset Data63.

Method AUPR AUC Recall Precision

JSD 0.0759 0.8410 0.4160 0.1061

Consurf 0.1019 0.8876 0.2017 0.1644

VJSD 0.1520 0.8599 0.3109 0.2349

CRpred 0.1809 0.9201 0.4244 0.2446

L1pred 0.2636 0.9375 0.3571 0.3257

doi:10.1371/journal.pone.0035666.t002
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is a fast classifier. Table 3 shows the result of the comparison

between L1pred and CRpred in terms of computing time for

training and testing. L1pred is about 40 times faster than CRpred

in both training and predicting.

Results on the Dataset EF-family
L1pred and CRpred are applied on the dataset EF-family with

the same ten-fold cross validation procedure. For CRpred, the

encoded feature vector of each protein was directly downloaded

from their web site [37]. This dataset has been used by Youn et al.

to test their structure-based method [36], which integrated several

different types of attributes, including structural conservation, B-

factor, solvent accessibility, and sequence conservation etc.

From Table 4, which shows all results on the dataset EF-family,

one may find that the overall results are similar to that on both

Data604 and Data63. Specifically, the values of AUPR and AUC

of L1pred, 0.2589 and 0.9372, are higher than those of CRpred.

The difference between L1pred and CRpred is significant for

ROC, with a P-value of 1:61|10{11. Moreover, L1pred is also

slightly better than Youn’s method in terms of AUC. The result of

Youn’s method on the dataset of EF-family was obtained directly

from their publication [36].

Importance of Different Features
To understand which attributes of all eight different scores play

more important roles, we removed them one by one and repeated

the same training and validation procedure on the dataset

Data604. The results are shown in Table 5. One may find that

the omission of any score leads to some changes in performance,

but none was significant. The largest drop occurred when the

Consurf score was turned off. We therefore concluded that all

eight attributes are almost equally important for L1pred, but the

Consurf score is slightly more important than all others.

We also extracted the weight vector of the trained model on

the whole Data604 dataset. The top 15 weighted bits are shown

in Figure 3 in which, for example, SS-4-E denotes the SS

attribute of the beta strand at the 4th position on the N-terminal

side of the central bit in a sliding window. The similar notations

are applied for the other features, and iw0 represents positions

towards C- terminal, i~0 represents the central residue and iv0
represents positions towards N-terminal. We found that VJSD+0

has the largest weight, which means the stereo-chemical

characteristics are correctly reflected by this scoring function,

and the majority of catalytic residues can be distinguished by this

feature. In addition, being a Cys residue (RT-Cys) and/or

a charged/polar residue (OP-Polar, OP-Charged) are important

features for catalytic sites, which agrees with the statistical results

[43]. In the trained model, the Consurf score of position 0 is also

important for catalytic residues prediction as ranked on the third

position. Assigning a large weight to ACH-Win17 indicates that

the mean hydrophobicity of 16 residues around the catalytic

residues plays an important role for catalytic functions. These

results suggest that L1pred can extract the most useful chemical/

physical characteristics of catalytic residues by the training

procedure.

Case Studies
We randomly selected two enzymes from our datasets as

examples to show the prediction performance of L1pred; they are

a dehydrogenase (PDB ID: 1A05 chain A) and an asparaginase

Figure 2. PR curves of five methods on the Data63 dataset.
doi:10.1371/journal.pone.0035666.g002

Table 3. Computing time of L1pred and CRpred methods.

Method AUPR AUC Recall Precision

JSD 0.0759 0.8410 0.4160 0.1061

Consurf 0.1019 0.8876 0.2017 0.1644

VJSD 0.1520 0.8599 0.3109 0.2349

CRpred 0.1809 0.9201 0.4244 0.2446

L1pred 0.2636 0.9375 0.3571 0.3257

doi:10.1371/journal.pone.0035666.t003

Table 4. Performance on the dataset EF-family.

Method AUPR AUC Recall Precision

JSD 0.0841 0.8543 0.0886 0.5522

Consurf 0.0969 0.8767 0.1229 0.3048

VJSD 0.1695 0.8873 0.2333 0.2756

CRpred 0.2256 0.9118 0.2853 0.3838

Youn N/A 0.9298 0.5702 0.1851

L1pred 0.2589 0.9372 0.4478 0.2862

doi:10.1371/journal.pone.0035666.t004

Table 5. Performance of L1pred by removing attributes one
by one.

Method AUPR AUC Recall Precision

no-Consurf 0.1688 0.9282 0.3854 0.2125

no-SS 0.2119 0.9467 0.4559 0.2440

no-RT 0.2128 0.9492 0.4370 0.2455

no-ACH 0.2129 0.9486 0.4736 0.2313

no-VJSD 0.2140 0.9488 0.4392 0.2466

no-JSD 0.2167 0.9492 0.4623 0.2422

no-ASA 0.2175 0.9494 0.3947 0.2640

no-OP 0.2184 0.9487 0.4128 0.2607

L1pred 0.2198 0.9494 0.3741 0.2752

doi:10.1371/journal.pone.0035666.t005
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(PDB ID: 3ECA chain A). There are three catalytic residues for

the dehydrogenase (140Y, 190L, and 222D) and five for the

asparaginase (12T, 25Y, 89T, 90D, and 162L). Prediction results

of L1pred are shown in Figure 4. For each enzyme, true catalytic

residues and 10 top-ranked residues are shown in colors; correctly

predicted catalytic residues are shown in red, missed catalytic

residues (false negative) in blue, and the resides predicted by

L1pred but not true catalytic residues (false positive) in green. Two

out of three catalytic residues were correctly predicted for the

dehydrogenase and four out of five for the asparaginase. Both

cases indicate that L1pred can discover more than 60% catalytic

residues with recall = 4%, as the lengths of those enzymes are both

more than 300 amino acids.

Discussion

We applied the L1-logreg classifier with eight attributes to

predict enzyme catalytic residues. The attributes, VJSD, over-

lapping properties, and Consurf score, are newly introduced to the

solution of catalytic residue prediction. With the ten-fold cross

validation on the dataset Data604 and directly application on the

independent test set Data63, L1pred showed the best performance

among chosen algorithms. The AUC values of L1pred on the

dataset Data604 and Data63 are 0.9494 and 0.9375, respectively,

which are significantly higher than other prediction methods (P-

value,0.05). The test on the EF-family dataset confirms that this

method performs better than existing methods, including the

structure-based one. In all eight attributes, Consurf, SS, RT, and

averaged cumulative hydrophobicity play slightly more important

Figure 3. Weights of the top fifteen features on the Data604 dataset.
doi:10.1371/journal.pone.0035666.g003

Figure 4. Prediction results of L1pred on a dehydrogenase (a) and an asparaginase (b) Red: true positive, blue: false negative, and
green: false positive.
doi:10.1371/journal.pone.0035666.g004
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roles than the other attributes. The scoring functions of Consurf

and VJSD used in this manuscript can be combined with

structural information to improve catalytic residue prediction.

Further analysis indicates that the improvement made by L1pred

is mainly due to the combination of informative attributes, instead

of the classifier. L1-logreg classifier is not necessary to have better

performance in catalytic residue prediction than SVM, but it is

efficient and hence competent for genome-wide analyses, where

speed is an issue. In the future, we will test additional scoring

functions to further improve the prediction performance, and

extend the platform developed for this project to other applica-

tions, such as protein phosphorylation site prediction.

Materials and Methods

Datasets
We collected our data from two sources: the datasets created by

Zhang et al. [37] and the Catalytic Site Atlas (CSA) dataset [44].

By mixing the CSA and the eight datasets from Zhang et al. [37],

(namely, EF-family, EF-fold, EF-superfamily, HA-superfamily,

NN, PC, T-124, and T-37), we generated two new datasets. Since

all enzymes in our datasets have structures in PDB, we first

compared their sequences with the sequences of the structures in

PDB [45]. If two sequences are not identical, this enzyme was

discarded. For the remaining protein sequences, we clustered them

using Blastclust [46] with sequence identity 30% and coverage

60%. A total of 667 clusters were returned, 604 of which have

single members and 63 have multiple ones. Those 604 chains with

sequence similarity lower than 30.0% to the other chains were

selected as a dataset and named Data604. For the other 63

clusters, we randomly picked one protein sequence from each

cluster and gathered them as another dataset called Data63. The

Data63 is used as an independent test dataset in the study. For

both datasets, we randomly selected six non-catalytic residues for

one catalytic residue in each sequence. To further compare

L1pred and CRpred directly, all chosen methods are compared on

the EF-family dataset from [37]. Proteins in this data set that are

not the same as or part of the corresponding sequences in PDB

were discarded, and 347 chains were left.

Classifier Feature Vectors
Here, we first describe construction of feature vectors. For

a given amino acid residue, we collect a sub-sequence with all

residues adjacent to it by a certain window size, e.g. 4, which

means the total length of this sub-sequence is 4+1+4 = 9. For this

sub-sequence, we encode it with a multidimensional vector based

on eight sequence-based attributes. The L1-logreg classifier is then

applied to these vectors to train a model and then predict catalytic

residues. The eight attributes we use are residue type (RT),

overlapping properties (OP), averaged cumulative hydrophobicity

(ACH), Jensen-Shannon divergence conservation score (JSD), the

combination of relative entropy of Venn diagram and JSD

conservation score (VJSD), predicted protein secondary structure

(SS), predicted solvent accessible surface area (ASA), and Consurf

score. In the following, we describe each attributes in details.

Residue Type (RT). RT is a commonly used attribute for

protein-sequence-based machine learning methods. Each amino

acid is encoded by a 20-bit binary vector where the dimension of

the corresponding amino acids is set to 1 and others are 0, i.e., A

(10000000000000000000), … V (00000000000000000001). The

order of amino acids in this manuscript is A, R, N, D, C, Q, E, G,

H, I, L, K, M, F, P, S, T, W, Y, V.

Overlapping Properties (OP). Several previous studies

suggested that the Taylor’s overlapping properties are useful for

catalytic residues prediction [8,19]. These properties are: Polar

[NQSDECTKRHYW], Positive [KHR], Negative [DE],

Charged [KHRDE], Hydrophobic [AGCTIVLKHFYWM],

Aliphatic [IVL], Aromatic [FYWH], Small [PNDTCAGSV],

Tiny [ASGC] and Proline [P] [47]. Residues are encoded using

10-bit vectors where the dimensions of the corresponding

properties are set to 1 and remaining positions are 0, i.e., A

(0000100010), … V (0000110100).

Averaged Cumulative Hydrophobicity (ACH). ACH has

been demonstrated to be an important attribute for catalytic

residues [37]. The attribute is extracted by computing the average

of the cumulative hydrophobicity indices over a window with size

varying as 3, 5, 7, …, 21. As a result, ten ACH scores are

extracted. Hydrophobicity index proposed by Sweet and

Eisenberg [48] is used in the paper. If the central residue is at

the sequence termini, we use 0s to fill in the blanks.

Jensen-Shannon divergence (JSD) scores. WOP is another

important information source extracted by PSI-BLAST [46]. The

WOP vector for a position represents the position-specific

distribution of 20 amino acids. It has been used to calculate

sequence conservation in several previous works [19,37] and is

used as the source of amino acid position-specific distribution in

the study. The JSD score of a residue S is computed as:

JSDS~
1

2

X20
i~1

pS(i) log
pS(i)

1
2
p0(i)z

1
2
pS(i)

z
1

2

X20

i~1

p0(i) log
p0(i)

1
2
pS(i)z

1
2
p0(i)

,

where ps(i)~ai=
P20

1 ai, ai is the ith WOP value at the site

(i~1, � � � ,20) and p0 is the BLOSUM62 amino acid background

distribution.

Combination of relative entropy of Venn diagram and

JSD (VJSD). The relative entropy of Venn diagram (RVD) score

is based on Taylor’s Vine diagram of amino acids as shown above

in the overlapping properties [19]. Calculating RVD scores needs

the WOP matrix from PSI-BLAST as well. The RVD score of the

residue on site S is defined as:

RVDS~
X10

i~1

pS(i) ln
pS(i)

p0(i)
,

where pS(i) is the fractional WOP values of all residues with the

same property i in the site S, i.e. pS(i)~
P

k[i ak=
P20

j~1 aj , aj is the

jth WOP value, and p0(i) is the fractional BLOSUM62 value of

the same class i for the background distribution.

Taylor’s Vine diagram can not distinguish residues, such as

TYR and TRP, GLY and ALA, ILE and LEU. But methods

which based on residue frequencies can discriminate them

naturally. Therefore, RVD is combined with JSD, which is based

on residue frequencies, to overcome the weakness. The combined

score of a residue S is given by:

VJSDS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nRVD2

SznJSD2
S

q
,

where the nRVDS and nJSDS are the normalized RVD and JSD

scores of the site.
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Predicted protein secondary structure (SS). Previous

study suggested that more than 50% catalytic residues occur in

coil regions of proteins [43]. Therefore, the protein secondary

structure deserves to be considered as an attribute in catalytic

residue prediction. The most accurate way to obtain the

information of secondary structure would be from the 3D

structures of proteins, but for a given protein sequence,

currently, we can only predict the secondary structures. In this

manuscript, the SS attribute of each residue has three bits to show

the possibility scores of three types of secondary structures (H, E,

and C), which is predicted by PSIPRED [49].

Predicted accessible surface area (ASA). All catalytic

residues are on the surface of enzyme proteins, and hence, large

solvent accessibility is also an important feature for the catalytic

residues. To improve the prediction accuracy, we combined ASA

into our frame as well. For the same reason as for the case of SS,

the ASA attribute is also predicted with protein sequences. In this

study, we used RVP-net [50] to predict the solvent accessible

surface area for each residue for a give protein sequence. Each

residue has a value of 0 or 1 for the ASA attribute.

Consurf score. The Consurf method is based on

evolutionary relations among proteins represented by

phylogenetic trees [42]. It was used to predict functional sites of

proteins by estimating the degree of sequence conservation among

their homologous sequences [51,52]. Consurf scores of all proteins

were obtained from the web server http://consurfdb.tau.ac.il.

When appling the sliding window strategy to a given protein

sequence with the above eight scores, we devised a few modifica-

tions to circumvent issues. If a residue on a sequence terminus is

the central bit of a sliding window, we use 0s to fill in blanks on

one side of the window. For attributes RT, OP, and ACH, we just

applied them to the central bit of a sliding window, making them

independent of the size of the windows.

L1-logreg classifier. We use the L1-logreg classifier to score

and classify all data vectors, and hence, predict catalytic residues.

The classifier is a large-scale solver for L1-regularized logistic

regression problems [41], which has been proven to yield models

better than those based on unregularized estimations [53–55]. For

the given data vectors, x[Rn, to be classified, the logistic model

calculates the conditional probability of s[f{1,1g,

P(sDx)~ exp (s(wTxzv))

1z exp (s(wTxzv))
:

The model has parameters w[Rn (the weight vector) and v[R
(the intercept); wTxzv~0 defines the neutral hyper-plane in the

data vector space. The classifier locates the optimal model by

maximizing the likelihood estimation from the observed examples,

i.e. minimizing the average logistic loss:

min (1=m)
Xm

i~1

log (1z exp ({si(x
T
i wzv)))zl

Xn

i~1

Dwi D,

where lw0 is the regularization parameter, which is used to

balance the average logistic loss and the size of the weight vector.

More details on the L1-logreg classifier can be found in reference

[41]. We used the software package of L1-logreg classifier as

implemented by [41] and available at

http://www.stanford.edu/*boyd/l1_logreg/.

Training and Testing Procedure
The parameter l of L1-logreg and the window size were

optimized on the dataset Data604 with a ten-fold cross validation.

The optimal set of window size and l that gives rise to the highest

AUPR values, were obtained by a grid search in the interval of

[0.001, 0.02] with a step of 0.001 for l and from 0 to 10 for the

window size. For each duplet, the ten-fold cross validation

procedure was used to test the performance. Once obtaining the

optimal values for window size and l, we trained the model on the

whole set of Data604 for the test and real prediction. To determine

the optimal point of precision and recall rate on the ROC curve,

we used the F-measure that is defined in the following equation:

F~
2|P|R

PzR
,

where P and R are Precision and Recall rate, respectively. Please

see the section of Evaluation for definitions. We took trained

parameters that perform with the maximal F-measure point [56],

which is the balance point of sensitivity and specificity.

Evaluation
To evaluate the performance of our method, we used Precision

(P), Recall (R), False Positive Rate (FPR). They are defined by the

following equations:

P~
TP

TPzFP
,

R~
TP

TPzFN
,

FPR~
FP

TNzFP
,

where TP, TN, FP and, FN are the true positive, true negative,

false positive, and false negative rate, respectively. To compare

among different algorithms, all P, R, and FPR are calculated at the

point with the maximal F-measure. The area under the Precision-

Recall (PR) curve (AUPR) is also used to evaluate the

performances of all methods. A receiver operating characteristic

(ROC) curve represents a dependency of sensitivity and (1-

specificity). To obtain the ROC curve, all sites in a dataset are

sorted by their scores, and we increase the number of predicted

sites in steps of one site each time. In addition, the online tool,

StAR, is used to test the statistical significance between AUC

values [57].
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16. Mihalek I, Reš I, Lichtarge O (2004) A family of evolution-entropy hybrid

methods for ranking residues by importance. J Mol Biol 336: 1265–1282.
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