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To gain insight into the molecular mechanisms involved in the inherited predisposition to melanoma and associated neural system
tumours, 42 Jewish, mainly Ashkenazi, melanoma families with or without neural system tumours were genotyped for germline point
mutations and genomic deletions at the CDKN2A/ARF and CDK4 loci. CDKN2A/ARF deletion detection was performed using
D9S1748, an intragenic microsatellite marker. Allele dosage at the p14ARF locus was analysed by quantitative real-time PCR employing
a TaqMan probe that anneals specifically to exon 1b of the p14ARF gene. For detecting point mutations, dHPLC and direct sequencing
of the coding sequences of CDKN2A/ARF and CDK4 was used. No germline alterations in any of the tested genes were detected
among the families under study. We conclude that in the majority of Ashkenazi Jewish families, the genes tested are unlikely to be
implicated in the predisposition to melanoma and associated neural system tumours.
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Familial cutaneous malignant melanoma is a genetically hetero-
geneous condition linked to chromosome 9p21 in many, but not all
families (Hussussian et al, 1994; Greene, 1999). To date, germline
mutations in two high penetrance genes have been identified in
some of these families, CDKN2A/ARF and CDK4. The CDKN2A/
ARF gene encodes two distinct proteins, p16INK4 and p14ARF, the
result of alternative splicing of exons 1a and 1b, respectively. The
p16INK4 protein, which belongs to the INK4 family of cyclin-
dependent kinase inhibitors, plays a key role in arresting cell cycle
progression at the G1 phase by inhibiting cyclins CDK4 and CDK6
and subsequently blocking their ability to phosphorylate the
retinoblastoma protein Rb (Chin et al, 1998). The p14ARF protein is
also involved in cell cycle regulation by interacting with different
substrates in the p53 pathway (Pomerantz et al, 1998), and by
binding to MDM2, also in the Rb pathway with resultant cell cycle
arrest in both G1 and G2 phases (Xiao et al, 1995; Weber et al,
1999; Momand et al, 2000). In all, 20% of melanoma families were
found to harbour genetic alterations at the CDKN2A/ARF gene
(Goldstein, 2004). The other gene involved in familial predisposi-
tion to melanoma, CDK4 is a proto-oncogene that promotes cell
cycle progression by phosphorylating the Rb protein. Germline

mutations in CDK4 were detected in three melanoma families

(Zuo et al, 1996; Soufir et al, 1998).
The familial clustering of both melanoma and neural system

tumours (NST) was first reported in 1993 by Kaufman et al (1993)
in a single family with eight family members over three
generations who were diagnosed with cutaneous melanoma,
cerebral astrocytoma or both. Azizi et al (1995) surveyed 904
melanoma Jewish-Israeli patients for the occurrence of NST in
their family pedigrees. Melanoma-affected members within
families, as well as first and second-degree relatives, were found
to be at an increased risk for developing NST. A total of 15 families
with a clustering of melanoma and a variety of NST were
identified, and 10 patients with two primary tumours, melanoma
and NST, primarily meningioma were described (Azizi et al, 1995).
Similar familial clustering of melanoma and NST was described
in French (Bahuau et al, 1997) and Finnish families (Paunu et al,
2002). Recently, melanoma and NST association was confirmed by
epidemiological and population-based studies in Scandinavia
(O’Neill et al, 2002; Hemminki et al, 2003; Nielsen et al, 2004).
The familial clustering of melanoma and NST has been recognised
and designated as the Melanoma and Neural System Tumour
syndrome (MM-NST) (OMIM # 155755), and in a small subset of
melanoma-NST kindreds germline mutations, mainly deletions
affecting the CDKN2A/ARF gene and cosegregating with both
tumours, were described.

In the present study, 42 Jewish, mainly Ashkenazi, melanoma
families with (n¼ 24) or without NST (n¼ 18) were genotyped for
germline sequence alterations in the CDKN2A/ARF and CDK4
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genes. Mutational screening of 24 families with co-occurrence of
melanoma and NST is the largest analysis reported thus far.

MATERIALS AND METHODS

Patients

Jewish families with a history of melanoma and NST were recruited
to the study. The inclusion criteria (based on OMIM’s definition)
were a minimum of two cancers in the pedigree, one being
melanoma and the other NST, or an individual harbouring both
tumours.

Additional 18 Jewish melanoma families without NST, having at
least two or more individuals with melanoma, or multiple
melanomas in a single family member – as minimal inclusion
criteria – were also included.

The families had been recruited between the years 1997 and
2003. The study had been approved by the Institutional Ethics
Committee of the Sheba Medical Center, Israel. All participants
signed a written informed consent prior to being enrolled in the
study. Demographic details, including country of birth of the
probands, their parents and grandparents, were collected using a
self-response questionnaire. Classification to ethnic groups was
done according to the country of birth of the grandparents on
both the maternal and paternal sides, provided that one or both
parents were either from the same origin, or Israeli-born. Families
with both sets of grandparents from Eastern and Central
European countries were classified as Ashkenazi. Families
originating from Spain, North-Africa, Balkans, or Iraq, Iran,
Yemen and Egypt were classified as Sephardic. Every effort has
been made to confirm the correct cancer type for affected
members based on pathology report, patients’ medical charts,
operation reports and death certificate. When these were not
available, information regarding tumours that was obtained by
history from several family members but not confirmed by a
pathology report was designated as histological type not specified.
A dermatological examination assessing skin phenotype, atypical
mole syndrome (AMS) score (Newton Bishop et al, 1994) and
signs of dermato-heliosis was performed by one of three
participating dermatologists and 10 ml of venous blood samples
were withdrawn for DNA extraction.

Genetic alterations detection

DNA preparation Genomic DNA was extracted from peripheral
blood leucocytes using the Puregenes Genomic DNA Isolation Kit
(Gentra Systems, Minneapolis MN, USA), using the manufacturer’s
recommended protocol.

Mutation analysis For detecting CDKN2A/ARF and CDK4 gene
coding region sequence alterations, exons 1a, 1b and 2 of
CDKN2A/ARF and exon 2 of CDK4 were screened by dHPLC
(denaturing high performance liquid chromatography), by using
PCR and dHPLC analysis conditions previously described (Laud
et al, 2003). Briefly, PCR was carried out in a final volume of
20 ml containing 100 ng genomic DNA, 1� HotStar Taq DNA
Polymerase buffer with 1.5 mM MgCl2 (Qiagen), 4 pmoles of each
primer, 1 UI HotStar Taq DNA Polymerase (Quiagen) and 2.5 mM

dNTPs. For PCR amplification of each exon, a touch down
protocol was used as follows: initial denaturation and HotStar Taq
Polymerase activation at 951C for 15 min; six cycles of 30 s at 951C,
30 s at 661C (the annealing temperature decreasing by 21C at every
two cycles), 30 s at 721C; followed by 40 cycles of 30 s at 951C, 30 s
at 601C and 30 s at 721C. Heteroduplex analyses were carried out
on an automated dHPLC instrument (WAVE, Transgenomic, CA,
USA). DNA samples with known germline mutations at CDKN2A/
ARF locus were used as positive controls.

Samples displaying abnormal profiles were subsequently bi-
directionally sequenced using the BigDyet Terminator sequencing
kit (Applied Biosystems, Foster City, CA, USA) according to the
manufacturer’s instructions on an ABI Prism 377 instrument
(Applied Biosystems, Foster City, CA, USA).

CDKN2A/ARF deletion detection Since CDKN2A/ARF deletions
were previously identified in melanoma-NST families (Bahuau
et al, 1998, Randerson-Moor et al, 2001), deletions were sought
only in this subset of families (n¼ 24). Deletion genotyping was
performed using the D9S1748 microsatellite marker located
adjacent to CDKN2A exon 1b. The PCR amplifications were
carried out in a final volume of 25 ml, the reaction mix containing:
1� HotStar Taq DNA polymerase buffer with 1.5 mM MgCl2
(Qiagen, Chatsworth, CA, USA), 1 UI HotStar Taq DNA polymer-
ase (Qiagen), 4 pmoles of each primer and 0.2 mM dNTPs. Primer
sequences are available through The Genome Database (http://
www.gdb.org). The forward primer was fluorescently labeled with
the 6-FAM at its 50 extremity. The PCR products were loaded on
a 6%/7 M urea denaturing polyacrylamide gel in an ABI Prism 377
(Applied Biosystems, Foster City, CA, USA) device along with the
ROX 350 (Applied Biosystems, Foster City, CA, USA) internal
marker standard. Genotypes were analysed using the GeneScan
software (Applied Biosystems, Foster City, CA, USA). Since the
homozygous status could possibly be due to the loss of an allele,
homozygous samples were further analysed for allele dosage
(Barrois et al, 2004) at the p14ARF locus by quantitative real-time
PCR using an ABI Prism 7700 instrument (Applied Biosystems,
Foster City, CA, USA). A TaqMan probe that anneals specifically to
the exon 1b of the p14ARF gene, marked with a fluorescent
reporter dye (FAM) and a quencher dye (TAMRA), was used. By
calculating the ratio initial copy number of p14ARF/initial copy
number of GAPDH, we obtained the normalized gene dose. The
PCR was performed in triplicate for each sample in a final volume
of 50 ml, the reaction mix containing for the GAPDH gene 1�
TaqMan Universal Master Mix (Applied Biosystems, Foster City,
CA, USA), 15 pmoles of each primer and probe and 25 ng DNA. For
the exon 1b of CDKN2A, same quantities were used, with the
exception of the TaqMan Universal Master Mix which was replaced
by 1� TaqMan PCR Core Reagent Buffer (Applied Biosystems,
Foster City, CA, USA), 2.5 mM dNTPs, 5% glycerol, 5 mM MgCl2
and 1.25 UI AmpliTaqGold DNA polymerase (Applied Biosystems,
Foster City, CA, USA). Amplification conditions were: 2 min at
501C, 10 min at 951C (20 min for p14ARF) followed by 40 cycles of
15 s at 951C and 1 min at 601C. We used as positive control the
haploid cell line HL60 kindly provided by Juliette Moor and Julia
Newton Bishop from Genetic Epidemiology Division, Cancer
Research UK, St James’s University Hospital, Leeds, UK (Randerson-
Moor et al, 2001).

RESULTS

Clinical features of the study participants

The study population included (a) 25 probands and 11 unaffected
relatives from 24 families with pedigrees displaying cutaneous
melanoma and NST and (b) 20 probands from 18 melanoma
families without NST, among them 13 families with pedigrees
containing two or more melanoma-affected individuals and five
families containing individuals with multiple melanomas. Nota-
bly, the clinical features of two families (#107 and #121) have
already been described earlier (Azizi et al, 1995). Distribution by
tumour type, number of tumours and family affiliation is
presented in Tables 1, 2 (melanoma-NST families) and 3 (familial
melanoma).

Among the melanoma-NST pedigrees, in 10/24 (42%) families
there were two melanoma or two NST cases, and in the others in
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this category, there were one melanoma and one NST in each
family (Table 1). The male : female (M : F) ratio among the affected
cases was 1. The melanoma and NST were diagnosed at the age

range of 22–74 years and 10–86 years, respectively. Of the 24
families in this subgroup, 22 were of Ashkenazi origin, one out of
24 was Sephardic (#107), and one out of 24 heterogeneous (#121).
Major phenotypic features of the patients, available in 13 out of
25 probands, were variable with no specific pattern. Additional
cancers that were reported in this series included colon cancers in
four families; breast cancer in three families; lung cancer in two
families; liver cancer in two families; and renal, gastric, laryngeal,
pleural and nonmelanoma skin cancer each in one family (Table 2).
Examples of pedigrees showing melanoma families with NST are
presented in Figure 1.

Among the 18 melanoma families without NST (Table 3), the
M : F ratio among the melanoma patients was 1 : 2, and the age
at diagnosis was in the range of 25–88 years. Of 18 families in
this series, 17 were of Ashkenazi origin. Family #321 was of
heterogeneous Romanian (Ashkenazi)/Turkish-Greek (Sephardic)
origin. Major phenotypic features of the melanoma patients, not
available for two out of 20 probands included dermato-heliosis and
solar keratosis (15 out of 18), freckles (15 out of 18) and AMS X2
(seven out of 18). Additional cancers that were reported in this
series included nonmelanoma skin cancer in three families;
prostate cancer in three; breast cancer in five; pancreatic cancer
in one; transitional cell carcinoma in one and lymphoma in one.
Examples of pedigrees showing melanoma families without NST
are presented in Figure 2.

Table 1 The distribution of melanoma-NST pedigrees according to
number of tumours

No. of tumoursa Family # Total n (%)

NST� 2
and MM� 2

120 1 (0.5)

NST� 2
and MM� 1

116, 122, 113 3 (12.5)

MM� 2
and NST� 1

105, 109, 110
114, 118, 101

6 (25.0)

MM� 1
and NST� 1

112, 117, 119
102, 103, 104
106, 108, 111
115, 123, 124
107, 121

14 (58.0)

Total 24 (100.0)

aMM¼melanoma, NST¼ neural system tumours.

Table 2 Distribution of melanoma-NST pedigrees by tumour type and family affiliation

Proband Affected relatives Unaffected relatives

Family # DNA#
MM (a) NST (b)

Additional
cancers MM NST (b) Additional cancers

(n¼ 24) (n¼25) Gender
(Age at

diagnosis)
(Age at

diagnosis) DNA# Gender Age

116 115 F 68 64 (c) BCC (66) — Mother Lung (uncle) 139 F 35
SCC (69) (47) (x)

120 218 M 51 51 (c) BCC — — Pleura (father) — — —
219 M — 16 (b) brother

122 221 M 51 51 (g) — — Father (84) (x) Colon (mother) — — —
110 5 M 52 45 (f) — Sister (50) — — 4 M 15

2 F 20
3 M 21

105 88 F 58 68 (c) — — — — — — —
67

113 165 M 57 19 (x) BCC — — Lung (mother) 194 M 65
25 Liver (cousin)

112 169 F 63 63 (e) — — — — — — —
117 153 F 55 56 (c) — — — Breast (mother) — — —
109 27 M 67 — — Brother (a) — 67 M 45

66 F 40 Daughter
114 73 F 22 — Mother (48) Mother (51,61) (e) — 41 M 14
118 47 M 23 — Mother (43) Mother (51) (b) — — — —
101 154 M 32 BCC (37) Mother (65) Mother (68) (f) — 185 F 45
119 — — — — Aunt Sister (d) Breast (sister, mother) 12 M 53
102 109 M 67 — — Grandson (24) (e) — 133 F 45
103 6 M 40 — — Mother (71) (a) Colon (mother) BCC/SCC Larynx

(father) Liver (grand-mother)
— — —

104 13 F 67 Colon — Brother (a) Colon (brother) — — —
106 160 M 74 — — Father (68) (x) — 166 M 75
108 131 M 67 — — Brother (57) (x) — — — —
111 113 F 66 — — Mother (x) — — — —
115 137 F 24 — — Grand-mother (86) (x) — — — —
123 222 F 56 — — Father (84) (x) Colon (mother) — — —
124 223 M 36 — — Cousin (30) (x) Renal (father) Gastric (aunt) — — —
107 83 F 43 — — Daughter (10) (h) — — — —
121 220 F 37 — — Grand-father (x) Breast (mother) — — —

aMM¼melanoma. bNST¼ neural system tumours, (a)¼ glioblastoma multiforme, (b)¼ oligodendroglioma, (c)¼meningioma, (d)¼ glioma, (e)¼ neurilemmoma,
(f)¼malignant peripheral schwannoma, (g)¼ brain germinoma, (h)¼medulloblastoma, (x)¼NST, pathologic type unspecified.
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Mutational analyses of the CDKN2/ARF and the CDK4
genes for point mutations

Overall, nine samples displayed different chromatographic pro-
files. Sequence analyses revealed a G to A transition at position 442

leading to a missense mutation at codon 148 (Ala148Thr) in all
nine patients: patients #5, #83 and #115, all unrelated, among the
melanoma-NST families (Table 4); and patients #15, #111, #114,
#116, #124, #134, all unrelated among the melanoma families
without NST (Table 5).

#47

#3#2#4

#5
Ala148Thr

#73

#41

 #27

#67#66 #154

#115
Ala148Thr

#139

Figure 1 Representative pedigrees of six Jewish families with melanoma and neural system tumours (NST). Family codes of presented pedigrees (from
left-to-right, top-to-bottom) – #110, #116, #118, #114, #109, #101. Striped squares and circles indicate male and female subjects with melanoma,
respectively. Crossed symbols indicate individuals with neural system tumours and upper quarter filled symbols represent the presence of other tumours.
Sample DNA code number and sequence alterations are indicated.

Table 3 Distribution of Pedigrees of melanoma families without neural system tumours, by tumour type and family affiliation

Patient Affected relatives

Family # (n¼ 18)
DNA# (n¼ 20) Gender MM (a) Additional cancers MM Additional cancers

(Age at diagnosis) (Age at diagnosis)

302 104 F 74 — Cousin (72) —
303 103 M 49

(7 primary MM)
BCC
SCC

Brother —

305 100 F 74 BCC (75) Nephew —
309 112 F 52 — — Pancreas (father)
310 111 F 45

64
— — —

311 105 F 48 — Sister Breast (mother)
312 119 M 68 Prostate (68) Mother (83)

Brother (65)
Daughter (19)

—

317 116 F 60 — Grandmother —
319 114 M 36 — Cousin —
321 15 F 25 — Grandfather (61)

Uncle
TCC (cousin)
Breast (grandmother)

322 124 M 66 Prostate — Breast (mother)
67 (67)

325 78 F 61
61

Breast (56) — —

79 F 33 daughter
327 121 M 86 — — —

135 F 88 sister
329 122 F 47

62
— — Lymphoma (mother)

330 140 F 67
71

— Daughter —

335 134 F 25 Breast Uncle
Grandfather

Breast (mother)
BCC (father)

337 141 M 64
65

Prostate (56) — —

338 138 F 52
53

BCC (47) Daughter (32) —

aMM¼melanoma.
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Detection of CDKN2A/ARF gene deletions

A total of 30 individuals among the melanoma-NST families
were genotyped using the D9S1748 microsatellite marker, located
adjacent to exon 1b of CDKN2A/ARF gene on chromosome 9p21.
A total of 12 samples displayed a heterozygous status, that is,
two alleles without genomic deletion (Table 4); And 18 samples
displaying homozygous profiles for this locus were selected for
further analysis, since the homozygous status could indicate the
loss of an allele by a large deletion encompassing exon 1b. Gene
dosage for these samples, as well as six samples not analysed for
the D9S1748 microsatellite marker, showed no deletions, therefore,
all individuals presented two alleles (Table 4).

DISCUSSION

In the present study, no bona fide pathogenic germline alterations
were identified in the CDKN2A/ARF and CDK4 loci among 42
Jewish, primarily Ashkenazi Israeli families, with a seemingly
inherited predisposition to cutaneous melanoma, and in some,
clustering of melanoma with NST, for deletions and point
mutations in the CDKN2A/ARF and CDK4 loci. The only sequence
variation identified in nine DNA samples was G to A transition at
position 442 leading to a missense mutation at codon 148
(Ala148Thr). The Ala148Thr missense mutation is considered as
a polymorphism based on several observations: it has been
previously reported in individuals from the general, average risk,
population in ethnically diverse groups: 8% of the Jewish
population (Yakobson et al, 2000), 4% of the population in Utah
(Kamb et al, 1994) and 5% in the UK population (Bertram et al,
2002). Furthermore, this missense mutation did not segregate
with the phenotype in familial melanoma (Hussussian et al, 1994;
Harland et al, 1997), and is situated outside the critical four
ankyrin repeat domains of p16, and thus does not appear to have
any effect in vitro on binding to CDK4 (Ranade et al, 1995;
Lilischkis et al, 1996; Harland et al, 1997). Ala148Thr was further

analysed in twin studies as a candidate low penetrance poly-
morphism enhancing the risk of melanoma by increasing AMS
score (Zhu et al, 1999). However, the rate of this polymorphism
in families with atypical mole phenotype was similar to general
population (Bertram et al, 2002). Thus, Ala148Thr is considered a
p16 polymorphism and not a pathogenic mutation.

Genetic mutations at the CDKN2A gene have been identified
in 20% of melanoma families, most of these in exons 1a and 2
(Goldstein, 2004). Several studies also implicated the ARF gene as
underlying melanoma predisposition. A 16 bp insertion in exon
1b, which affects the function of p14 but not p16, was described
in a patient with multiple primary melanomas (Rizos et al, 2001).
A splice site mutation in exon 1b, which results in p14
haploinsufficiency, was also reported in two affected persons
from melanoma kindred (Hewitt et al, 2002). The negative
mutation detection results in the present study among Jewish
Ashkenazi melanoma families are not in line with the expected
mutation rate, based on previously reported data in non-Jewish
populations.

Among families with melanoma-NST association, the loss of
function of CDKN2A/ARF can be a predisposing factor. Segrega-
tion analysis of two melanoma-NST French families showed
hemizygous germline deletion that ablated CDKN2A/ARF gene
(Bahuau et al, 1998). Analysis of 11 families with two or more cases
of glioma revealed a hemizygous germline deletion in CDKN2A
in one family with both glioma and melanoma (Tachibana et al,
2000). In another melanoma family with NST (mainly astro-
cytoma), deletion was found in the CDKN2A/ARF exon 1b. The
deletion, leading to loss of ARF function, did not affect the coding
region of p16 protein (Randerson-Moor et al, 2001). Finally, a
splice site substitution mutation trimming CDKN2A exon 2 and
severely affecting both p16INK4A and p14ARF was described in
a family with melanomas, neurofibromas and multiple dysplastic
nevi (Petronzelli et al, 2001). Constitutional CDKN2A locus
alterations, somatic point mutations and deletions at CDKN2A
were identified in NST (Ueki et al, 1996; Bostrom et al, 2001;
Ghimenti et al, 2003). Evidence was presented that deletion in ARF
may be the underlying cause in the development of melanoma and
NST (Randerson-Moor et al, 2001).

Yet, the lack of mutations at the genes analysed in this series
of melanoma families with NST is commensurate with data from
other melanoma-NST families genotyped for mutations: in a family
with melanoma and optic nerve glioma, no mutations were
identified in the CDKN2A gene (Alao et al, 2002). Analysis of
Swedish patients with multiple primary melanomas and NST was
negative for the CDKN2A founder mutation 113insArg, which
usually explains all CDKN2A-associated familial melanoma in
Sweden (Nielsen et al, 2004).

It is unlikely that the familial clustering of melanoma and
NST is due to chance, as both tumours are relatively rare cancers
in Israel, with age standardised incidence rates of 7.7 and 8.4
per 105, respectively, in female subjects, and 7.6 and 10.3 per 105,
respectively, in male subjects (Azizi et al, 1995). All the melanoma
families with NST in the present series withstand the OMIM
criteria for the melanoma-NST syndrome. Yet, without identifying
a mutation, cosegregating within the current series of families
with both melanoma and NST, we cannot unequivocally
determine the proportion of families that truly represent
melanoma-NST syndrome. However, 10 families (42% of the
series), having at least two melanoma or two NST probands, are
strongly suggestive of an inherited predisposition for developing
melanoma and NST.

Lack of germline mutations in the CDKN2A/ARF and CDK4 loci
has been recently reported by Loo et al (2005) among 22 Ashkenazi
Jewish families with an apparent inherited predisposition to
melanoma. Taken together with the data reported herein, it
appears that in over 60 Ashkenazi Jewish melanoma families, no
germline alteration in CDKN2A/ARF and CDK4 loci underlie the

#119

#134
Ala148Thr

#78

#79

#15
Ala148Thr

Figure 2 Representative pedigrees of four Jewish melanoma families
without neural system tumours. Family codes of presented pedigrees (from
left-to-right, top-to-bottom) – #312, #321, #325, #335. Striped squares
and circles indicate male and female subjects with melanoma, respectively.
Upper quarter filled symbols represent individuals with other tumours.
Sample DNA code number and sequence alterations are indicated.
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Table 4 Mutation detection analysis in p16, p14 and CDK4 genes of melanoma-NST pedigrees (n¼ 24)

Family #
(n¼ 24)

DNA #
(n¼ 36)

P16 sequencing
analysis

P14 deletion
analysis by
D9S1748

Quantative
TaqMan analysis

of p14
p14

sequencing
CDK4

sequencing

101 154 WT Hmz 2n WT WT
185a WT Htz ND WT WT

102 109 WT Htz ND WT WT
133a WT Hmz 2n WT WT

103 6 WT Hmz 2n WT WT
104 13 WT Htz ND WT WT
105 88 WT Hmz 2n WT WT
106 160 WT Htz ND WT WT

166a WT Htz ND WT WT
107 83 Ala148Thr Hmz 2n WT WT
108 131 WT Htz ND WT WT
109 27 WT Htz ND WT WT

66 WT Hmz 2n WT WT
67a WT Hmz 2n WT WT

110 5 Ala148Thr Hmz 2n WT WT
4a WT Hmz 2n WT WT
2a WT Hmz 2n WT WT
3a WT Htz ND WT WT

111 113 WT Hmz 2n WT WT
112 169 WT Htz ND WT WT
113 165 WT Hmz 2n WT WT

194a WT Hmz 2n WT WT
114 73 WT Hmz 2n WT WT

41a WT Htz ND WT WT
115 137 WT Hmz 2n WT WT
116 115 Ala148Thr Hmz 2n WT WT

139a WT Hmz 2n WT WT
117 153 WT Hmz 2n WT WT
118 47 WT Htz ND WT WT
119 12a WT Htz ND WT WT
120 218 WT ND 2n WT WT

219 WT ND 2n WT WT
121 220 WT ND 2n WT WT
122 221 WT ND 2n WT WT
123 222 WT ND 2n WT WT
124 223 WT ND 2n WT WT

aUnaffected relatives.

Table 5 Mutation detection analysis in p16, p14 and CDK4 genes of pedigrees of melanoma families without neural system tumours (n¼ 18)

Family #
(n¼ 18)

DNA #
(n¼ 20)

P16 sequencing
analysis

P14 deletion
analysis by
D9S1748

Quantative
TaqMan analysis

of p14
p14

sequencing
CDK4

sequencing

302 104 WT ND ND WT WT
303 103 WT ND ND WT WT
305 100 WT ND ND WT WT
309 112 WT ND ND WT WT
310 111 Ala148Thr ND ND WT WT
311 105 WT ND ND WT WT
312 119 WT ND ND WT WT
317 116 Ala148Thr ND ND WT WT
319 114 Ala148Thr ND ND WT WT
321 15 Ala148Thr ND ND WT WT
322 124 Ala148Thr ND ND WT WT
325 78 WT ND ND WT WT

79 WT ND ND WT WT
327 121 WT ND ND WT WT

135 WT ND ND WT WT
329 122 WT ND ND WT WT
330 140 WT ND ND WT WT
335 134 Ala148Thr ND ND WT WT
337 141 WT ND ND WT WT
338 138 WT ND ND WT WT
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apparent predisposition. One caveat to the present study that
should be pointed out is that germline alterations in noncoding
regions such as intronic and promoter sequences not screened in
the present and in previous studies cannot be ruled out as
contributing to familial melanoma.

In conclusion, in the majority of Ashkenazi Jewish families with
an inherited predisposition to melanoma with or without NST,
CDKN2A/ARF and CDK4 loci are unlikely to be implicated in the
predisposition to melanoma and the associated neural system
tumours.

ACKNOWLEDGEMENTS

Catalin Marian is a recipient of a ‘Marie Curie’ fellowship, EU ref.
no. QLGA-GH-99-50406-15; his current address is Biochemistry
Department, University of Medicine and Pharmacy of Timisoara,
Romania. Karine Laud is a recipient of an IGR postdoctoral
fellowship. This work was partly supported by PHRC regional Ile
de France, Grant No. AOR 01 091. Alon Scope performed research
as part of the requisite of the Scientific Council, Isreal Medical
Association, for Dermatology Specialty.

REFERENCES

Alao JP, Mohammed MQ, Retsas S (2002) The CDKN2A tumour suppressor
gene: no mutations detected in patients with melanoma and additional
unrelated cancers. Melanoma Res 12: 559 – 563

Azizi E, Friedman J, Pavlotsky F, Iscovich J, Bornstein A, Shafir R, Trau H,
Brenner H, Nass D (1995) Familial cutaneous malignant melanoma and
tumors of the nervous system. A hereditary cancer syndrome. Cancer 76:
1571 – 1578

Bahuau M, Vidaud D, Jenkins RB, Bieche I, Kimmel DW, Assouline B,
Smith JS, Alderete B, Cayuela JM, Harpey JP, Caille B, Vidaud M
(1998) Germ-line deletion involving the INK4 locus in familial
proneness to melanoma and nervous system tumors. Cancer Res 58:
2298 – 2303

Bahuau M, Vidaud D, Kujas M, Palangie A, Assouline B, Chaignaud-
Lebreton M, Prieur M, Vidaud M, Harpey JP, Lafourcade J, Caille B
(1997) Familial aggregation of malignant melanoma/dysplastic naevi and
tumours of the nervous system: an original syndrome of tumour
proneness. Ann Genet 40: 78 – 91

Barrois M, Bieche I, Mazoyer S, Champeme MH, Bressac-de Paillerets B,
Lidereau R (2004) Real-time PCR-based gene dosage assay for detecting
BRCA1 rearrangements in breast – ovarian cancer families. Clin Genet 65:
131 – 136

Bertram CG, Gaut RM, Barrett JH, Pinney E, Whitaker L, Turner F, Bataille
V, Dos Santos Silva I, Swerdlow AJ, Bishop DT, Newton Bishop JA (2002)
An assessment of the CDKN2A variant Ala148Thr as a nevus/melanoma
susceptibility allele. J Invest Dermatol 119: 961 – 965

Bostrom J, Meyer-Puttlitz B, Wolter M, Blaschke B, Weber RG, Lichter P,
Ichimura K, Collins VP, Reifenberger G (2001) Alterations of the tumor
suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B
(p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic
meningiomas. Am J Pathol 159: 661 – 669

Chin L, Pomerantz J, DePinho RA (1998) The INK4a/ARF tumor
suppressor: one gene – two products – two pathways. Trends Biochem
Sci 23: 291 – 296

Ghimenti C, Fiano V, Chiado-Piat L, Chio A, Cavalla P, Schiffer D (2003)
Deregulation of the p14ARF/Mdm2/p53 pathway and G1/S transition in
two glioblastoma sets. J Neurooncol 61: 95 – 102

Goldstein AM (2004) Familial melanoma, pancreatic cancer and germline
CDKN2A mutations. Hum Mutat 23: 630

Greene MH (1999) The genetics of hereditary melanoma and nevi. 1998
update. Cancer 86: 2464 – 2477

Harland M, Meloni R, Gruis N, Pinney E, Brookes S, Spurr NK, Frischauf
AM, Bataille V, Peters G, Cuzick J, Selby P, Bishop DT, Bishop JN (1997)
Germline mutations of the CDK2 gene in UK melanoma families. Hum
Mol Genet 6: 2061 – 2067

Hemminki K, Zhang H, Czene K (2003) Familial and attributable risks in
cutaneous melanoma: effects of proband and age. J Invest Dermatol 120:
217 – 223

Hewitt C, Wu CL, Evans G, Howell A, Elles RG, Jordan R, Sloan P, Read AP,
Thakker N (2002) Germline mutation of ARF in a melanoma kindred.
Hum Mol Genet 11: 1273 – 1279

Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan
MD, Clark Jr WH, Tucker MA, Dracopoli NC (1994) Germline p16
mutations in familial melanoma. Nat Genet 8: 15 – 21

Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussey C,
Tran T, Miki Y, Weaver-Feldhaus J (1994) Analysis of the p16 gene
(CDKN2) as a candidate for the chromosome 9p melanoma susceptibility
locus. Nat Genet 8: 22 – 26

Kaufman DK, Kimmel DW, Parisi JE, Michels VV (1993) A familial
syndrome with cutaneous malignant melanoma and cerebral astrocyto-
ma. Neurology 43: 1728 – 1731

Laud K, Kannengiesser C, Avril MF, Chompret A, Stoppa-Lyonnet D,
Desjardins L, Eychene A, Demenais F, Lenoir GM, Bressac-de Paillerets
B, French Herediatary Melanoma Study Group (2003) BRAF as a
melanoma susceptibility candidate gene? Cancer Res 63: 3061 – 3065

Lilischkis R, Sarcevic B, Kennedy C, Warlters A, Sutherland RL (1996)
Cancer-associated missense and deletion mutations impair p16INK4 CDK
inhibitory activity. Int J Cancer 66: 249 – 254

Loo JC, Paterson AD, Hao A, Shennan M, Peretz H, Sidi Y, Hogg D,
Yakobson E (2005) Search for genetic variants associated with cutaneous
malignant melanoma in the Ashkenazi Jewish population. J Med Genet
42: e30

Momand J, Wu HH, Dasgupta G (2000) MDM2 – master regulator of the
p53 tumor suppressor protein. Gene 242: 15 – 29

Newton Bishop JA, Bataille V, Pinney E, Bishop DT (1994) Family studies in
melanoma: identification of the atypical mole syndrome (AMS)
phenotype. Melanoma Res 4: 199 – 206

Nielsen K, Ingvar C, Masback A, Westerdahl J, Borg A, Sandberg T, Jonsson
N, Nagel J, Olsson H (2004) Melanoma and nonmelanoma skin cancer in
patients with multiple tumours – evidence for new syndromes in a
population-based study. Br J Dermatol 150: 531 – 536

O’Neill BP, Blondal H, Yang P, Olafsdottir GH, Sigvaldason H, Jenkins RB,
Kimmel DW, Scheithauer BW, Rocca WA, Bjornsson J, Tulinius H (2002)
Risk of cancer among relatives of patients with glioma. Cancer Epidemiol
Biomark Prev 11: 921 – 924

Paunu N, Pukkala E, Laippala P, Sankila R, Isola J, Miettinen H, Simola KO,
Helen P, Helin H, Haapasalo H (2002) Cancer incidence in families with
multiple glioma patients. Int J Cancer 97: 819 – 822

Petronzelli F, Sollima D, Coppola G, Martini-Neri ME, Neri G, Genuardi M
(2001) CDKN2A germline splicing mutation affecting both p16(ink4) and
p14(arf) RNA processing in a melanoma/neurofibroma kindred. Genes
Chromosomes Cancer 31: 398 – 401

Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L,
Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA (1998)
The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2
and neutralizes MDM2’s inhibition of p53. Cell 92: 713 – 723

Ranade K, Hussussian CJ, Sikorski RS, Varmus HE, Goldstein AM, Tucker
MA, Serrano M, Hannon GJ, Beach D, Dracopoli NC (1995) Mutations
associated with familial melanoma impair p16INK4 function. Nat Genet
10: 114 – 116

Randerson-Moor JA, Harland M, Williams S, Cuthbert-Heavens D,
Sheridan E, Aveyard J, Sibley K, Whitaker L, Knowles M, Bishop JN,
Bishop DT (2001) A germline deletion of p14(ARF) but not CDKN2A in a
melanoma-neural system tumour syndrome family. Hum Mol Genet 10:
55 – 62

Rizos H, Puig S, Badenas C, Malvehy J, Darmanian AP, Jimenez L, Mila M,
Kefford RF (2001) Melanoma-associated germline mutation in exon
1beta inactivates p14ARF. Oncogene 20: 5543 – 5547

Soufir N, Avril MF, Chompret A, Demenais F, Bombled J, Spatz A, Stoppa-
Lyonnet D, Benard J, Bressac-de Paillerets B (1998) Prevalence of p16
and CDK4 germline mutations in 48 melanoma-prone families in France.
Hum Mol Genet 7: 209 – 216

Tachibana I, Smith JS, Sato K, Hosek SM, Kimmel DW, Jenkins RB (2000)
Investigation of germline PTEN, p53, p16(INK4A)/p14(ARF), and CDK4
alterations in familial glioma. Am J Med Genet 92: 136 – 141

Germline alterations in Jewish melanoma families

C Marian et al

2284

British Journal of Cancer (2005) 92(12), 2278 – 2285 & 2005 Cancer Research UK

G
e
n

e
tic

s
a
n

d
G

e
n

o
m

ic
s



Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN (1996)
CDKN2/p16 or RB alterations occur in the majority of glioblastomas and
are inversely correlated. Cancer Res 56: 150 – 153

Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar Arf
sequesters Mdm2 and activates p53. Nat Cell Biol 1: 20 – 26

Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR, Livingston
DM (1995) Interaction between the retinoblastoma protein and the
oncoprotein MDM2. Nature 375: 694 – 698

Yakobson E, Shemesh P, Azizi E, Winkler E, Lassam N, Hogg D, Brookes S,
Peters G, Lotem M, Zlotogorski A, Landau M, Safro M, Shafir R,

Friedman E, Peretz H (2000) Two p16 (CDKN2A) germline mutations in
30 Israeli melanoma families. Eur J Hum Genet 8: 590 – 596

Zhu G, Duffy DL, Eldridge A, Grace M, Mayne C, O’Gorman L, Aitken JF,
Neale MC, Hayward NK, Green AC, Martin NG (1999) A major
quantitative-trait locus for mole density is linked to the familial melanoma
gene CDKN2A: a maximum-likelihood combined linkage and association
analysis in twins and their sibs. Am J Hum Genet 65: 483 – 492

Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, Hayward N,
Dracopoli NC (1996) Germline mutations in the p16INK4a binding
domain of CDK4 in familial melanoma. Nat Genet 12: 97 – 99

Germline alterations in Jewish melanoma families

C Marian et al

2285

British Journal of Cancer (2005) 92(12), 2278 – 2285& 2005 Cancer Research UK

G
e
n

e
ti

c
s

a
n

d
G

e
n

o
m

ic
s


