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Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from
natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers both in vitro and in vivo. Alkaloids,
such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the
naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine,
and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that
is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are
necessary before final recommendations on specific alkaloids can be made.

1. Introduction

Alkaloids are a highly diverse group of compounds that
contain a ring structure and a nitrogen atom. In most
cases, the nitrogen atom is located inside the heterocyclic
ring structure [1]. A classification based on biosynthetic
pathways is mostly used to categorize different alkaloid [1].
Alkaloids have a wide distribution in the plant kingdom and
mainly exist in higher plants, such as those belonging to
Ranunculaceae, Leguminosae, Papaveraceae, Menisperma-
ceae, and Loganiaceae [1]. Moreover, several alkaloids exhibit
significant biological activities, such as the relieving action of
ephedrine for asthma, the analgesic action of morphine, and
the anticancer effects of vinblastine [1–4]. In fact, alkaloids
are among the most important active components in natural
herbs, and some of these compounds have already been
successfully developed into chemotherapeutic drugs, such
as camptothecin (CPT), a famous topoisomerase I (TopI)
inhibitor [5], and vinblastine, which interacts with tubulin
[4].

Herein, we searched the PubMed database and the
naturally derived alkaloids, such as berberine, evodiamine,
matrine, piperine, sanguinarine, and tetrandrine (Figure 1),
which have relatively more anticancer studies, have been

selected for reviewing. Other alkaloids (such as chelery-
thrine, chelidonine, fagaronine, lycorine, nitidine chloride,
and solanine) lacking systematic anticancer investigations
have also been mentioned. The aim of this paper is to
summarize and investigate the mechanisms of action of these
compounds to accelerate the discovery of anticancer drugs
derived from alkaloids. We propose that the development
of alkaloids into new anticancer agents has a bright future
despite some difficulties.

2. Alkaloids with Anticancer Effects and
the Related Mechanisms

2.1. Berberine. Berberine (Figure 1) is an isoquinoline alka-
loid widely distributed in natural herbs, including Rhizoma
Coptidis, a widely prescribed Chinese herb [6]. It has
a broad range of bioactivities, such as antiinflammatory,
antibacterial, antidiabetes, antiulcer, sedation, protection of
myocardial ischemia-reperfusion injury, expansion of blood
vessels, inhibition of platelet aggregation, hepatoprotective,
and neuroprotective effects [7–11]. Berberine has been used
in the treatment of diarrhea, neurasthenia, arrhythmia,
diabetes, and so forth [11]. Several studies have shown that

mailto:jinjianlu@umac.mo
mailto:ytwang@umac.mo


2 Evidence-Based Complementary and Alternative Medicine

N+

Berberine Evodiamine

Sanguinarine Tetrandrine

N+

Matrine

Piperine

O

O

N
O

N
N

O

N

H

N

N

O

O

O
O

O

N
O

O

O

N

O

O

O
O

O

O

O

O

Figure 1: The chemical structures of berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine.

berberine has anticancer potentials by interfering with the
multiple aspects of tumorigenesis and tumor progression in
both in vitro and in vivo experiments. These observations
have been well summarized in the recent reports [12–14].
Berberine inhibits the proliferation of multiple cancer cell
lines by inducing cell cycle arrest at the G1 or G2/M phases
and by apoptosis [12, 15, 16]. In addition, berberine induces
endoplasmic reticulum stress [15] and autophagy [17] in
cancer cells. However, compared with clinically prescribed
anticancer drugs, the cytotoxic potency of berberine is much
lower, with an IC50 generally at 10 μM to 100 μM depending
on the cell type and treatment duration in vitro [12].
Besides, berberine also induces morphologic differentiation
in human teratocarcinoma cells [18]. Inhibition of tumor
invasion and metastasis is an important aspect of berberine’s
anticancer activities [19, 20]. A few studies have reported
berberine’s inhibition of tumor angiogenesis [21, 22]. In
addition, its combination with chemotherapeutic drugs
or irradiation could enhance the therapeutic effects [23,
24]. Recently, a study reported that berberine also showed
promising chemopreventive efficacy in hamster buccal pouch
carcinogenesis [25].

The potential molecular targets and mechanisms of ber-
berine are rather complicated. Berberine interacts with DNA
or RNA to form a berberine-DNA or a berberine-RNA
complex, respectively [26, 27]. Berberine is also identified as
an inhibitor of several enzymes, such as N-acetyltransferase
(NAT), cyclooxygenase-2 (COX-2), and telomerase [12].
Other mechanisms of berberine are mainly related to its
effect on cell cycle arrest and apoptosis, including regulation
of cyclin-dependent kinase (CDK) family of proteins [12,
28] and expression regulation of B-cell lymphoma 2 (Bcl-
2) family of proteins (such as Bax, Bcl-2, and Bcl-xL)

[12, 15, 28], and caspases [15, 28]. Furthermore, berberine
inhibits the activation of the nuclear factor κ-light-chain-
enhancer of activated B cells (NF-κB) and induces the
formation of intracellular reactive oxygen species (ROS) in
cancer cells [12, 15]. Interestingly, these effects might be
specific for cancer cells [12]. The effect of berberine on inva-
sion, migration, metastasis, and angiogenesis is mediated
through the inhibition of focal adhesion kinase (FAK), NF-
κB, urokinase-type plasminogen-activator (u-PA), matrix
metalloproteinase 2 (MMP-2), and matrix metalloproteinase
9 (MMP-9) [20, 29]; reduction of Rho kinase-mediated
Ezrin phosphorylation [19]; reduction of the expression of
COX-2, prostaglandin E, and prostaglandin E receptors [30];
downregulation of hypoxia-inducible factor 1 (HIF-1), vas-
cular endothelial growth factor (VEGF), proinflammatory
mediators [21, 22], and so forth.

2.2. Evodiamine. Evodiamine (Figure 1), a quinolone alka-
loid, is one of the major bioactive compounds isolated from
the Chinese herb Evodia rutaecarpa. It possesses antianxiety,
antiobese, antinociceptive, antiinflammatory, antiallergic,
and anticancer effects. Besides, it has thermoregulation,
protection of myocardial ischemia-reperfusion injury and
vessel-relaxing activities [11, 31–34]. Evodiamine exhibits
anticancer activities both in vitro and in vivo by inducing
the cell cycle arrest or apoptosis, inhibiting the angiogenesis,
invasion, and metastasis in a variety of cancer cell lines
[35–39]. It presents anticancer potentials at micromolar
concentrations and even at the nanomolar level in some cell
lines in vitro [40, 41]. Evodiamine also stimulates autophagy,
which serves as a survival function [42]. Compared with
other compounds, evodiamine is less toxic to normal human
cells, such as human peripheral blood mononuclear cells
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[37, 43]. It also inhibits the proliferation of adriamycin-
resistant human breast cancer NCI/ADR-RES cells both in
vitro and in Balb-c/nude mice [44]. Evodiamine (10 mg/kg)
administrated orally twice daily significantly inhibits the
tumor growth [44]. Moreover, treatment with 10 mg/kg
evodiamine from the 6th day after tumor inoculation into
mice reduces lung metastasis and does not affect the body
weight of mice during the experimental period [35].

Evodiamine inhibits TopI enzyme, forms the DNA
covalent complex with a similar concentration to that of CPT,
and induces DNA damage [45–47]. However, TopI may not
be the main target of this compound. Cancer cells treated
with evodiamine exhibit G2/M phase arrest [44, 48, 49]
rather than S phase arrest, which is not consistent with the
mechanism of classic TopI inhibitors, such as CPT. Therefore,
other targets aside from TopI may also be important
for realizing the anticancer potentials of evodiamine. This
statement is supported by the fact that evodiamine has effect
on tubulin polymerization [49]. Exposure to evodiamine
rapidly increases intracellular ROS followed by an onset of
mitochondrial depolarization [50]. The generation of ROS
and nitric oxide acts in synergy and triggers mitochondria-
dependent apoptosis [42]. Evodiamine also induces caspase-
dependent and caspase-independent apoptosis, downregu-
lates Bcl-2 expression, and upregulates Bax expression in
some cancer cells [38, 40]. The phosphatidylinositol 3-
kinase/Akt/caspase and Fas ligand (Fas-L)/NF-κB signaling
pathways might account for evodiamine-induced cell death.
Moreover, these signals could be increased by the ubiquitin-
proteasome pathway [41].

2.3. Matrine. Matrine (Figure 1) is a major alkaloid found in
many Sophora plants, including Sophora flavescens Ait. [51].
It exhibits a wide range of pharmacological properties such
as antibacterial, antiviral, antiinflammatory, antiasthmatic,
antiarrhythmic, antiobesity, anticancer, diuretic, choleretic,
hepatoprotective, nephroprotective, and cardioprotective
effects [11, 52–58]. It has been used for treatment of bacillary
dysentery, enteritis, malignant pleural effusion, and so forth
in China [11], and the anticancer effects have also been
widely studied [59–61]. Although the needed concentration
of matrine to inhibit cancer cell proliferation is relatively high
(i.e., at millimolar level) [59, 60], it has no significant effects
on the viability of normal cells [60]. Matrine inhibits the
proliferation of various types of cancer cells mainly through
mediation of G1 cell cycle arrest or apoptosis [59, 60, 62–64].
Apoptosis and autophagy could be both induced by matrine
in human cancer cells, such as hepatoma G2 cells and SGC-
7901 cells [65, 66]. Matrine also induces the differentiation of
K562 cells and presents antiangiogenesis activities [67, 68].
The in vivo anticancer efficacy of matrine has already been
evaluated in H22 cells, MNNG/HOS cells, 4T1 cells and
BxPC-3 cells in BALB/c mice, among others [60, 61, 68, 69].
For example, matrine at 50 mg/kg or 100 mg/kg inhibits
MNNG/HOS xenograft growth [61], and it reduces the
pancreatic tumor volumes compared to those of control at
the similar doses [60].

However, the exact targets of matrine are still unclear.
Matrine affects many proteins involved in cell proliferation

or apoptosis, such as E2F-1, Bax, Bcl-2, Fas, and Fas-L
[59–61, 63, 64, 70]. It inhibits cancer cell invasion par-
tially through inhibition of MMP-2 and MMP-9 expression
and modulation of the NF-κB signaling pathway [71–73].
Matrine has been used in China for cancer therapy. The
direct inhibition of cancer proliferation by this compound
seems not to be the exact mechanism that could explain the
reason for its application in cancer treatment.

2.4. Piperine. Piperine (Figure 1), a piperidine alkaloid iso-
lated from Piper nigrum and Piper longum, is a compound
found in famous spices that have been used for centuries
[74]. It exhibits antioxidant, antiinflammatory, antidiarrheal,
anticonvulsant, antimutagenic, hypolipidemic, promoting
bile secretion, and tumor inhibitory activities [11, 75, 76].
It is also a known antidepressant of the central nervous
system [77, 78]. The chemopreventive effects of piperine
against several kinds of carcinogen, such as benzo(a)pyrene,
and 7,12-dimethyl benz(a)anthracene, show its potential as a
cancer preventive agent [79–85]. Administration of piperine
(50 mg/kg or 100 mg/kg per day for 7 days) inhibits solid
tumor development in mice transplanted with sarcoma 180
cells [86]. A recent study has shown that piperine inhibits
breast stem cell self-renewal and does not cause toxicity
to differentiated cells [87]. It has been demonstrated that
piperine induced apoptosis and increased the percentage
of cells in G2/M phase in 4T1 cells and induced K562
cells to differentiate into macrophages/monocytes [88, 89].
Piperine also has very good antimetastatic properties against
lung metastasis induced by B16F-10 melanoma cells in mice
(200 μM/kg) [90] and suppresses phorbol-12-myristate-13-
acetate (PMA)-induced tumor cell invasion [91].

Piperine is a potent inhibitor of NF-κB, c-Fos, cAMP
response element-binding (CREB), activated transcrip-
tion factor 2 (ATF-2), among others. [92]. It suppresses
PMA-induced MMP-9 expression via the inhibition of
PKCα/extracellular signal-regulated kinase (ERK) 1/2 and
reduction of NF-κB/AP-1 activation [91]. Remarkably, piper-
ine also inhibits the functions of P-glycoprotein (P-gp) and
CYP3A4, which not only affects drug metabolism but also
re-sensitizes multidrug resistant (MDR) cancer cells [93, 94].
Piperine increases the therapeutic efficacy of docetaxel in a
xenograft model without inducing more adverse effects on
the treated mice by inhibiting CYP3A4, one of the main
metabolizing enzymes of docetaxel [95].

2.5. Sanguinarine. Sanguinarine (Figure 1) is a benzophe-
nanthridine alkaloid isolated from the Papaveracea family,
which includes Sanguinaria canadensis L. and Chelidonium
majus L. [96, 97]. It has antibacterial, antifungal, antis-
chistosomal, antiplatelet, and antiinflammatory properties
[11, 98–100], and is used for schistosomiasis control [11].
Sanguinarine also exhibits anticancer potentials [101–104]
and is currently receiving attention from researchers. Data
from in vitro studies indicates that this alkaloid presents
anticancer effects at concentrations less than ten micromoles
in most cases. Sanguinarine induces cell cycle arrest at
different phases or apoptosis in a variety of cancer cells
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[101, 102, 104–107]. It remarkably sensitizes breast cancer
cells to tumor necrosis factor (TNF)-related apoptosis-
inducing ligand-mediated apoptosis [105]. Sanguinarine
also shows antiangiogenic effects in mice (5 mg/kg), presents
anti-invasive effects, and overcomes P-gp-mediated MDR
phenotype [108–110]. A strategy involving the coadminis-
tration of COX-2 inhibitors and sanguinarine has been rec-
ommended for the management of prostate cancer [111]. It
has also been suggested that sanguinarine may be developed
as an agent for the management of conditions elicited by
ultraviolet exposure such as skin cancer [112].

The most possible mechanism responsible for the anti-
cancer effects of this compound is its ability to directly
interact with glutathione (GSH). This interaction severely
depletes cellular GSH and induces ROS generation [102, 103,
105, 113]. Pretreatment of N-acetyl cysteine or catalase pre-
vents the sanguinarine-induced ROS production and cyto-
toxicity [102, 113]. This mechanism is very similar to that of
the TopII inhibitor salvicine, a diterpene quinone synthesized
via the structural modification of a natural compound
isolated from Salvia prionitis lance [114, 115]. Sanguinarine
is a selective inhibitor of mitogen-activated protein kinase
phosphatase 1 (MKP-1), which is overexpressed in many
tumor cells [116]. The disruption of microtubule assembly
dynamics [117], the nucleocytoplasmic trafficking of cyclin
D1 and TopII [118], and the induction of DNA damage [109]
also contributes to, at least in part, the anticancer effects
of this compound. Sanguinarine is a potent suppressor of
NF-κB activation induced by TNF, interleukin-1, phorbol
ester, and okadaic acid, but not that activated by hydrogen
peroxide or ceramide [119]. It also effectively inhibits the
signal transducer and activator of transcription 3 activation
(STAT-3) [120]; downregulates CDKs, cyclins, MMP-2, and
MMP-9 [107, 110]; upregulates p21, p27 [107], and the
phosphorylation of p53 [101]; modulates the members of the
Bcl-2 family including Bax, Bak, Bid, Bcl-2, and Bcl-xL [101,
105, 106]; activates caspases [104–106]; and upregulates
death receptor 5 (DR-5) [104].

2.6. Tetrandrine. Tetrandrine (Figure 1), a bisbenzyliso-
quinoline alkaloid from the root of Stephania tetrandra,
exhibits a broad range of pharmacological activities, includ-
ing immunomodulating, antihepatofibrogenetic, antiinflam-
matory, antiarrhythmic, antiportal hypertension, anticancer
and neuroprotective activities [11, 121]. It generally presents
its anticancer effects in the micromolar concentrations.
Tetrandrine induces different phases of cell cycle arrest,
depends on cancer cell types [122–124], and also induces
apoptosis in many human cancer cells, including leukemia,
bladder, colon, hepatoma, and lung [122–130]. In vivo
experiments have also demonstrated the potential value of
tetrandrine against cancer activity [126, 127, 131]. For exam-
ple, the survival of mice subcutaneously inoculated with
CT-26 cells is extended after daily oral gavage of 50 mg/kg
or 150 mg/kg of tetrandrine [127]. Tetrandrine also inhibits
the expression of VEGF in glioma cells, has cytotoxic effect
on ECV304 human umbilical vein endothelial cells, and
suppresses in vivo angiogenesis [131]. Tetrandrine-treated

mice (10 mg/kg/day) have fewer metastases than vehicle-
treated mice, and no acute toxicity or obvious changes can
be observed in the body weight of both groups [132].

Coadministration of tetrandrine restores the sensitivity
of MDR cancer cells to doxorubicin, paclitaxel, docetaxel,
and vincristine [133–135] through the inhibition of P-gp.
In mice with MDR MCF-7/adr or KBv200 cell xenografts,
co-administration of tetrandrine increases the anticancer
activity of doxorubicin and vincristine without a significant
increase in toxicity [133, 135]. Hence, tetrandrine holds a
great promise as a MDR modulator for the treatment of
P-gp-mediated MDR cancers. Tetrandrine appears to be a
promising candidate for combining with several chemother-
apeutic agents, such as 5-fluorouracil and cisplatin, in
vitro or in vivo [126, 136, 137]. It enhances tamoxifen-
induced antiproliferation by inhibiting phosphoinositide-
dependent kinase 1 [138]. Tetrandrine also enhances the
radio sensitivity of various cancer cells mainly by affecting
the radiation-induced cell cycle arrest and redistributing
the cell cycle [139–143]. All these observations are rational
evidence supporting the application of tetrandrine as an
adjunct for cancer chemotherapy or radiotherapy.

Activation of glycogen synthase kinase 3β (GSK-3β),
generation of ROS, activation of p38 mitogen-activated
protein kinase (p38 MAPK), and inhibition of Wnt/beta-
catenin signaling might contribute to the anticancer effects of
tetrandrine [126, 127, 144–146]. Tetrandrine also effectively
up-regulates p53, p21, p27, and Fas [123, 124, 145, 147];
down-regulates Akt phosphorylation, CDKs, and cyclins
[124, 145, 148]; modulates the members of the Bcl-2 family
including Bax, Bcl-xL, and Bid [147, 148]; activates caspases
[145, 147].

2.7. Other Alkaloids with Anticancer Effects. Aside from the
aforementioned alkaloids, other alkaloids such as chelery-
thrine isolated from Toddalia asiatica (L.) Lam, chelidonine
isolated from Chelidonium majus L., fagaronine isolated from
Fagara zanthoxyloides Lam., lycorine isolated from Lycoris,
nitidine chloride isolated from Zanthoxylum nitidum (Roxb.)
DC., solanine isolated from Solanum tuberosum, sopho-
carpine isolated from Sophora alopecuroides L., trigonelline
isolated from trigonella foenum-graecum also present anti-
cancer potentials with diversiform mechanisms [11, 149–
153]. However, reports on the anticancer activities and
underlying mechanism of actions of these compounds are
limited.

3. Discussion

In this paper, we summarized the recent progress of several
typical alkaloids with anticancer activities and presented
some characteristics of these compounds. On the basis of the
previous studies, alkaloids with anticancer activities reflect
diversity at least in three aspects.

First, the source of alkaloids with anticancer potentials
is very extensive. Most of the aforementioned alkaloids are
from different families, and the biosynthesis of these com-
pounds is also varied. For example, berberine is isolated from
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Figure 2: Berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine restrain cancer by modulating multiple signaling
pathways, resulting in the inhibition of the initiation of carcinogenesis, induction of cell cycle arrest, apoptosis, autophagy, or differentiation,
and inhibition of metastasis, angiogenesis, and so forth.

Ranunculaceae and roots in phenylalanine and tyrosine,
whereas evodiamine is isolated from Rutaceae and roots in
tryptophan [1]. Second, the pharmacological activities of
these alkaloids are varied [11, 12, 154]. For instance, piperine
and berberine are used to treat epilepsy and diarrhea,
respectively [155, 156], and both of these compounds show
anticancer and other pharmacological effects. Third, the
research focuses of these anticancer alkaloids are also very
different. Research on piperine is usually focused on cancer
prevention [82, 85], whereas that on most other alkaloids
is mainly focused on cancer chemotherapy, especially on
the evaluation of antiproliferative activity [12, 37, 113, 124].
Figure 2 summarizes the different roles of the aforemen-
tioned six alkaloids to achieve their anticancer effects.

In addition to their diversity, the anticancer alkaloids also
have several other characteristics or/and issues which should
be addressed. First, the range of alkaloid concentration
necessary to elicit the anticancer effects is wide [4, 5, 12,
60, 124]. The needed concentration is relatively higher for
most of the aforementioned alkaloids to produce anticancer
effects, compared with the widely used chemotherapeutic
drugs such as CPT [5] and vinblastine [4], although both
are also naturally derived alkaloids. The concentration of
matrine used to produce anticancer effects even reaches

millimole [60]. Therefore, modification of the compound via
chemical methods may be a good strategy. This observation
also indicates that combination therapy probably provides
an optimal venue for the clinical application of these com-
pounds because most of these alkaloids exhibit synergistic or
enhancement effects when combined with chemotherapeutic
drugs in both in vitro and in vivo experiments [95, 136, 157,
158].

Second, alkaloids isolated from natural herbs seem to
have many targets to realize their multiple pharmacological
effects (Figure 3), indicating that most of them are “dirty
compounds.” These “dirty compounds” are a pressing medi-
cal necessity, especially for the treatment of complex diseases
such as cancer [159]. However, the discovery of the molecular
targets and mechanisms of these alkaloids still has a long way
to go. Recent developments in biology, such as the emergence
of the “-omics” fields of study, surface plasmon resonance
technology, and siRNA, may greatly facilitate researches in
this area [4, 160–163].

Third, most of these alkaloids have poor water solubility
and low bioavailability and are hard to reach the specific
cancer site. In addition to the structural modification,
changing the drug delivery system could be another strategy.
The development of nanotechnology may bring hope to solve
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these problems, and actually, there have been already some
successful cases [164, 165].

Fourth, the toxicity of these compounds also cannot
be ignored. For example, the most common side effects
of berberine include anaphylaxis, constipation, and skin
allergies [166]. Berberine can displace bilirubin from serum-
binding proteins and cause kernicterus, jaundice, and brain
damage in infants [166–168]. Neurotoxicity, immunotox-
icity, and reproductive toxicity induced by piperine have
been reported [169–171], and hepatotoxicity and embryonic
toxicity can also be induced by sanguinarine [172, 173].
Therefore, alkaloids isolated from natural herbs are not
always safe. The dosages, the routes of administration and
the treatment procedures, among others, are very important.
The transformation of chemical structures and the applica-
tion of new drug delivery systems may reduce the toxicities
of these compounds.

Finally, though there are several clinical studies of the
alkaloids for the treatment of other diseases, for example,

berberine for the treatment of diabetes or metabolic syn-
drome, there is no report about the clinical trial for cancer
prevention or treatment using the aforementioned alkaloids.
As there is a big jump from experiment researches to clinical
ones, it is necessary to carry out some clinical anticancer
trials for these alkaloids, such as berberine and tetrandrine.

In conclusion, for the future work in the field, (1)
the exact anticancer mechanisms of alkaloids should be
further identified using new pharmacological technologies;
(2) the chemical structures of these lead compounds may be
transformed via pharmaceutical chemistry; (3) the effective
combinational therapy methods may be explored; (4) the
effective drug delivery systems need to be developed; (5) the
additional clinical anticancer trials for these alkaloids need to
be performed.
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