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Functional disconnectivity during the resting state has been observed in mild traumatic 
brain injury (mTBI) patients during the acute stage. However, it remains largely unknown 
whether the abnormalities are related to specific frequency bands of the low-frequency 
oscillations (LFO). Here, we used the amplitude of low-frequency fluctuations (ALFF) to 
examine the amplitudes of LFO in different frequency bands (slow-5: 0.01–0.027 Hz; 
slow-4: 0.027–0.073 Hz; and typical: 0.01–0.08 Hz) in patients with acute mTBI. A total 
of 24 acute mTBI patients and 24 age-, sex-, and education-matched healthy controls 
participated in this study. In the typical band, acute mTBI patients showed lower stan-
dardized ALFF in the right middle frontal gyrus and higher standardized ALFF in the right 
lingual/fusiform gyrus and left middle occipital gyrus. Further analyses showed that the 
difference between groups was concentrated in a narrower (slow-4) frequency band. In 
the slow-5 band, mTBI patients only exhibited higher standardized ALFF in the occipital 
areas. No significant correlation between the mini-mental state examination score and 
the standardized ALFF value was found in any brain region in the three frequency bands. 
Finally, no significant interaction between frequency bands and groups was found in any 
brain region. We concluded that the abnormality of spontaneous brain activity in acute 
mTBI patients existed in the frontal lobe as well as in distributed brain regions associated 
with integrative, sensory, and emotional roles, and the abnormal spontaneous neuronal 
activity in different brain regions could be better detected by the slow-4 band. These 
findings might contribute to a better understanding of local neural psychopathology of 
acute mTBI. Future studies should take the frequency bands into account when measur-
ing intrinsic brain activity of mTBI patients.

Keywords: resting-state fMri, mild traumatic brain injury, acute, amplitude of low-frequency fluctuations, 
frequency band
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inTrODUcTiOn

Mild traumatic brain injury (mTBI) is a substantial neurological 
disorder that comprises approximately 80% of the 1.5 million 
traumatic brain injuries suffered each year in the United States 
(Nathan et al., 2015). It is characterized by subtle cognitive deficits 
within the first weeks after injury and typically resolves within 
3–6  months post-injury (Walker and Tesco, 2013; Mayer et  al., 
2014, 2015). However, a subset of individuals (estimated to be 15%) 
develop post-concussion syndromes, leading to persistent neuro-
logical, cognitive, and behavioral symptoms, including headaches, 
memory problems, depression, and other features, that can impair 
social functioning and quality of life (Jeter et al., 2013; Walker and 
Tesco, 2013). Experimental injury models demonstrate that mTBI 
is capable of producing diffuse axonal injury. Unfortunately, con-
ventional neuroimaging techniques (e.g., computed tomography 
or magnetic resonance imaging) do not have adequate sensitivity 
to diagnose and predict clinical outcomes of mTBI.

Recently, resting-state functional magnetic resonance imag-
ing (RS-fMRI) has emerged as a promising tool for examining 
temporal correlations between low-frequency oscillations (LFO) 
in subjects with mTBI during the early stage (Johnson et al., 2012; 
Iraji et al., 2015; Mayer et al., 2015). LFO of the resting-state blood 
oxygen level-dependent (BOLD) signals is thought to reflect spon-
taneous neuronal activity of the brain (Biswal et al., 1995). Using a 
series of approaches, such as independent component analysis and 
seed-based linear correlation methods, several RS-fMRI studies 
have been conducted to examine the alterations of network con-
nectivity in patients with mTBI (Johnson et al., 2012; Stevens et al., 
2012; Sours et al., 2013; Iraji et al., 2015), supporting the idea that 
mTBI is linked to a disruption in functional connectivity within 
and between brain systems. Of note, most RS-fMRI studies that 
focused on the relationship between functional connectivity and 
clinical symptoms used acutely traumatized samples (Johnson 
et al., 2012; Shumskaya et al., 2012; Sours et al., 2013), as patients 
were imaged in acute time ranges of approximately 2 weeks after 
injury. Moreover, because it is at the acute stage that most mTBI 
patients report neurocognitive problems, detection of the neural 
basis of brain injury at the acute stage will be most likely to shed 
light on the link between early functional abnormalities and the 
possibility of protracted symptoms.

While functional connectivity can reveal the synchronization 
of LFO between spatially distinct brain regions, the regional 
properties of spontaneous brain activity in acute mTBI are less 
clear. The amplitude of low-frequency fluctuations (ALFF), 
which measures the total power of a given time course within 
a typical frequency range (e.g., 0.01–0.08 Hz), has been proven 
to be a valuable parameter to reflect the power of regional 
spontaneous neuronal activity (Zang et al., 2007). ALFF has been 
widely applied to evaluate LFO amplitudes of pathological brains, 
including schizophrenia (Hoptman et al., 2010), mild cognitive 
impairment (Bai et al., 2011; Han et al., 2012), Alzheimer’s dis-
ease (Wang et al., 2011), major depressive disorder (Wang et al., 
2012), sleep-deprived brain (Gao et  al., 2015), and traumatic 
brain injury (TBI) (Palacios et al., 2013; Zhou et al., 2014). The 
studies by Palacios et  al. (2013) and Zhou et  al. (2014), which 
suggested that the functional brain abnormalities of TBI can 

also be studied with ALFF, are of particular interest to the cur-
rent study. Palacios et  al. (2013) explored group differences in 
ALFF (0.01–0.08 Hz) between chronic and diffuse TBI patients 
(a mean of 4.1 years post-injury) and matched healthy volunteers, 
showing that patients with TBI had higher ALFF in the frontal 
regions, which was correlated with cognitive performance. Zhou 
et al. (2014) investigated the fractional ALFF (fALFF) in subacute 
mTBI patients (a mean of 23 days post-injury) in the range of 
0.01–0.08 Hz. fALFF measures the power within a specific fre-
quency range divided by the total power in the entire detectable 
frequency range (0–0.25 Hz) (Zou et al., 2008). Zhou et al. (2014) 
focused primarily on examining thalamic and cortical injuries in 
mTBI patients and found lower fALFF in the thalamus and the 
frontal and temporal lobes.

To date, it remains largely unknown whether mTBI patients 
show abnormal changes in LFO at the acute stage (<2 weeks post-
injury). Recent studies (Zuo et al., 2010; Baria et al., 2011) have 
demonstrated that the oscillatory dynamics of the BOLD signal 
are sensitive to specific frequency bands. Buzsáki and Draguhn 
(2004) noted that brain neural oscillations cover a wide range 
of frequencies (0.05–500 Hz), including slow-5 (0.01–0.027 Hz), 
slow-4 (0.027–0.073  Hz), slow-3 (0.073–0.198  Hz), and slow-2 
(0.198–0.25 Hz). The architecture of functional cortical networks 
in the brain appears to be related to systematic neural oscillations 
that occur in several oscillatory bands. Zuo et  al. (2010) have 
shown that the ALFF in the slow-4 band (0.027–0.073 Hz) was 
higher than that in the slow-5 band (0.01–0.027 Hz) in a wide 
range of brain regions, such as the basal ganglia, thalamus, and 
precuneus, suggesting that the pattern of intrinsic brain activity 
is sensitive to specific frequency bands. Furthermore, it has been 
shown that patients with cognitive disorders exhibit frequency-
dependent changes in abnormal LFO amplitudes (Hoptman et al., 
2010; Han et al., 2012). Several other studies (Salvador et al., 2008; 
Baliki et al., 2011; Wee et al., 2012) also investigated the effects 
of different frequency bands on the global properties of whole-
brain functional networks and brain states. Therefore, it would 
be necessary to differentiate the frequency bands to examine the 
LFO amplitudes in acute mTBI patients.

To address the above issues, we applied the ALFF approach 
to examine the amplitudes of LFO in acute mTBI patients at 
different frequency bands [slow-5 (0.01–0.027  Hz) and slow-4 
(0.027–0.073  Hz) as well as the typical range (0.01–0.08  Hz)] 
to identify potential frequency-dependent changes. We sought 
to determine (i) whether acute mTBI patients show abnormal 
LFO amplitudes in brain regions that are vulnerable to damage 
in mTBI (such as the frontal lobe) based on prior neurophysi-
ological investigations (Eierud et al., 2014) and (ii) whether the 
abnormalities are associated with specific frequency bands.

MaTerials anD MeThODs

subjects
From April 2013 to December 2014, 24 patients with acute mTBI 
[12 males; mean age, 39.0 ± 13.6 years (SD); educational attain-
ment, 9.0  ±  3.5  years; mean time post-injury, 3.6  ±  3.3  days] 
and 24 sex-, age-, and education-matched (12 males; mean age, 
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40.2 ± 10.9 years; educational attainment, 8.9 ± 3.4 years) healthy 
controls (HC) participated in the study. All mTBI patients were 
recruited from the Department of Emergency, the First Affiliated 
Hospital of Nanchang University. HC were recruited from the 
local community by advertisements. The inclusion criteria for 
the mTBI group were as follows: (1) diagnosis of mTBI in the 
past 2 weeks and (2) age between 18 and 60 years. The exclusion 
criteria were as follows: (1) involvement in litigation; (2) presence 
or history of neurological and/or psychiatric conditions; or (3) 
history of substance or alcohol abuse. The mTBI diagnosis was 
made by a physician according to the following criteria (Borg 
et al., 2004): Glasgow Coma Scale (GCS) score of 13–15 (at first 
contact with medical staff) and the presence of one or more of 
the following manifestations: loss of consciousness limited to 
30 min, post-traumatic amnesia limited to 24 h, and/or transient 
neurological abnormalities. None of the mTBI patients needed a 
neurosurgical intervention.

The mTBI subjects recruited for this study were an average of 
3.6 ± 3.3 days post-injury with a range of 0.5–12 days post-injury. 
The injury mechanisms of mTBI patients included 15 motor vehi-
cle accidents, 5 assaults, and 4 falls. Global cognitive performance 
was assessed using the mini-mental state examination (MMSE) 
(Folstein et  al., 1975) within 24  h after an MRI scan examina-
tion. This study was approved by the Human Research Ethics 
Committee of the First Affiliated Hospital of Nanchang University, 
and informed written consent was obtained from all subjects.

Data acquisition
All images were collected on a 3.0-T (Siemens, Erlangen, 
Germany) scanner at the First Affiliated Hospital of Nanchang 
University. Foam pads were used to restrict head motion. 
Resting-state functional images were acquired using an echo-
planar imaging (EPI) sequence: repetition time (TR) = 2,000 ms; 
echo time (TE) = 30 ms; flip angle = 90°; number of slices = 30; 
slice thickness  =  4.0  mm; gap  =  1.2  mm; field of view 
(FOV) = 200 mm × 200 mm; and matrix = 64 × 64.

During the RS-fMRI scanning, subjects were instructed to lie 
quietly in the scanner with their eyes closed. The fMRI scan lasted 
for 8 min and 6 s. However, the first 6 s was consumed by a dummy 
scan. Thus, we collected 240 volumes in total. In addition, we 
acquired high-resolution brain structural images for each subject 
by using a T1-weighted 3D MP-RAGE sequence (TR = 1,900 ms; 
TE  =  2.26  ms; flip angle  =  9°; FOV  =  240  mm  ×  240  mm; 
matrix  =  256  ×  256; slice thickness  =  1.0  mm; and 176 sagit-
tal slices). Conventional T1- and T2-weighted images together 
with susceptibility-weighted images (SWI) were also collected 
on every participant to better characterize hemorrhagic or other 
lesions. The T1-, T2-, and SWI were carefully reviewed by two 
experienced radiologists (Xianjun Zeng and Laichang He), and 
lesions, if present, were documented.

Mri Data Preprocessing
All preprocessing was performed using the Data Processing 
Assistant for Resting-State fMRI (DPARSF),1 which is based on 

1 http://www.restfmri.net

Statistical Parametric Mapping (SPM8),2 and the Resting-State 
fMRI Data Analysis Toolkit (REST).3 For the resting-state fMRI 
data on each subject, the first 10 volumes were discarded to 
avoid the possible effects of scanner instability and adaptation 
of subjects to the circumstances. The remaining 230 volumes 
acquired from each subject were corrected for the differences in 
slice acquisition times. The resultant images were then realigned 
to correct for small movements that occurred between scans. 
Based on the recorded motion correction estimates, subjects with 
more than 2 mm maximum displacement in any of the x, y, or z 
directions or more than 2° of angular rotation about any axis for 
any of the 230 volumes were excluded from this study. Individual 
T1-weighted structural images were co-registered to the mean 
of the realigned EPI images. The transformed structural images 
were then segmented into gray matter, white matter, and cerebro-
spinal fluid (Ashburner and Friston, 2005). The Diffeomorphic 
Anatomical Registration Through Exponentiated Lie Algebra 
(DARTEL) tool (Ashburner, 2007) was used to compute the 
transformations from individual native space to MNI space. As 
RS-fMRI measures have been shown to be sensitive to micro-
head motions (Yan et  al., 2013a,b), the Friston 24-parameter 
model (Friston et al., 1996; Yan et al., 2013a) was used to regress 
head motion effects out of the realigned data (the 24 parameters 
include 6 head motion parameters, 6 head motion parameters 
one time point before, and the 12 corresponding squared items) 
based on recent reports that have demonstrated that higher 
order models benefit from the removal of head motion effects 
(Satterthwaite et al., 2013; Yan et al., 2013a,b). We further char-
acterized the framewise displacement (FD), which considers 
measures of voxel-wise differences in motion in its derivation 
(Jenkinson et al., 2002;Power et al., 2012;Van Dijk et al., 2012;Yan 
et  al., 2013a), as a measure of the micro-head motion of each 
subject (Yan et  al., 2013a,b). Using the DPARSF toolbox, we 
computed the voxel-specific head motion, i.e., the values of mean 
voxel-specific FD for each subject. Group differences in the mean 
voxel-specific FD were calculated using a two-sample t-test, and 
the results were not statistically significant (p > 0.05) (for head 
motion parameters, see Table S1 in Supplementary Material). 
The mean voxel-specific FD was used as a covariate in the group 
comparisons of ALFF. To further reduce the effects of confound-
ing factors, the signals from the white matter and cerebrospinal 
fluid, the mean time series of all voxels across the whole brain 
and linear and quadratic trends were removed from the data with 
linear regression (Yan et al., 2013a,b). The ALFF calculation was 
then performed.

alFF calculation
For each subject, we calculated the ALFF value at each voxel. 
Specifically, the time series was first converted to the frequency 
domain using a Fast Fourier Transform, and the square root of 
the power spectrum was computed and then averaged across the 
predefined frequency interval. This averaged square root was 
termed ALFF, which measures the power of LFO.

2 http://www.fil.ion.ucl.ac.uk/spm
3 http://www.restfmri.net
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TaBle 1 | Demographic and clinical features of acute mTBi patients 
and hc.

characteristics mTBi (n = 24) hc (n = 24) p-value

Gender (male/female) 12/12 12/12 >0.99a

Age (years) 39.0 ± 13.6 40.2 ± 10.9 0.718b

Education (years) 9.0 ± 3.5 8.9 ± 3.4 0.898b

GCS 14.4 ± 0.9
MMSE 28.8 ± 1.1 29.5 ± 0.6 0.003b

Data are presented as mean ± SD. mTBI, mild traumatic brain injury; HC, healthy 
controls; GCS, Glasgow Coma Scale; MMSE, mini-mental state examination. 
ap-value was obtained using the two-tailed Chi-squared test.
bp-value was obtained by the two-sample t-test.
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To investigate alterations following acute mTBI, we calculated 
ALFF in the typical frequency band (0.01–0.08 Hz), slow-4 band 
(0.027–0.073 Hz), and slow-5 band (0.01–0.027 Hz). The voxel-
wise ALFF map for each subject was then converted into a z-score 
map by subtracting the mean ALFF across the entire brain and 
dividing by the SD of the whole-brain ALFF (Zang et al., 2007).

statistical analysis
Demographic and clinical variables were compared using the 
SPSS 17.0 software package (SPSS Inc., Chicago, IL, USA). Two-
sample t-tests were performed to assess the differences in age, 
duration of education, and MMSE score between patients and 
HC. We set the significance level at p < 0.05.

For ALFF, we first conducted one-sample two-tailed t-tests to 
determine the within-group effects across the frequency bands 
(typical, slow-4, and slow-5), and these results were considered 
significant at a threshold of p < 0.05, corrected for false discovery 
rate (FDR). Then, a second-level independent two-sample t-test 
was performed to determine the difference between groups in 
the typical frequency band (0.01–0.08  Hz). To determine the 
main effects of frequency band, group, and their interactions, 
we performed a two-way analysis of variance (ANOVA) on a 
voxel-by-voxel basis with group (acute mTBI patients and HC) as 
a between-subject factor and frequency band (slow-4 and slow-5) 
as a repeated measures factor. We used Gaussian random field 
(GRF) correction, i.e., clusters with a voxel-level p-value <0.01 and 
cluster-level p < 0.05, to obtain a significant difference between 
the two groups. In the calculations, the confounding covariates, 
including age and gender, were controlled as covariates.

In addition, to seek evidence that altered spontaneous brain 
activity associated with the cognitive functioning, regional corre-
lation analyses were conducted between the MMSE score and the 
cluster mean z-score of each patient within the mask of significant 
group differences. These correlations were also controlled for age, 
gender, and education. A p-value <0.05 was considered statisti-
cally significant.

resUlTs

Demographic and clinical Data
Table 1 shows the demographic and clinical data of all subjects. 
There were no significant differences in age and years of educa-
tion between the acute mTBI patients and the HC. Acute mTBI 
patients showed significantly decreased MMSE score compared 
with HC (p = 0.003). Only 4/24 (16.7%) patients were diagnosed 
with scalp swelling on both the T2WI and SWI; the others had no 
abnormalities on the T2WI and SWI.

alFF analyses in Typical Frequency Band 
(0.01–0.08 hz)
Before comparing the between-group ALFF differences, we 
first assessed the whole-brain ALFF results across the different 
frequency bands (typical, slow-4, and slow-5). For both the acute 
mTBI and HC groups, there were significantly higher standard-
ized ALFF values than the global averaged values in some regions, 
including the visual cortex, posterior cingulate cortex (PCC)/

precuneus, bilateral thalami, bilateral ventral medial prefrontal 
cortices (VMPFC), bilateral middle temporal gyri (MTG), and 
dorsolateral prefrontal cortex (DLPFC), mainly along the midline 
(see Figure 1).

We then contrasted these ALFF patterns between the two 
groups, thereby identifying the inter-group differences in the 
typical frequency band. Compared with HC, patients with acute 
mTBI showed lower standardized ALFF in the right middle 
frontal gyrus [Brodmann’s area (BA) 10]. Patients also exhibited 
higher standardized ALFF in the right lingual/fusiform gyrus 
(BA 19/18/37) and left middle occipital gyrus (BA 19) (shown in 
Figure 2A; Table 2).

alFF changes in Different Frequency 
Bands
To test the frequency-specific changes in ALFF, we carried out 
a two-way 2 (groups) ×  2 (frequency bands) ANOVA analysis. 
There was a main effect on group, and the significant differences 
were located in the bilateral middle frontal gyri (BA 10), left poste-
rior cerebellum lobe (mTBI < HC), bilateral middle occipital gyri 
(BA 18/19), and right postcentral gyrus (BA 3/2), extending into 
the right precentral regions (BA 4) (mTBI > HC) (Figure 2B). 
The main effect of frequency was presented in the right inferior 
frontal gyrus (BA 11/47/10) (slow-4  <  slow-5) and left white 
matter (slow-4 > slow-5) (Figure 2C). No significant interaction 
between frequency band and group was observed (Figure 2D).

Further analyses revealed that mTBI patients showed lower 
standardized ALFF in the right middle frontal gyrus and higher 
standardized ALFF in the right lingual/fusiform gyrus (BA 
19/18/37) and the bilateral cuneus/lingual gyri (BA 31/18/17) 
in the slow-4 band (Figure  2E; Table  3) and only exhibited 
higher standardized ALFF in the right lingual gyrus (BA 19) 
and left middle occipital gyrus (BA 19/18) in the slow-5 band 
(Figure 2F; Table 4). Furthermore, to test whether the exclusion 
of four patients with scalp swelling would impact the current 
results, we repeated the analyses using 20 patients versus 20 
controls, and we found that the between-group differences in 
ALFF across different frequency bands, main effects and the 
interactions were not substantially affected by the selection 
of patients. For the detailed results, please refer to Table S2 in 
Supplementary Material.

Finally, no significant correlation between MMSE score and 
standardized ALFF value was found in any brain region in the 
three frequency bands.

http://www.frontiersin.org/Human_Neuroscience/archive
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FigUre 1 | regions of significant alFF in the hc and acute mTBi groups in the (a) typical frequency band (0.01–0.08 hz), (B) slow-4 band (0.027–
0.073 hz), and (c) slow-5 band (0.01–0.027 hz) separately. The effects are significant at p < 0.05, FDR corrected; hot color indicates higher ALFF during resting 
state, and cool color indicates that the group had lower ALFF compared with its whole-brain mean. Left in the figure indicates the left side of the brain.
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DiscUssiOn

We investigated the LFO amplitudes in patients with acute mTBI 
in different frequency bands (typical, slow-4, and slow-5) of the 
resting-state brain. We found that acute mTBI patients showed 
lower standardized ALFF in the right middle frontal gyrus and 
higher standardized ALFF in the right lingual/fusiform gyrus and 
left middle occipital gyrus. The abnormal spontaneous neuronal 
activity in different brain regions could be better detected by the 
slow-4 band. These findings might contribute to a better under-
standing of the pathophysiology of acute mTBI.

Although the origins, relation, and specific physiological func-
tions of different frequency bands have not been fully clarified, 
neighboring bands were found to be typically associated with 
different brain states and competed with each other. The lowest-
frequency band has the highest power and localizes mainly to the 
prefrontal, parietal, and occipital cortices; the higher-frequency 
band exhibits less power, and localizes mainly within the sub-
cortical structures (e.g., thalamus and basal ganglia) (Baria et al., 
2011). Different oscillatory bands are generated by different 
mechanisms and have different physiological functions. In our 
study, we found that the slow-4 band is more sensitive in detect-
ing changes of spontaneous brain activity in the frontal regions. 
The mechanism of these changes is an interesting topic for future 
research.

In this study, it is important to note that the acute mTBI 
patients showed significant lower standardized ALFF in the right 
middle frontal gyrus in both the typical band and slow-4 band. 
The results were consistent with a previous study by Metting et al. 
(2009) that used perfusion CT imaging to measure changes in 

perfusion in acute mTBI patients and showed hypoperfusion 
in the frontal cortex. Additionally, a great number of studies 
using positron emission tomography (PET) have consistently 
reported frontal hypometabolism in mTBI patients at the acute 
and chronic stages (Gross et al., 1996; Bonne et al., 2003; Chen 
et  al., 2003; Garcia-Panach et  al., 2011; Byrnes et  al., 2014). 
These studies showed a noticeable convergence of evidence 
demonstrating abnormalities in frontal lobe function after 
mTBI. Palacios et al. (2013) indicate that the decreased ampli-
tude of LFO in neurodegenerative diseases probably reflects a 
loss of neurons that consecutively provoke connectivity deficits 
and disorganization or breakdown of brain networks. mTBI 
may damage the structure of neurofilaments and cause diffuse 
axonal injury, leading to microscopic lesions, myelin loss, and 
axonal degeneration or swelling, with axonal pathology being 
more pronounced in the acute phase of injury (Mac et al., 2007; 
Spain et al., 2010). Based on these findings, we speculated that 
the lower standardized ALFF of the right middle frontal gyrus 
probably reflected compromised frontal functioning in the acute 
mTBI patients. It is noteworthy that we also computed fALFF in 
our study. We found that the results of fALFF and ALFF analyses 
are similar. For the details of fALFF results, please refer to Table 
S3 in Supplementary Material.

We also observed higher standardized ALFF in acute mTBI 
patients, predominantly in the right lingual/fusiform gyrus and 
left middle occipital gyrus in the typical band; higher standard-
ized ALFF in the right lingual/fusiform gyrus (BA 19/18/37) and 
bilateral cuneus/lingual gyri (BA 31/18/17) in the slow-4 band; 
and higher standardized ALFF in the right lingual gyrus (BA 19) 
and left middle occipital gyrus (BA 19/18) in the slow-5 band. 
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FigUre 2 | Two-sample t-test for the (a) typical band (0.01–0.08 hz) voxel-level p < 0.01 and cluster-level p < 0.05, grF corrected. Cool color indicates 
that the mTBI group had decreased ALFF compared with the controls and the hot color indicates the opposite. Main effects of (B) group. Hot color represents 
higher ALFF in the mTBI group than in the control group, whereas cool color represents lower ALFF in the mTBI group. Main effects of (c) frequency band. Hot color 
represents higher ALFF in the slow-4 band than in the slow-5 band, while cool color represents the opposite. The results were obtained by a 2 × 2 ANOVA. (D) 
Interaction between frequency bands and groups. Two-sample t-test for the (e) slow-4 band (0.027–0.073 Hz) and (F) slow-5 band (0.01–0.027 Hz), voxel-level 
p < 0.01 and cluster-level p < 0.05, GRF corrected. Cool color indicates that the mTBI group had decreased ALFF compared with the controls and the hot color 
indicates the opposite.
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In the current study, the potential mechanism for the increased 
spontaneous activity in the occipital regions, cuneus and fusiform 
gyrus is speculative, but previous studies have indicated that the 
visual association cortex and cuneus are responsible for visual 
associations and processing visual imagery, and the fusiform 
gyrus is a component of the ventral stream of the visual system 
(Mahon et al., 2007). Thus, we suggest that increased spontaneous 

neuronal activity in the occipital, cuneus, and fusiform areas in 
acute mTBI individuals at rest may indicate that patients were 
experiencing mental images of the trauma unconsciously in this 
resting condition.

In addition to the frontal and occipital lobes, brain regions 
with a significant main effect of group were identified in the right 
postcentral gyrus (BA 3/2), extending into the right precentral 
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TaBle 4 | in the slow-5 band (0.01–0.027 hz), group alFF differences at 
the given threshold.

Brain region Brodmann’s 
area

Mni coordinates t-value Voxels

x y z

Patients > hc
R lingual gyrus 19 36 −54 −12 4.5125 275
L middle occipital gyrus 19/18 −36 −78 15 4.8077 389

MNI, Montreal Neurological Institute; x, y, z, coordinates of primary peak locations in 
the space of MNI; t, statistical value of peak voxel; L, left; R, right.
Comparisons were performed at voxel-level p < 0.01 and cluster-level p < 0.05,  
GRF corrected.

TaBle 3 | in the slow-4 band (0.027–0.073 hz), group alFF differences at 
the given threshold.

Brain region Brodmann’s 
area

Mni coordinates t-value Voxels

x y z

hc > patients
R middle frontal gyrus 10/9 27 48 24 −5.8185 320

Patients > hc
R lingual/fusiform gyrus 19/18/37 24 −60 −12 4.4909 165
L/R cuneus/lingual 
gyrus

31/18/17 15 −72 21 3.9899 169

MNI, Montreal Neurological Institute; x, y, z, coordinates of primary peak locations in 
the space of MNI; t, statistical value of peak voxel; L, left; R, right.
Comparisons were performed at voxel-level p < 0.01 and cluster-level p < 0.05,  
GRF corrected.

TaBle 2 | comparisons of alFF at typical frequency band (0.01–0.08 hz) 
between groups.

Brain regions Brodmann’s 
area

Mni coordinates t-value Voxels

x y z

hc > patients
R middle frontal gyrus 10 27 48 24 −4.8678 199

Patients > hc
R lingual/fusiform gyrus 19/18/37 24 −57 −12 4.7302 253
L middle occipital gyrus 19 −36 78 15 4.0536 125

MNI, Montreal Neurological Institute; x, y, z, coordinates of primary peak locations in 
the space of MNI; t, statistical value of peak voxel; L, left; R, right.
Comparisons were performed at voxel-level p < 0.01 and cluster-level p < 0.05,  
GRF corrected.
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regions (BA 4) (mTBI > HC), and the left posterior cerebellum 
lobe (mTBI < HC) (Figure 2B). The postcentral and precentral 
gyri constitute the motor and sensory networks. Mazard et  al. 
(2005) found that the sensorimotor areas were jointly activated 
with the occipital visual areas during mental imagery tasks. 
Previous RS-fMRI studies have also shown that the fluctuations 
in BOLD signals of the precentral and the postcentral gyri were 
highly correlated with those of the occipital visual areas (Nir et al., 
2006; Wang et al., 2008). Therefore, the higher standardized ALFF 
in the postcentral and precentral regions could be explained 
by the increases of spontaneous neuronal activity in the visual 
cortex. The posterior cerebellum is predominantly involved in 
cognition regulation (Baillieux et  al., 2010) and is recognized 
to be implicated in emotional modulation (Schmahmann and 
Caplan, 2006). Using ALFF, Sui et al. (2010) suggested that the 
cerebellum lobe was related to the neuropathology of cognitive 
and emotional processing of post-traumatic stress disorder 
(PTSD) patients. Yin et al. (2011) also showed that patients with 
PTSD had reduced spontaneous activity in the cerebellum. While 
concurrent diagnoses of mTBI and PTSD are difficult due to 
common symptoms and problems with self-report assessments 
(Capehart and Bass, 2012), there may still be relatively high rates 
of PTSD within the population of patients who have experienced 
mTBI (Hoge et al., 2008; Rosenfeld and Ford, 2010; Graner et al., 
2013). In our study, reduced spontaneous cerebellar activity in 
acute mTBI patients may subserve cognitive and emotional 
impairment disorders.

limitations
Some limitations in our study are worth noting. First, because the 
sample size was relatively small, the results of the current study may 
not be representative of mTBI in general. Future studies could use a 
larger sample size to increase the reliability. Second, we could not 
observe dynamic ALFF changes in different progressions of mTBI 
due to the cross-sectional group data. In future studies, more atten-
tion need to be paid to longitudinal changes in neuronal activity.

cOnclUsiOn

We concluded that the abnormality of spontaneous brain activity 
in acute mTBI patients existed in the frontal lobe as well as in 
distributed brain regions associated with integrative, sensory, and 
emotional roles, and the abnormal spontaneous neuronal activity 
in different brain regions could be better detected by the slow-4 
band. These findings might contribute to a better understanding 
of the local neural psychopathology of acute mTBI. Future studies 
should take the frequency bands into account when measuring 
intrinsic brain activity of mTBI patients.
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