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Kayibanda2,3, Jean-Marc Chavatte6, Jean-François Franetich7,8, Andrea Crisanti4, Dominique Mazier7,8,9,

Georges Snounou6,7,8, Laurent Rénia1,2,3*

1 Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, 2 Department of Immunology, Institut Cochin,
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Abstract

Immunization with irradiated Plasmodium sporozoites induces sterile immunity in rodents, monkeys and humans. The major
surface component of the sporozoite the circumsporozoite protein (CS) long considered as the antigen predominantly
responsible for this immunity, thus remains the leading candidate antigen for vaccines targeting the parasite’s pre-
erythrocytic (PE) stages. However, this role for CS was questioned when we recently showed that immunization with
irradiated sporozoites (IrrSpz) of a P. berghei line whose endogenous CS was replaced by that of P. falciparum still conferred
sterile protection against challenge with wild type P. berghei sporozoites. In order to investigate the involvement of CS in
the cross-species protection recently observed between the two rodent parasites P. berghei and P. yoelii, we adopted our
gene replacement approach for the P. yoelii CS and exploited the ability to conduct reciprocal challenges. Overall, we found
that immunization led to sterile immunity irrespective of the origin of the CS in the immunizing or challenge sporozoites.
However, for some combinations, immune responses to CS contributed to the acquisition of protective immunity and were
dependent on the immunizing IrrSpz dose. Nonetheless, when data from all the cross-species immunization/challenges
were considered, the immune responses directed against non-CS parasite antigens shared by the two parasite species
played a major role in the sterile protection induced by immunization with IrrSpz. This opens the perspective to develop a
single vaccine formulation that could protect against multiple parasite species.
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Recherche Médicale (INSERM), and by the European community (MALINV contract number LSH-CT-2005-01299) (L.R.). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Dr. Rénia is a member of the editorial board of PLoS One.

* E-mail: renia_laurent@immunol.a-star.edu.sg

. These authors contributed equally to this work.

Introduction

Sporozoites inoculated by the mosquito must invade and

develop within hepatocytes in order to generate merozoites that

can then initiate the pathogenic erythrocytic phase. Thus, this

obligatory transient phase of the life cycle is an attractive target for

interventions to inhibit parasite development fully, as this would

prevent both disease and transmission. Sterile immunity against

pre-erythrocytic (PE) stages is an all-or-none phenomenon,

because merozoites produced by a single infected hepatocyte

would lead to a patent blood infection. Immunization with large

numbers of radiation-attenuated sporozoites has long been the

only protocol that led to the induction of sterile immunity in

rodents and humans [1,2]. Subsequent investigations using the

rodent malaria parasites, P. berghei and P. yoelii, revealed a role for

both humoral and cellular immune responses targeting the

sporozoite and the infected hepatocyte, respectively [3]. In the

vaccinated hosts the antibody responses induced are predomi-

nantly directed against the antigenic repetitive central domain of

circumsporozoite protein (CS) [4]. Additionally adoptive transfer

of CS-specific CD8+ or CD4+ T cell clones, albeit in large

numbers, could lead to full protection against sporozoite challenge

[5–7]. Together these observations have led the CS to be

considered as the parasite antigen responsible for the sterile

protection induced by IrrSpz. This view was recently reinforced by

a report that concluded that CS is a protective immunodominant

antigen from experiments where mice made tolerant to CS of P.

yoelii were less likely to develop protective immune responses when

immunized with P. yoelii IrrSpz [8]. However, this conclusion is

mitigated by the demonstration in the same study that sterile

protection did actually develop when three rather than two

injections of IrrSpz were used to immunize the CS-tolerant
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transgenic mice [8,9]. Further indications that sterile protection

can be obtained independently of immune responses to the CS

were obtained when immunization with P. berghei IrrSpz whose

endogenous CS was replaced by that of P. falciparum fully protected

mice from challenge with wild type P. berghei sporozoites [10].

It had been recently suggested that anti-CS responses might be

implicated in the cross-species protection that has been observed

between P. yoelii and P. berghei in the context of IrrSpz

immunization [11], possibly because of the extensive sequence

homology between the N- and C-terminal of their CS because the

repeat regions are quite distinct (Figure S1). Indeed, adoptive

transfer of a CD8+ T cell clone specific for the P. yoelii CS CD8+

immunodominant epitope protected mice from challenge with P.

berghei sporozoites [12]. In order to investigate the actual role of

immune responses induced against the CS in cross-species sterile

protection we exploited the gene replacement approach [13] to

generate P. berghei sporozoites expressing the CS of P. yoelii (P.

berghei [PyCS]) instead of the endogenous CS, for use with those of

wild type P. berghei and P. yoelii in reciprocal immunization/

challenge experiments. This also afforded us the opportunity to

characterise the role of CS in sterile protection in the two widely

used rodent models of IrrSpz immunization.

Results

T Cell Responses
Groups of BALB/c mice were immunized with three doses of P.

berghei, P. berghei [PyCS] or P. yoelii IrrSpz. Cross-reactive T cell

responses induced by the immunizations were assessed by

ELISPOT using long peptides corresponding to N-terminal or

C-terminal regions of P. berghei, and P. yoelii CS, which contain all

the potential CD4 and CD8 epitopes (Figure 1). Whereas splenic

T cells from mice immunized with P. berghei irradiated sporozoites

only recognized peptides derived from the P. berghei CS, those from

mice immunized with P. berghei [PyCS] or P. yoelii IrrSpz also

recognized the C-terminus peptides derived from P. berghei, in

addition to the peptides derived from P. yoelii CS. This cross-

species recognition was more substantial for mice immunized with

P. yoelii IrrSpz, which surprisingly additionally recognized the long

peptide derived from the heterologous N-terminus of the P. berghei

CS but not of the homologous P. yoelii CS (Figure 1 middle and left

panels). This unexpected observation, confirmed in duplicate

experiments, remains as yet unexplained.

To determine if this cross-reactivity observed for the peptide

derived from the C-terminus of the CS molecule were due to CD8+

T cells recognizing the immunodominant CD8 epitope located in

this region, as previously suggested using CS-specific T cell clones

[12], a set of peptides containing this immunodominant CD8

epitope (9-mer and 19-mer for P. berghei and 9-mer and 17-mer for

P. yoelii) were tested by ELISPOT. This was not the case, because

the cross-reactivity was found to be minimal (Figure 2a–2d).

Thus, immunization with P. yoelii but not P. berghei IrrSpz

induced cross-reactive anti-CS T cells, most likely CD4+ T cells.

The magnitude of the cross-reactivity was different depending on

the context in which the P. yoelii CS was (i.e. whether it was

expressed in a P. berghei or in P. yoelii sporozoite background).

Antibody Responses
The levels of antibodies induced after immunization with three

injections of IrrSpz from the three parasite lines were assessed by

ELISA using peptides corresponding to the three domains of CS

(N-terminus, repeat region and C-terminus), and by IFA using

whole sporozoites. Anti-CS specific IgG and IgM induced by

immunization with P. berghei IrrSpz were solely directed against the

homologous P. berghei but not heterologous P. yoelii CS peptides

(Figure 3 and Figure S4). The antibodies induced by immunization

with the two other lines (P. berghei [PyCS] or P. yoelii) not only

recognized their homologous CS peptides but also cross-reacted

with the heterologous C-terminal peptides derived from P. berghei

CS, with higher levels observed for IgG as compared to IgM

(Figure 3A and Figure S4).

Immunization with IrrSpz induced high levels of IgG against

homologous but none against heterologous sporozoites. Sera from

mice immunized IrrSpz had an IFA titre of ,1/200 000 on wet

homologous sporozoites (for which only surface antigens are

accessible) (Figure 4A), and an IFA titre of ,1/400 000 on dried

methanol-fixed sporozoites (for which both intracellular and

surface antigens are accessible) (Figure S5). By contrast, negligible

IFA IgG titres (below 1/10) were obtained against the wet or the

dried methanol-fixed sporozoites expressing the heterologous CS.

Figure 1. CS–specific T cells induced by immunization with irradiated sporozoites. Mice were immunized 3 times with IrrSpz from the
different parasite lines. The frequency of epitope-specific CD8+ or CD4+ T cells in spleens was assessed by IFN-c ELISPOT using long CS peptides 10
days after the last immunization. Long peptides PyNt, PbNT and PyCt, PbCt correspond to the P. yoelii or P. berghei CS N- and C-terminal region of CS,
respectively. These peptides encompass potential CD4+ and CD8+ T cells epitopes. Results are expressed as the mean6SEM of epitope–specific T cells
from 5 mice per group.
doi:10.1371/journal.pone.0007717.g001

CS and Cross-Species Immunity
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Since sporozoites from these lines differed only for the CS, this

meant that IgG were predominantly directed against the CS.

The titres of IgM responses induced against the homologous

sporozoites were one to two orders of magnitude lower

(corresponding to IFA titres of 1/200–1/1600) against wet

sporozoites than those observed for IgG (Figure 4B). Similar

results were obtained with sera obtained from animals immunized

only once as opposed to three times with IrrSpz, though in this

case the antibody levels were much lower (1/50–1/100).

The fact that the CS cross-reactivity of the antibodies induced

by IrrSpz immunization was revealed only when peptides but not

when whole sporozoites were used suggested that the cross-

reactive antibodies induced by immunization with P. yoelii and P.

berghei [PyCS] IrrSpz recognized epitopes that were not exposed in

the CS expressed by P. berghei salivary gland sporozoites.

It was possible to gather some qualitative estimate of the

contribution that anti-CS humoral reactivities made to the

inhibition of parasite invasion and development as compared to

those directed against other antigens. This was achieved in an in

vitro assay where sporozoites were added in the presence of sera

(used at 1/10 dilution) and the numbers of liver stage parasites that

reached maturity were subsequently counted. Sera from animals

immunized 3 times with IrrSpz were strongly inhibitory (.90%) to

invasion and development of the homologous parasites (Figure 4C).

When the heterologous combinations were similarly assayed,

inhibition was also observed but it varied in intensity (Figure 4C).

The sera from P. berghei IrrSpz-immunized mice were moderately

inhibitory (30%–40%) against the heterologous P. yoelii sporozoites

(Figure 4C, top line, right panel). Since cross-reactivities induced

against P. yoelii sporozoites were only due to the IgM fraction and

since very little cross-reactive IgM to P. yoelii CS peptides were

detected in the sera from P. berghei IrrSpz-immunized mice (Figure

S4), this indicated that anti-CS IgG but not IgM contributed to

more than half of the inhibition measured in vitro against

homologous parasites while the remaining inhibition was mediated

by IgM against other non-CS antigens.

When the sera from mice immunized with P. berghei [PyCS]

IrrSpz were tested, inhibition of P. berghei sporozoites was high

(90%). This contrasted with a weak (30%) inhibitory activity of

sera raised by P. yoelii IrrSpz immunization against P. berghei

sporozoites (Figure 4C, left panel, from top to bottom). However,

we could not draw meaningful conclusions as to the likely role of

the anti-CS versus anti-non CS component of these inhibitory

activities. This is evident when one compares the high cross-

reactivity observed for IgG in ELISA against CS peptides

(Figure 3) with a low cross-reactivity for the same sera when wet

or air-dried methanol-fixed sporozoites were used (Figures 4 and

S5). Nonetheless, other indications of the differential contribu-

tion to sterile immunity can be obtained from in vivo challenge

studies.

Figure 2. CD8+T cells specific for the CS CD8+ immunodominant epitopes induced by immunization with irradiated sporozoites do
not cross-react. The frequency of epitope-specific CD8+ T cells in spleens from mice immunized 3 times with IrrSpz from P. berghei- (a, d, two
separate experiments), from P. berghei [PyCS] (b) and P. yoelii (c) were assessed by IFN-c ELISPOT using short CS peptides, 10 days after the last
immunization. PbB1 and PyB1 are 9-mer peptides containing the major H2-Kd-restricted CD8 epitopes located in the same position in the C-terminal
part of the CS. PbB1L and PyB1L are 19-mer peptides and correspond to extended version of PyB1 and PbB1. These peptides encompass potential
CD4 and CD8 T cells epitopes. Results are expressed as the mean6SEM of epitope–specific T cells from 5 mice per group. ND, not done.
doi:10.1371/journal.pone.0007717.g002
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Protection Studies
Sterile protection was equally observed in 80 to 100% of the

BALB/c mice inoculated once or three times with P. berghei IrrSpz

and then challenged with P. berghei or P. berghei [PyCS] sporozoites

(Figure 5A). We also obtained identical results using another P.

berghei [PyCS] clone (data not shown). Protection was not restricted

to BALB/c because outbred CD1 mice immunized once or three

times with P. berghei IrrSpz and then challenged with P. berghei or P.

berghei [PyCS] were also fully protected (Figure S6). These results

indicated that when P. berghei IrrSpz were used for immunization,

they induced sterile immunity independently of the P. berghei CS.

Next, experiments were performed to determine if this was equally

true for the P. yoelii CS. Mice immunized once or three times with

P. berghei [PyCS] IrrSpz and then challenged with either P. berghei

or P. berghei [PyCS] sporozoites were also protected (Figure 5B).

However, since we detected antibody and T cell cross-reactive

responses against long peptides derived from the P. berghei CS after

immunization with P. berghei [PyCS] or P. yoelii IrrSpz (Figures 1

and 3), it was not possible to ascertain to what extent the anti-CS

cross-reactive responses as opposed to the immune responses to

non-CS antigens contributed to the sterile protection observed.

In order to address this point, mice were immunized once with

IrrSpz from the 3 parasites lines and challenged with P. yoelii

sporozoites. Sterile protection was obtained in 60% of the mice

immunized with one injection of P. yoelii IrrSpz and challenged with

homologous P. yoelii sporozoites but not in mice challenged with the

heterologous P. berghei sporozoites (Figure 6A). On the other hand, 1

of the 5 mice immunized with P. berghei [PyCS] IrrSpz was

completely protected against a P. yoelii sporozoite challenge

(Figure 6A, left panel). This indicated that the presence of the P.

yoelii CS in a P. berghei background could not account for sterile

protection induced. Sterile protection is an all-or-none phenome-

non that depends on maximal inhibition of parasite invasion and

growth in the liver. Therefore, we quantified parasites in the livers of

immunized and challenged mice in order to determine to what

extent immunization with the 3 parasites lines inhibited the

development of P. yoelii sporozoites. A single immunization with

P. yoelii IrrSpz induced a significant 98.9% reduction of parasite

liver load as compared to non-immunized mice (Figure 6A, right

panel). Immunization with P. berghei IrrSpz reduced by 57% P. yoelii

liver load as compared to non-immunized mice, a difference that

did not reach statistical significance. When immunization was

Figure 3. IgG antibody responses to P. yoelii and P. berghei CS domains. Pooled serum samples from groups of five mice immunized 3 times
with IrrSpz from the different parasite lines were analyzed by ELISA using peptides covering domains of the P. berghei (A) or P. yoelii (B) CS. Data are
expressed as differential absorbance where values from pooled normal serum were subtracted from experimental values. The data presented are
representative of 2 experiments.
doi:10.1371/journal.pone.0007717.g003
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performed with P. berghei [PyCS] IrrSpz, hepatic development of

challenge P. yoelii was significantly reduced (83.4%) as compared to

non-immunized mice (Figure 6A, right panel). This indicated that

PyCS in the context of P. berghei sporozoites did induce an immune

response that inhibited P. yoelii liver stage development significantly.

The contribution of the CS to liver stage inhibition was evident, but

it was not possible to deduce a quantitative measure of this

contribution to the overall inhibition, though simple subtraction

indicated that this could be at least 30%.

We then performed experiments where the mice were immunized

3 times with IrrSpz before challenge with P. yoelii sporozoites.

Complete or near-complete sterile immunity was observed for each

combination (Figure 6B). The CS had no role in the cross-species

sterile protection induced after 3 injections of P. berghei IrrSpz because

immunization with P. berghei induced no cross-reactive immune

response to the P. yoelii CS (Figures 1, 2 and 3). When we performed

the reverse experiment, immunization with three doses of P. yoelii

IrrSpz, which induced cross-reactive anti-CS immune responses,

66% of the immunized mice were fully protected from challenge with

P. berghei sporozoites (Figure S7). However, immunization with a

single dose of P. yoelii IrrSpz could not protect any of the BALB/c

mice from a similar challenge. These observations indicated that in

mice immunized with P. yoelii IrrSpz, a cross-reactive anti-CS

immune response component contributes to cross-species sterile

protection in addition to the non-CS cross-reactive one. However, the

relative magnitude of these two components could not be deduced

from these experiments with confidence.

Discussion

More than forty years have passed since the demonstration that

immunization with irradiated sporozoites induces sterile protection

Figure 4. Antibody reactivity to sporozoites induced by immunization with irradiated sporozoites. (A) IgG responses were exclusively
directed against CS. Pooled serum samples from groups of five mice immunized three times with IrrSpz from the different parasite lines were analyzed
by IFA against wet sporozoites to detect surface antigens using secondary antibodies specific to the IgG. Titres are expressed as the log of the highest
dilution of serum giving a positive staining. (B) IgM response to the CS and other sporozoite epitopes on the surface of the sporozoites. Pooled sera were
tested as above using secondary antibodies specific to IgM. Titres were expressed as above. (C) In vitro sporozoite invasion and development inhibition
assay using pooled sera (at a 1/10 dilution) from group of five mice immunized three times with IrrSpz from the different parasite lines. The data
presented is representative of those obtained in duplicate experiments. Control wells tested with normal serum (1/10 dilution) contained the following
numbers of parasite forms: 807639.6 P. berghei schizonts, 162.768.1 P. berghei [PyCS] schizonts, and 207.3631.3 P. yoelii schizonts.
doi:10.1371/journal.pone.0007717.g004

CS and Cross-Species Immunity
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against a sporozoite challenge [2]. The majority of investigations

aimed at elucidating these protective mechanisms, and at

developing vaccines that reproduce them, has been based on the

CS, a protein that was quickly discovered to make up the bulk of

the proteins at the sporozoite surface [14] and to be the main

target of antibody responses [4]. Two independent studies using

distinct approaches have recently put the central role of CS in the

acquisition of sterile immunity into question. The first based on

mice made tolerant to the CS of P. yoelii provided indirect evidence

for the role of other parasite antigens [8]. The second based on

gene replacement in P. berghei provided conclusive evidence that

sterile immunity can be induced independently of specific immune

responses to CS [10]. Demonstration that immunization with the

IrrSpz of one species can induce sterile protection against a

sporozoite challenge by another was subsequently made [11,12].

The possibility that non-CS antigens were implicated in cross-

protection was raised, but a role for CS was favoured because of

the relative sequence similarities between the CS of the two rodent

malaria species used, P. berghei and P. yoelii. Furthermore, previous

observations had shown that adoptive transfer of a T cell clone

derived from P. yoelii IrrSpz-immunized mice and specific to the P.

yoelii CS immunodominant CD8 epitope protected against a P.

berghei sporozoite challenge [12]. In the studies presented here, we

exploited gene replacement technology to investigate the role of

the P. yoelii and P. berghei CS in the acquisition of sterile protection

induced by IrrSpz immunization, and to ascertain to what extent

immune responses to CS are implicated in the cross-species

protection.

The data presented for immunization with P. berghei IrrSpz

confirmed our previous conclusions that sterile protection was

independent of immune responses specific to the P. berghei CS [10],

and furthermore demonstrated that cross-species protection

against a P. yoelii sporozoite challenge was equally independent

of these same anti-CS immune responses. On the other hand, the

conclusions from the reciprocal immunization, i.e. IrrSpz carrying

the P. yoelii CS were less clear-cut. In this case a role for specific

anti-CS immune responses in protection could not be dismissed,

because we found evidence for their significant contribution to the

inhibition of sporozoite invasion and development in hepatocytes

both in vitro and in vivo. Although formal quantitative evaluation

of this contribution was precluded, we estimated that it could

plausibly account for up to 40% of the sterile protection observed

after heterologous sporozoite challenge. This asymmetrical role for

the CS in sterile protection was unexpected. This raises the

possibility that a similar phenomenon might operate with the

different parasites species that infect humans.

A possible explanation for our observations could be that the

immune responses against CS and non-CS antigens are induced

differentially in the two rodent malaria species. In our hands, the

principal difference between the two model species lay in the number

of IrrSpz injections that were required to induce sterile protection.

Sterile protection in all animals was obtained after a single

immunizing IrrSpz dose in the P. berghei model, whereas 2 to 3

doses were required to achieve the same level of protection in the P.

yoelii model. We propose that for P. berghei, the immune responses

against non-CS antigens, which are responsible for sterile protection,

are induced rapidly following a single IrrSpz dose. By contrast, for P.

yoelii, boosting with multiple IrrSpz doses would be required to

achieve the levels of immune responses to non-CS proteins needed to

confer sterile protection. Formal demonstration of this hypothesis

must await the identification of these non-CS antigens.

The fact that the immune responses induced against CS in some

models has little bearing on the acquisition of sterile immunity

conferred by immunization with IrrSpz, should not be taken as

basis to rule out inclusion of the CS alone or in combination with

other antigens in vaccine formulation. First, others and we have

Figure 5. Sterile protection in mice immunized with IrrSpz and challenged with sporozoites of P. berghei or P. berghei [PyCS]. Mice
were immunized with 1 or 3 injections of P. berghei (A) or P. berghei [PyCS] (B) IrrSpz and challenged with 5 000 P. berghei or P. berghei [PyCS]
sporozoites at least one week after the last IrrSpz injection. All groups (5 mice per group) were monitored for blood-stage infections by examination
of Giemsa-stained blood smears obtained daily from day 3 to day 10 post-challenge. All naive control mice developed a patent blood-stage infection.
The data is representative of those obtained in triplicate experiments.
doi:10.1371/journal.pone.0007717.g005

CS and Cross-Species Immunity
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shown that immune responses induced by various formulations

against CS can significantly reduce liver stage development and

even confer sterile immunity in immunized animals [15–18]. In

humans, this has proven to be more difficult to achieve, but the

induction of sterile immunity in half or more of the volunteers

immunized by the RTS,S vaccine remains a very promising result

[19–21]. Failure to achieve equivalent levels of sterile protection in

adults and children living in African endemic areas [22–24] must

be offset by the observations of reduced incidence of clinical

malaria episodes in trials in Mozambique, Kenya and Tanzania

[22,25,26].

It might be that the CS in Nature actually plays a role in

immune evasion. The highly biased antibody responses to CS and

its dominance on the sporozoite surface could lead to a

monopolization of the antibody responses mounted by the host

against sporozoites. In this way, the CS would deviate the host

defences away from other antigens more apt at being targets of the

sterile protective immunity, such as those induced by immuniza-

tion with IrrSpz. In such as case, the identification of these non-CS

antigens should be strongly encouraged, a point of view

increasingly adopted by the community [27]. This antigen subset

might also be implicated in the protective mechanisms that

underlie the potent cross-species protection obtained through

immunization with IrrSpz reported here and elsewhere [11]. The

task of identifying these protective antigens will be facilitated by

the availability of the entire genomic sequences of malaria

parasites.

The prospect of inducing cross-species protection against

malaria pre-erythrocytic stage, akin to that reported here, in

humans is an exciting one. The perception that immunization with

the irradiated P. falciparum or P. vivax sporozoites does not confer

sterile protection against challenge with sporozoite of the

heterologous species rests on observations made on a single

volunteer immunized with sub-optimal doses of P. falciparum

irradiated sporozoites, and who was not protected from a single

subsequent P. vivax sporozoite challenge [28]. It would be judicious

to undertake further trials of this nature in order to confirm or to

refute the possibility that cross-species protective responses against

the parasite’s pre-erythrocytic stages can be acquired in humans.

Indeed, the armamentarium to fight against malaria would be

substantially enhanced, if it could be demonstrated that a single

vaccine capable of protecting against the two most prevalent and

pathogenic species of malaria could be developed. The recent

exciting advances in the development of practical live sporozoite

vaccination strategies [29–34] would make it possible to explore

this strategy before elucidating the nature of the cross-species

protective antigens.

Materials and Methods

Ethics Statement
All experiments and procedures involving mice were approved

by the ‘‘Direction Departementale des Service Veterinaires de

Paris, France (Authorisation No 75–129) and performed in

Figure 6. Sterile protection in mice immunized with IrrSpz from one or the other of the 3 different lines and challenged with P. yoelii
sporozoites. Mice were immunized with 1 (A) or 3 (B) injections of the 3 different Plasmodium lines before challenge with P. yoelii sporozoites as
described in the Materials and methods. Challenge was performed with 100 P. yoelii sporozoites 12–13 days after immunization with the single dose
or one week after the last IrrSpz injection in the 3 immunizing dose regimen. Sterile protection (left panel) was determined after monitoring of all
challenged groups (5 mice per group) for blood-stage infections by examination of Giemsa-stained blood smears obtained daily from day 3 to day 10
post-challenge. All naive control mice developed a patent blood-stage infection. Liver stage inhibition (A, right panel) was determined by measuring
liver parasite development in mice immunized once with IrrSpz 42 hours after challenge with 60 000 P. yoelii sporozoites. Results were expressed as
mean liver parasite load log units6SEM of 5 mice. Reduction of P. yoelii parasite load was more than 98% in P. yoelii-immunized animals, 83.4% in P.
berghei [PyCS]-immunized animals and 57% in P. berghei-immunized animals when the arithmetic values were used for calculation. * p,0.05 (ANOVA
followed by Tukey’s test).
doi:10.1371/journal.pone.0007717.g006
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compliance with regulations of the French Ministry of Agriculture

for animal experimentation (1987).

Construction of a Transgenic P. berghei Whose CS Gene
Was Replaced by That of P. yoelii

This was done as depicted in Figure S2A. Briefly, plasmid

pPyCS (cl9) was digested with Apa I + Xba I to release the targeting

insert (,8.7 kb) from the plasmid backbone. The insert was then

purified, from a gel following electrophoresis, by phenol/

chloroform extraction. Purified schizonts of a cloned line of P.

berghei ANKA strain were transformed with 5–10 mg of targeting

DNA using the Amaxa programme U33 and subsequently injected

intraperitoneally (i.p.) into phenyl hydrazine-treated mice as

described previously [13]. Pyrimethamine resistant parasites were

selected in the TO mice as described previously [35], and cloned

in mice by limiting dilution. P. berghei ANKA expressing the P. yoelii

CS protein was referred to as P. berghei [PyCS]. Replacement was

confirmed by DNA hybridisation (Figure S2B) and by immuno-

staining experiments (Figure S3). For the former, genomic DNA

was isolated from parasites as previously described [13]. 5 mg of

genomic DNA were digested with Eco RV, electrophoresed on

0.8% agarose gel and blotted onto nylon Hybond-N+ membrane

(Amersham). The following DNA fragments were used as probes:

a) 1.1 kb fragment amplified from the 39 UTR sequence of the

PbCS gene with the primers 39UTR1CS (59-ATA AAC ATT ACG

CAT GAT TAT A) and 39UTR2CS (59-GAG TAC TCA CGA

ATC CGA AAT AAG); and b) a 1.1 kb fragment of the PyCS gene

with primers PyCS1( 59-ATG AAG AAG TGT ACC ATT TTA

GTT GTA GCG) and PyCS2 (59-TTA ATT AAA GAA TAC

TAA TAC). All hybridization experiments were carried out as

described previously [13].

Mice and Plasmodium Sporozoites
BALB/cJ and CD1 female mice were purchased from Harlan

Laboratories (Gannat, France) and were housed in pathogen-free

rodent barrier facility. P. yoelii yoelii 17XNL clone 1.1, a P. berghei

ANKA cloned lined transfected with a GFP molecule derived from

P. berghei ANKA clone 15cy1 and referred as P. berghei [36], two

cloned lined of P. berghei [PyCS], which had been submitted to the

same selecting procedure as that use to obtain the P. berghei GFP

parasites were used to infect laboratory-bred Anopheles stephensi

mosquitoes. The infectivity and development of P. berghei [PyCS]

has been shown previously to be similar to those of the parent P.

berghei both in the mosquito and in the mouse [13]. Sporozoites

from the different lines were obtained by dissection of the salivary

glands of the infected A. stephensi female mosquitoes 15 to 21 days

after the infective blood meal.

Immunization, Challenge and Protection Assessment
Mice were immunized intravenously with one single dose of 75

000 sporozoites or with one dose of 75 000 sporozoites followed by

two booster doses of 25 000 sporozoites, in all cases irradiated at

12 000 rads, 15 and 22 days after the priming injection. Naı̈ve

control mice and mice immunized with irradiated sporozoites

were challenged i.v. with 100 sporozoites of P. yoelii or 5 000

sporozoites of P. berghei 12–13 days after the single dose

immunization or one week after the last IrrSpz injection in the 3

immunizing dose regimen. Because of differences in the infectivity

of these Plasmodium species, the doses were chosen so as to induce

infection in all control mice. Infection was determined by the

presence of parasites in Giemsa-stained blood smears prepared

daily from days 3 to 10 post-challenge and parasitaemia was

determined by counting the number of infected red blood cells per

1000 erythrocytes. Quantification of parasite load in the liver of

sporozoites-infected mice was made from a previous method [37]

adapted to real time PCR. Mice were injected i.v. with 60 000

sporozoites. Forty-two to forty-four hours after, a liver biopsy was

collected and DNA was extracted using the DNAeasy kit,

including all optional steps (Qiagen, The Netherlands). At that

time, liver parasite maturation is nearly complete but merozoites

are yet to be released from the hepatocytes to initiate a blood stage

infection as previously demonstrated using a sensitive nested PCR

technique [38]. DNA quantity and quality were assessed by

densitometry using a Nanodrop (ThermoFischer Scientific). The

solution was adjusted to 10 ng/ml with water. Then, 50–100 ng of

each sample were used as template for a real time quantitative

PCR using the Lightcycler FastStart DNA Master SYBR Green I

kit (Roche, Germany) in a Lightcycler (Roche, Germany) in

duplicate. The primers used were NYU-Py3 (F) 59- GGG-

GATTGGTTTTGACGTTTTTGCG-39 and NYU-Py5(R) 59-

AAGCATTA AATAAAGCGAATACATCCTTAT-39 [39], for

P. yoelii and IC-PbF (59-GAATTGGTTTTGACGTTTATGT-

GGGC-39) and IC-PbR(59 AAGCATTAAATAAAGCGAATA-

CATCCTTAC-39) for P. berghei which target the parasite’s small

subunit ribosomal RNA gene (ssrRNA). PCR conditions were as

follows: SYBR green mix as indicated by manufacturer, final

concentrations of 3 mM (for P. yoelii primers) or 3.5 mM (for P.

berghei primers) MgCl2, 400 nM primers (F and R) in a total

volume of 20 ml. The program used for amplification was: 95uC
for 10 minutes, followed by 40 cycles of 95uC 10 seconds, 60uC 10

seconds and 72uC 10 seconds. The melting curve was generated

by a linear increase of temperature from 67 to 90uC at 0.2uC/

second. Standard curves were generated using a 10-fold dilution

series (from 106 to 1 parasites/ml) of DNA solution purified from

blood stages of either P. yoelii, or P. berghei ANKA obtained from a

sample in which the number of parasite nuclei/ml was determined

accurately, by microscopy examination of Giemsa-stained blood

smears and calculation of the number of RBC/ml of blood.

Genomic DNA rather than a plasmid bearing a ssrRNA gene was

used to generate the standard curve, because it reflects more

accurately the multiple targets amplified since there are more than

5 different ssrRNA genes in the genome of Plasmodium. One liver

parasite load unit corresponds to the log number of the parasite

nuclei/mg of liver DNA. Sensitivity of the reaction allowed a linear

detection down to 10 nuclei (slope of linear regression: 23.495) of

parasites/100 ng liver DNA for both P. berghei and P. yoelii.

Peptides
Peptides Py3 [(QGPGAP)3] and Pb2 [(DPPPPNPN)2], corre-

sponding to the repeat regions of the CS protein of P. yoelii and P.

berghei, respectively, were used in ELISA as previously described

[18,40]. The following peptides: PyB1 (SYVPSAEQI), PyB1L

(SYVPSAEQILEFVKQIS), containing the dominant H2-Kd

restricted CD8+ T cell epitopes in the P. yoelii CS [6,41], PbB1

(SYIPSAEKI) and PbB1L (SYVPSAEKILEFVKQISSQ) contain-

ing the H2-Kd restricted CD8+ T cell epitopes in the P. berghei CS

[5,6,12] were used in ELISPOT assays. Lyophilized material was

resuspended in sterile distilled water at 10 mg/ml, aliquoted, and

stored at 220uC until use. The following long peptides

corresponding to NH2-terminal and COOH-terminal parts of

the two different CS were kindly given by Giampietro Corradin

(Institute of Biochemistry, University of Lausanne): P. yoelii CS

long peptides (PyLN), PyNt (N-terminal region, amino acid

segment 20–138: PGYGQNKSVQ AQRNNLYENN LHL

SNGKINR NIVNRLLGDA NGKPEEKKDD PPKDGNKDDL

PKEEKKDLPK EEKK DDPPKD PKKDDPPKNED) and PyCt

(C-terminal region, amino acid segment 277–345: NEDSYVPSAE
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QIL EFVKQIS SQLTEEWSQC SVTCGSGVRV KRKNV-

NKQPE NLTLEDIDTE ICKMDKCS); P. berghei long peptides

(PbLP), PbNt (amino acid segment 21–91: YGQNKSIQAQ

RNLNELCYNE GNDNKLYHVL NSKNGKIYIR NTVN

RLLADA PEGKKNEKKN KIERNNKLK) and PbCt (amino

acid segment 242–310: NDDSYIP SAEKILEFVKQI RDSI-

TEEWSQ CNVTCGS GIRVRKRKG SNKKAED LTLEDID

TEICKMDKCS)[42]; In one experiment, PyLP were used to

immunize mice in order to obtain specific antibodies to these

regions for use in immunofluorescence assays.

ELISPOT Assay
PVDF microplates (Millipore, Bedford, MA, USA) were coated

overnight at 4uC with 15 mg/ml of an anti-mouse IFN-g rat mAb

(clone AN18, Mabtech AB, Sophia Antipolis, France) diluted in

PBS. After extensive washes and 2 hours-incubation at 37uC with

RPMI medium containing 10% foetal calf serum, 36105 spleen

cells were incubated overnight with the different peptides (final

concentration 10 mg/ml) and with 30 U/ml of recombinant

human IL-2. The plates were then washed, incubated with

2 mg/ml of biotinylated anti-mouse IFN-g rat monoclonal

antibody (clone R4-6A2, Mabtech AB) diluted in PBS containing

0.5% bovine serum albumin for 2 h at 37uC, and then overnight

at 4uC. Plates were subsequently incubated with extravidin-

coupled alkaline phosphatase (Sigma-Aldrich) diluted in PBS.

After adding the BCIP/NBT substrate (Sigma-Aldrich), IFN-g

spot forming cells were counted under a stereomicroscope and

expressed as the number of spots per million tested cells.

ELISA
The presence and level of antibodies to Py3 and Pb2 peptides

and to PyLP and PbLP were detected by ELISA as described

previously [18,40]. Briefly, 96-well flat-bottom plates (Maxisorp,

Nunc, Roskilde, Denmark) were coated with 1 mg/ml of peptide in

PBS, pH 7.8, by overnight incubation at 4uC. After extensive

washes, and a 1 hour-incubation with 200 ml of PBS containing

0.05% Tween and 1% BSA, wells were incubated for 1 hour at

37uC with 100 ml of mouse sera diluted 1/100 in PBS-Tween-

BSA. After two washes, wells were incubated for 45 min at room

temperature, either with goat IgG anti-mouse IgM (Invitrogen

SARL, Cergy Pontoise, France) or with a biotinylated goat anti-

mouse IgG (Jackson ImunoResearch Europe Ltd, Newmarket,

United Kingdom) diluted in PBS-Tween. The wells containing the

goat IgG anti-IgM antibody were washed and further incubated

with a biotinylated rabbit anti-goat IgG (Sigma-Aldrich, Saint-

Quentin Fallavier, France) diluted in PBS-Tween for 45 min at

room temperature, then washed and incubated with extravidin-

coupled alkaline phosphatase (Sigma-Aldrich) diluted in PBS-

Tween for 1 h at room temperature. Phosphatase activity was

measured using 4-methylumbelliferyl phosphate (Sigma-Aldrich)

as a substrate and the fluorescence at 355/460 nm was measured

using a spectrophotometer (Victor 1420, Wallac Oy, Turku,

Finland).

Immunofluorescence Assay (IFA)
Sera from mice immunized with irradiated sporozoites were

tested by immunofluorescence using wet or air-dried methanol-

fixed sporozoites from the different Plasmodium lines, in order to

detect surface or total antigen content as described previously [43].

Sporozoite Invasion and Development Inhibition Assay
Human hepatoma cells, Hep-G2-CD81 (86104 cells/well) [44],

which are fully susceptible to P. yoelii and P. berghei sporozoites,

were cultured in eight-chamber plastic Lab-Teck slides (Nunc,

Naperville, IL) in William’s E medium (GIBCO, Edinburgh,

Scotland) supplemented with 5% FCS (GIBCO), 1% penicillin-

streptomycin solution (100X, stock solution, GIBCO) and

incubated at 37uC in 3.5% C02 for 24 hours. After removal of

medium from the culture chambers, 10 000 sporozoites were

added in 100 ml of fresh supplemented medium. Inhibition of

sporozoite and liver stage development assay was performed as

previously described [15]. Briefly, sera (1:10 dilution) were added

to hepatocyte cultures at the time of sporozoite inoculation and

removed 3 hours later. Medium was replaced by fresh supple-

mented medium. Cultures were fixed with cold methanol after

45 hours. Sera from control naive mice were used as control.

Schizont numbers were assessed in triplicate cultures by

immunofluorescence assay using antibodies against PyHSP70.1

that recognizes P. yoelii liver stages as previously described [45].

Percent inhibition was calculated by comparing the numbers of

parasites in the experimental cultures with the numbers in control

wells.

Supporting Information

Figure S1 Alignment of protein sequences from the CSP

sequences used in this study. CSP was amplified by PCR using

primers flanking the 59 and 39 ends of the CSP gene(underlined in

figure). Sequences of P. yoelii CSP (GenBank accession number:

bankit1261217, GQ86230) and of P. berghei GFP CSP (GenBank

accession number: bankit1261246,GQ862302) were obtained and

compared. The P.yoelii CSP from Pb (PyCSP) was identical to the

CSP from P.yoelii 1.1 (confirmed by sequencing). Pre-, post and

repeat regions are highlighted in green, and differences in non-

repeat regions are highlighted in yellow.

Found at: doi:10.1371/journal.pone.0007717.s001 (0.25 MB TIF)

Figure S2 The P. berghei CS (PbCS) locus and the integration

of pPyCS. A Map of the pPyCS construct and schematic

representation of the WT and targeted PbCS locus. To direct

the 59 recombination event, a 1.1 kb 59 UTR sequence (thin grey

box) of PbCS (wide black box) was inserted in front of the 1.1 kb

PyCS coding region (wide white box). A 302 bp sequence

corresponding to the PbCS 39 UTR (thin white box) was placed

downstream of PyCS. A further 848 bp of the PbCS 39 UTR (thin

white box) was inserted downstream of the DHFR-TS transcrip-

tion unit (hatched box). The relative position of Eco RV (E)

cleavage sites is indicated. Thick black lines (a, b) indicate the

positions of the probes used in Southern blot experiments. B.

Southern blot analyses of the parasites. Genomic DNA from WT

and transgenic PyCS-5 parasites was digested with Eco RV and

hybridized with the 2 different probes (a, b) to ascertain the correct

integration of the constructs. Size markers are in kilobases (kb).

The integrity of the inserted DNA fragment was also confirmed by

PCR and sequence analysis (data not shown). These analyses

demonstrated that the targeting construct (Figure S2A, panel a)

had correctly integrated in the transgenic parasite thereby placing

the PyCS coding sequence under the control of the P. berghei CS

regulatory sequences and directing the downstream insertion of

the selectable marker DHFR-TS (Figure S2B, panel b).

Found at: doi:10.1371/journal.pone.0007717.s002 (0.67 MB TIF)

Figure S3 Antibodies to different regions of P. yoelii or P.

berghei CS recognize homologous but not heterologous CS on

sporozoites. Monoclonal antibodies specific to the repeat regions

of the P. yoelii yoelii 17XNL (NYS1) (3) or the P. berghei ANKA

(3.28) (4) CS and polyclonal antibodies (1/100 dilution) against the

N-terminal or the C-terminal regions of the P. yoelii yoelii 17XNL

CS and Cross-Species Immunity
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CS were tested by IFA on dried methanol fixed sporozoites.

Antibodies directed against the repeats or the flanking region of

the P. yoelii CS recognized only P. yoelii and P. berghei [PyCS]

but not P. berghei sporozoites. Antibodies to the repeat regions of

P. berghei CS recognized only P. berghei parasites. References:

(1)Charoenvit, Y. et al. 1987. Characterization of Plasmodium

yoelii monoclonal antibodies directed against stage-specific

sporozoite antigens. Infect Immun 55: 604–608. (2)Weber, J. L.

et al.1987. Plasmodium berghei: cloning of the circumsporozoite

protein gene. Exp Parasitol 63: 295–300.

Found at: doi:10.1371/journal.pone.0007717.s003 (0.27 MB TIF)

Figure S4 IgM antibody responses to P. yoelii and P. berghei CS

domains. Pooled serum samples from groups of mice immunized

with the different parasite lines were analyzed by ELISA against

different domains of the P. berghei (A), and P. yoelii (B) CS, using

secondary antibodies specific to the IgM isotypes. Data are

expressed as differential absorbance where values from pooled

normal serum were subtracted from experimental values.

Found at: doi:10.1371/journal.pone.0007717.s004 (0.10 MB TIF)

Figure S5 Antibody reactivity to dried methanol-fixed sporozo-

ites induced by immunization with irradiated sporozoites. IgG

response is exclusively directed against the CS. Individual serum

samples from groups of mice immunized with the sporozoites from

the different parasite lines were analyzed by IFAT against dried

and methanol-fixed sporozoites to detect the total CS and other

antigens content using secondary antibodies specific to IgG. Titres

are expressed as the Mean6SD of the log of the highest dilution of

serum that gave a positive staining.

Found at: doi:10.1371/journal.pone.0007717.s005 (0.27 MB TIF)

Figure S6 Sterile protection in outbred CD1 mice immunized

with P. berghei irradiated sporozoites and challenged with P.

berghei or P. berghei [PyCS] sporozoites. CD1 mice were

immunized with 3 injections of P. berghei and challenged with 5

000 sporozoites of P. berghei or P. berghei [PyCS]. All groups (5

mice per group) were monitored for blood-stage infections by

examination of Giemsa-stained blood smears obtained daily from

day 3 to day 10 post-challenge. All naive control mice developed a

patent blood-stage infection.

Found at: doi:10.1371/journal.pone.0007717.s006 (0.09 MB TIF)

Figure S7 Sterile protection in mice immunized with P. berghei

irradiated sporozoites and challenged with P. yoelii. Mice were

immunized either with a 1 injection or 3 injections of P. yoelii

IrrSpz as described in the Materials and methods. Challenge was

performed with 5 000 P. berghei sporozoites one week after the

last IrrSpz injection. All groups were monitored for blood-stage

infections by examination of Giemsa-stained blood smears

obtained daily from day 2 to day 11 post-challenge. All naive

control mice developed a patent blood-stage infection. The data

represent pooled results from two experiments (with four to five

mice per group in each experiment).

Found at: doi:10.1371/journal.pone.0007717.s007 (0.09 MB TIF)
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