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Slll'nlnar~ 
Expression of the HIV-1 envelope protein gp120 in brains of transgenic (tg) mice induces exten- 
sive neurodegeneration (Toggas, S. M., E. Masliah, E. M. Rockenstein, G. F. RaU, C. R. Abraham, 
and L. Mucke. 1994. Nature [Lond.]. 367:188-193.). To further analyze the pathogenesis of gp120- 
induced neurotoxicity and to assess the neuroprotective potential of human amyloid precursor 
proteins (hAPPs) in vivo, different hAPP isoforms were expressed in neurons of gp120/hAPP- 
bigenic mice: hAPP751, which contains a Kunitz-type protease inhibitor domain, or hAPP695, 
which lacks this domain. Bigenic mice overexpressing hAPP751 at moderate levels showed 
significantly less neuronal loss, synapto-dendritic degeneration, and gliosis than singly tg mice 
expressing gp120 alone. In contrast, higher levels of hAPP695 expression in bigenic mice failed 
to prevent gp120-induced brain damage. These data indicate that hAPP can exert important neu- 
roprotective functions in vivo and that the efficiency of this protection may depend on the hAPP 
isoform expressed and/or on the level of neuronal hAPP expression. Hence, molecules that mimic 
beneficial APP activities may be useful in the prevention/treatment of HIV-l-associated nervous 
system damage and, perhaps, also of other types of neural injury. 

A significant number of people infected with HIV-1 
develop central nervous system (CNS) damage that can 

culminate in dementia and paralysis (1). The effective preven- 
tion and treatment of AIDS dementia complex is still im- 
possible at the present time and will likely require a better 
understanding of the molecular and cellular processes that 
underlie HIV-l-associated brain damage. Data obtained in 
diverse experimental models suggest that the HIV-1 enve- 
lope glycoprotein gp120 can induce significant neurotoxicity 
(for review see reference 2), most likely via macrophage/ 
microglia-derived mediators (3, 4). In contrast, one group 
of investigators recently reported that they were unable to 
detect neurodegeneration after intracerebral/ventricular gp120 
injections in rats (5). However, these negative results are 
difficult to interpret because no evidence was provided that 
significant amounts of gp120 were deposited into the brain 
parenchyma or that gp120 maintained for prolonged periods 
in minipump reservoirs remained bioactive. Furthermore, the 
only histopathological method applied in this study (counting 
of Cresyl fast violet-stained cells by conventional light mi- 
croscopy) provides no quantitative information on the integrity 

of dendrites, the neuronal structures affected most promi- 
nently by gp120 (2, 6-8), and was used to evaluate only sub- 
populations of hippocampal neurons that are less susceptible 
to gp120-induced neurotoxicity than neurons in the neocortex 
(6-8). 

As discussed in detail elsewhere (9), fusion gene constructs 
expressed in transgenic (tg) animals allow the prolonged, re- 
producible delivery of selected proteins (devoid of any con- 
taminations) to specific areas/cells within the intact CNS and 
circumvent many of the problems associated with direct CNS 
injections (e.g., secondary responses to mechanical trauma 
and gross variations in the amount of protein delivered). Re- 
cently, we demonstrated that expression of a fusion gene en- 
coding secretable HIV-1 gp120 in brains of tg mice induced 
a spectrum of neuronal and glial alterations that resembled 
neuropathological abnormalities found in patients with AIDS 
(6). Because a variety of studies indicate that derivatives of 
the human amyloid protein precursor (hAPP) may fulfill neu- 
rotrophic/neuroprotective functions (10-17), we wanted to 
assess whether hAPP can prevent or ameliorate gpl20-induced 
brain damage in vivo. For this purpose, different hAPP iso- 
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forms were expressed in neurons of gpl20/hAPP-bigenic mice. 
Our results demonstrate that moderate levels of hAPP751 
expression effectively protect the CNS against gp120-induced 
neuronal injury. 

Materials and Methods 
Animals andDNA Analysis. Male and female B6xSJL mice (4-14 

mo old) were used. Animal care was in accordance with institu- 
tional guidelines. Transgenes were detected by slot blot analysis 
of genomic DNA extracted from tail biopsies using 32p-labeled 
probes that recognize either gp120 (6) or an SV40 sequence at the 
3' end of hAPP-encoding constructs (17). 

Expression of Transgene Products. Transgene-derived mRNAs 
were detected by solution hybridization and RNase protection assay, 
carried out essentiaUy as described (18), using 10 #g of RNA per 
sample in combination with the following 32p-labeled antisense 
riboprobes (protected sequences indicated in parentheses): APP 
(nudeotides 2468-2657 ofAPP mRNA [GenBank accession number 
X06989]), gp120 (nucleotides 2532-2656 of SV40 [GenBank ac- 
cession number M24914] at the 3' end of glial fibrillary acidic pro- 
tein (GFAP)-gp120-derived transcripts), and 3-actin (nucleotides 
480-559 of mouse 3-actin mRNA [GenBank accession number 
X03672]). hAPP protein expression was detected by Western blot 
analysis as described (17). 

Quantitative Iramunohistopathological Analysis. Mice were 4-14 
mo of age and there were no significant differences in the average 
age of mice across the different groups compared by one-factor anal- 
ysis of variance (ANOVA). Brains were fixed, sectioned, (immuno) 
stained, and analyzed as described previously (6, 17). Hemibrains 
were assigned code numbers (by E. M. Rockenstein) to ensure ob- 
jective assessment. Codes were not broken until the analysis was 
complete. For each mouse and immunostain, three serial sections 
of corresponding brain regions were analyzed. For the assessment 
of neuronal changes, sections were examined using a laser scan- 
ning confocal microscope (MRC-600; Bio-Rad Labs., Richmond, 
CA) (19, 20) mounted on an Axiovert Zeiss microscope (Carl Zeiss, 
Inc., Thornwood, NY). Digitized images (4/section/case), 0.5 #m 
in thickness, were transferred to a Macintosh IIci, running the public 
domain program of Wayne Rasband (Image 1.23) (20). The area 
of the neuropil occupied by immunolabeled neuronal dendrites and 
presynaptic terminals was expressed as a percentage of the total 
image area, as described previously (19, 20). Neuronal counts were 
determined in brain sections stained with cresyl violet using the 
Quantimet 570C as described (21). Corrected optical density values 
for the relative levels of GFAP and F4/80 immunoreactivity were 
obtained with the Quantimet 570C as described (20). Statistical 
comparisons between individual groups of mice were done by un- 
paired two-tailed Student's t test. 

Results and Discussion 
The tg mice used in this study were from previously charac- 

terized tg lines, namely GFAP-gp120 line 2 (6), neuron-specific 
enolase (NSE)-hAPP695m line 19, and NSE-hAPP751m line 
57 (17). The astroglial expression of a truncated HIV-1 env 
gene encoding soluble, secretable gp120 in GFAP-gp120 tg 
(gp120 tg) mice was directed by a modified murine GFAP 
gene and the neuronal expression of full-length hAPP cDNAs 
in NSE-hAPP tg (hAPP tg) mice by the NSE promoter (Fig. 
1). Gp120 line 2 was selected because it showed the most 
severe neurodegenerative changes of all gp120 lines previously 

analyzed (6). The hAPP lines were chosen for this study pri- 
marily because they showed the highest levels of hAPP ex- 
pression of all hAPP expressor lines that could be maintained 
(17). Several different APP isoforms are normally derived from 
the endogenous APP gene by alternative splicing (22). The 
APP cDNAs expressed here encoded either hAPP751 which 
contains a Kunitz-type serine protease inhibitor (KPI) do- 
main or hAPP695 which lacks this domain (Fig. 1, A and 
C). Both hAPPs expressed contained a conservative Val to 
lie substitution (23); this change did not significantly affect 
the synaptotrophic potential of hAPPs when mutated and 
nonmutated hAPP isoforms were compared in tg lines with 
similar levels of cerebral hAPP expression (17). hAPP695 and 
hAPP751 tg mice displayed a similar widespread neuronal 
expression of hAPP, with highest levels found in the neocortex 
(17). Notably, the neocortex is also the brain region that 
showed the greatest amount of damage in the gp120 tg model 
(6). This presumably fortuitous topographic overlap indicated 
that gp120/hAPP bigenic mice should be suitable for the as- 
sessment of neuroprotective hAPP effects in vivo. 

Compared with age-matched non-tg mice, adult hAPP 
singly tg mice displayed no evidence for neurodegeneration, 
whereas adult gp120 singly tg mice showed statistically 
significant losses of neuronal dendrites, presynaptic terminals 
and large pyramidal neurons, abundant vacuolizations of ap- 
ical dendrites, as well as a prominent activation of astrocytes 
and microglia (Figs. 2 and 3). Whereas brains of gp120 singly 
tg neonates were indistinguishable at the structural level from 
brains of non-tg littermate controls, neuronal damage (dis- 
tortion of apical dendrites and decrease in the area of neu- 
ropil occupied by MAP-2-positive dendrites) was evident in 
7-d-old gp120 tg mice but not in non-tg littermate controls 
(data not shown). This early development of brain damage 
in gp120 tg mice is consistent with the postnatal increase 
in expression directed by the GFAP promoter (24). Notably, 
it also correlates well with the developmental expression of 
NMDA receptors (25), which appear to play an important 
role in gp120-induced neurotoxicity (2). The early develop- 
ment of neuropathology in gp120 tg mice implies that, to 
be effective, preventative therapeutic interventions may have 
to be initiated before or shortly after birth. Previous studies 
(26) have shown that the NSE promoter is active before birth 
making it suitable for the expression of potentially neuroprotec- 
tire factors in gp120 tg mice. 

To generate gp120/hAPP695 and gp120/hAPP751 bigenic 
mice, gp120 singly tg-heterozygous mice were crossed with 
either hAPP695 or hAPP751 singly tg-heterozygous mice. 
Following Mendelian genetics, the offspring from such crosses 
were singly tg for either hAPP or gp120, bigenic for 
gp120/hAPP or non-tg, each group comprising '~25% of 
any given litter. Brains of bigenic mice were compared quan- 
titatively with brains of non-tg or singly tg littermates. 
Moderate levels of neuronal expression of hAPP751 in 
gp120/hAPP bigenic mice significantly decreased the neu- 
ronal loss and synapto-dendritic damage found in singly tg 
mice expressing gp120 alone (Fig. 2, A and B). This protec- 
tion was so effective that the structural integrity of neurons 
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Figure 1. Structure of GFAP- 
gp120, NSE-hAPP695 and NSE- 
hAPP751 transgenes (not drawn to 
scale) (A). The construction of these 
fusion genes and their expression in 
singly tg mice have been described 
previously (6, 17). Gp120/b.APP bi- 
genic mice were generated as de- 
scribed in the text. Expression of 
transgene-derived mRNAs in brains 
of singly tg and bigenic mice (B). 
Numbers I-6 identify samples ob- 
tained from different groups of mice 
as indicated in the key (see C). 
KNA was isolated from hemibrains 
of 4-8-mo-old mice (n z 3/group) 
and levels of specific RNAs analyzed 
by solution hybridization and 
KNase protection assays. Radioac- 
tive signals were quantitated by in- 
tegrating pixel intensities over 
defined volumes using a Phos- 
phorimager SF (Molecular Dy- 
namics, Sunnyvale, CA) and the Im- 
ageQuant software. Actin signals 
were used to correct for differences 
in KNA content/loading as de- 
scribed (18). Columns and error bars 
represent means and SEM, respec- 
tively. The differences in gp120 
mRNA levels between gp120 singly 
tg and bigenic mice were not sta- 
tistically significant, hAPP detection 
by Western blot analysis (C). lm- 
munoblotting of brain homogen- 
ates, carried out as described (17), 
revealed similar b.APP levels in hAPP 
singly tg and bigenic mice express- 
ing the same hAPP isoform, where- 
as control brains from mice lacking 
NSE-hAPP transgenes showed no 
or only minimal background stain- 
ing. Two mice were analyzed per 
group; the same two gp120 singly 
tg samples were included in both 
Western blots. Arrows indicate 
hAPP bands, rhAPP751, recom- 
binant full-length human APP751 
(50 ng). 

in gp120/hAPP751 bigenic mice was essentially indistinguish- 
able from that in non-tg controls (Fig. 3). In contrast, neu- 
ronal expression of hAPP695 at higher levels had no neu- 
roprotective effects (Figs. 2 and 3). 

Although gp120/hAPP751 bigenic mice also showed sig- 
nificantly less gliosis (astrocytosis and microgliosis) than gp120 
singly tg mice ~ <0.002), the inhibition of the gliosis was 
clearly incomplete (Fig. 2 C). It is possible that the gliosis 
in gp120/hAPP751 bigenic mice represents a residual glial 
response to chemical distress signals from neurons that ap- 
pear structurally intact but are functionally impaired, or 
results from more direct effects of gp120 on astrocytes and/or 
microglia. 

In vitro, gpl20 or gp120-induced mediators appear to induce 
excitotoxicity by synergizing with glutamate to elevate neu- 

tonal intracellular-free calcium levels ([Ca2+]i) (27), whereas 
secretable forms of hAPP diminish the glutamate-induced rise 
in [Ca 2+ ]i (28). Although there is currently no reliable me- 
thod to directly measure neuronal [Ca2+]i in vivo, our dem- 
onstration of neuroprotective hAPP effects in gp120/hAPP 
bigenic mice indicates that these molecules may have similar 
effects in vivo. It is interesting in this context that [Ca 2+ ]i- 
imaging of cultured neurons revealed the APP-mediated reduc- 
tion in neuronal [Ca~+]i to be particularly marked in den- 
drites (28), since these neuronal structures show prominent 
damage in gp120 tg mice (Figs. 2, A and B and 3). Because 
in aggregated form the APP derivative A3 has calcium- 
destabilizing and neurodegenerative effects in vitro (29), it 
is important to note that none of our NSE-hAPP tg lines 
(age range of mice analyzed: 2-24 too) showed evidence for 
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Figure 2. Computer-aided quan- 
titation of neuroprotective hAPP 
effects. Hemibrains of singly tg 
(hAPP751 vs. hAPP695 vs. gp120), 
bigenic (gp120 + hAPP751 vs. 
gp120 + hAPP695), and non-tg 
mice (6-11 mice analyzed per group) 
were fixed, sectioned, and either im- 
munolabeled with antibodies 
against MAP-2 (neuronal dendrites), 
synaptophysin (presynaptic ter- 
minals), GFAP (astrocytes), or 
F4/80 (macrophages/microglia) to 
analyze structural features, or 
stained with Cresyl violet to deter- 
mine counts of large pyramidal 
neurons. Quantitative assessments 
were carried out as described in 
Materials and Methods. To facilitate 
comparisons across different groups 
of mice and different neuronal/glial 
parameters, for each parameter, the 
median of measurements obtained 
in 9-11 non-tg controls was used as 
the normal baseline value and ar- 
bitrarily defined as 100%. The data 
shown in A and C represent devia- 
tions (mean increase or loss [_+ 
SEM]) from this non-tg baseline. 
The extent of vacuolization of neo- 
cortical neuronal dendrites (B) was 
graded semiquantitatively (0, none; 
1, mild; 2, moderate; 3, intense) 
based on the inspection of confocal 
images from three MAP-2-im- 
munostained sections per case. Only 
the columns marked by asterisk(s) 
showed statistically significant 
differences from results obtained in 
normal non-tg controls: ** p <0.01, 

p <0.05. 

A3/amyloid deposits or neurodegeneration when examined 
with a variety of antibodies that readily detect such altera- 
tions in brains of patients with Alzheimer's disease (17). 

Although it is reasonable to postulate that gp120-induced 
neurotoxicity was prevented in gp120/hAPP bigenic mice by 
hAPP-mediated stabilization of the intraneuronal calcium 
homeostasis, alternative mechanisms also deserve considera- 
tion. Coexpression of hAPPs in bigenic mice did not sig- 
nificantly alter the cerebral levels of gp120 mKNA compared 
with gp120 singly tg mice (Fig. 1 B). However, it has so 
far been difficult to unequivocally identify soluble gp120 in 
brains of gp120 tg mice or in brains of patients with HIV-1 
encephalitis (6) and the current study was not designed to 
evaluate whether cerebral hAPP expression affects gp120 pro- 
tein levels or alters the concentration of gp120-induced neu- 
rotoxic mediators. Both hAPP695 and hAPP751 contain a 
metalloprotease inhibitor domain (30) and protease inhibi- 
tors could mediate a variety of important biological effects 
in the CNS (31, 32). Because hAPP751 expression protected 
against gp120-induced neurotoxicity, whereas hAPP695 ex- 

pression did not, one might be tempted to speculate that this 
difference relates to an activity of the KPI domain that is 
present in hAPP751 and absent from hAPP695. However, 
the two hAPP lines evaluated in the current study also differed 
with respect to their level of hAPP expression, line NSE- 
hAPP695m-19 showing significantly higher levels of hAPP 
expression than line NSE-hAPP751m-57 (Fig. 2, B and C). 
Notably, a more extensive investigation of synaptotrophic 
hAPP effects in multiple lines of hAPP tg mice suggested 
that the dose-response curve for potentially beneficial hAPP 
effects might be bell-shaped with progressively less neu- 
rotrophism/protection seen at higher levels of expression (17). 
Experiments are currently in progress (a) to confirm neu- 
roprotective hAPP effects in additional hAPP tg lines, (b) to 
differentiate KPI domain-related from hAPP dosage effects, 
and (c) to compare the neuroprotective capacity of wild-type 
versus mutated hAPPs. 

In conclusion, our in vivo results are consistent with the 
postulate that gp120-induced neurotoxicity involves derange- 
ments of the neuronal calcium homeostasis. The prominent 

1554 In Vivo Protection Against HIV Protein-induced Neurotoxicity 



Figure 3. Neuroprotective hAPP effects revealed by confocal microscopy of brain sections (frontal cortex) immunolabeled with antibodies against 
the neuronal dendritic marker MAP-2 (green) or the astroglial marker GFAP (red). Hemibrains of non-tg, singly tg, and bigenic mice were paraformalde- 
hyde fixed, sectioned, immunostained, and analyzed by laser scanning confocal microscopy as described (6). Compare the normal appearance of neurons 
and paucity of astroglial activation in non-tg controls and gp120/hAPP751 bigenic mice with the rarefaction and vacuolization (arrows) of neuronal 
dendrites and the reactive astrocytosis seen in gp120 singly tg and gp120/hAPP695 bigenic mice. 

neuroprotective effect of hAPP demonstrated here indicates 
that drugs that mimic beneficial APP activities might be useful 
in the treatment or prevention of HIV-l-associated nervous 

system damage and, perhaps, also of other types of neural 
injury. 
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