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ABSTRACT.

Purpose: In this study, we investigate the potential of a novel artificial

intelligence-based system for autonomous follow-up of patients treated for

neovascular age-related macular degeneration (AMD).

Methods: A temporal deep learning model was trained on a data set of 84 489

optical coherence tomography scans from AMD patients to recognize disease

activity, and its performance was compared with a published non-temporal model

trained on the same data (Acta Ophthalmol, 2021). An autonomous follow-up

system was created by augmenting the AI model with deterministic logic to

suggest treatment according to the observe-and-plan regimen. To validate the

AI-based system, a data set comprising clinical decisions and imaging data from

200 follow-up consultations was collected prospectively. In each case, both the

autonomous AI decision and original clinical decision were compared with an

expert panel consensus.

Results: The temporal AI model proved superior at detecting disease activity

compared with the model without temporal input (area under the curve 0.900

(95% CI 0.894–0.906) and 0.857 (95% CI 0.846–0.867) respectively). The AI-

based follow-up system could make an autonomous decision in 73% of the cases,

91.8% of which were in agreement with expert consensus. This was on par with

the 87.7% agreement rate between decisions made in the clinic and expert

consensus (p = 0.33).

Conclusions: The proposed autonomous follow-up system was shown to be safe

and compliant with expert consensus on par with clinical practice. The system

could in the future ease the pressure on public ophthalmology services from an

increasing number of AMD patients.
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Introduction

Current treatment strategies for neo-
vascular macular degeneration (AMD)
markedly improve visual outcomes
(Brynskov et al. 2020, Papadopoulos
2020), but often require close monitor-
ing and administration of anti-VEGF
injections for extended periods of time
(Baek et al. 2019). Together with the
demographic transition to an older
population, this will continue to be
the main driving force behind the rise
in the number of patients in need of
treatment (Potapenko & la Cour 2021),
increasing the burden on ophthalmol-
ogy services. If the quality of care is to
be maintained in the future, novel
approaches are needed for more effec-
tive patient management.

In this regard, artificial intelligence
(AI) is a promising tool (He et al.
2020). It is well established that deep
learning approaches perform well on
pattern recognition tasks in imaging
data (Ting et al. 2019). Numerous
approaches have been explored includ-
ing classification of disease activity in
AMD on optical coherence tomogra-
phy (OCT) scans (Lee, Baughman &
Lee 2017, Hwang et al. 2019, Moto-
zawa et al. 2019, Potapenko et al.
2021), detection of referrable disease
on fundus images (Burlina et al. 2018,
Bhuiyan et al. 2021) and quantifying
pathological fluid by segmentation of
OCT images (De Fauw et al. 2018,
Schlegl et al. 2018, Gao et al. 2019).
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Attempts have been made to enhance
performance, for example by including
all three dimensions of an OCT volume
(Li et al. 2019) or using advanced
model architectures like a capsule net-
work (Tsuji et al. 2020). However, an
area currently left largely unexplored is
the temporal change in imaging. As
clinicians often assess changes over
time during patient evaluation, at min-
imum comparing the previous and
current findings, the temporal dimen-
sion might offer additional information
needed to detect disease activity.

Despite encouraging performance
in silico, many of the published
approaches are difficult to directly
implement in a clinical environment.
Most are restricted to a single input
data type, which differs significantly
from the much broader scope of data a
clinician routinely evaluates during
patient follow-up. Visual acuity, OCT
scans and fundus photographs for both
the current and previous visits will
often be used to arrive at treatment
decisions (Brown & Regillo 2007).
Further, concepts like chronic oedema,
unexpected changes in visual acuity
and dischargement to primary care
ophthalmologists are not accounted
for by most models, limiting their
usefulness in any real-world scenario.

In this study, we present a novel
design for a follow-up system of AMD

patients based on a combination of
temporally aware AI and deterministic
logic. This framework is tailored to
autonomously suggest patient treat-
ment in accordance with observe-and-
plan (O&P) regimen, and handles sev-
eral advanced concepts such as regimen
compliance, chronicity and decision
uncertainty. Through validation that
closely resembles a clinical environ-
ment, we show the system to be safe
and highly compliant with multi-expert
consensus on treatment strategy in a
prospectively collected data set. Such
clinically oriented validation has not
been previously attempted in the pub-
lished literature and might lower the
barriers to a future real-world imple-
mentation of the system.

Materials

Twodata sets were used:A retrospective
cohort for training and hyperparameter
tuning of the AI model designed to
detect disease activity and a prospective
case cohort to evaluate the comprehen-
sive follow-up system that comprised
the AI model augmented with addi-
tional deterministic logic.

Retrospective training data set

The retrospective cohort was based on
the previously described OCT image

data set in Potapenko et al. (2021)
collected at the Department of Oph-
thalmology, Rigshospitalet, Copen-
hagen. The data were split into
training, tuning and three validation
sets (termed internal, external A and
external B) that differed in the labelling
procedure (Table 1).

As described in the original article,
training, tuning and internal validation
sets used labels derived from clinical
decisions made according to pro-re-
nata (PRN) regimen. If treatment had
been prescribed, it was assumed that
oedema (defined as pathological fluid
either intra- or subretinally) was pre-
sent on the OCT scan, otherwise it was
assumed that oedema was not present.
External validation sets A and B were
manually re-graded by one or three
graders, respectively, to denote whether
the scan contained oedema or not.

Several modifications were made to
the data sets in the current study.
Fundus images associated with the
OCT scans were kept. Temporal infor-
mation was preserved by pairing each
OCT scan with the scan taken during
the previous visit. Patients in the
prospective cohort (described in the
next subsection) have been removed
from the retrospectively collected data
to ensure a complete separation of
training and validation data sets.
Radial OCT scans were included in

Table 1. Overview over data sets used.

Dataset Period Type Regimen Patients (n) Scans (n) Eyes (n) Used labels

Training data sets Jun 2007–Jun 2018 Retrospective PRN

Training set 4.898 84.489 6.194 Presence of oedema (derived

from treatment decision)

Tuning set 612 10.107 750 Presence of oedema (derived

from treatment decision)

Retroscpective validation

sets

Jun 2007–Jun 2018 Retrospective PRN

Internal validation set 612 10.411 779 Presence of oedema (derived

from treatment decision)

External validation set A 215 1.446 265 Oedema presence (re-graded

by a single expert)

External validation set B 187 187 187 Oedema presence (re-graded,

three expert consensus)

Prospective validation set Sep 2020–Feb 2021 Prospective O&P Two sets of labels available

for all data

Eyes in active treatment

(active)

100 100 100 Treatment decision (made in

clinic)

Eyes observed w/o

treatment (passive)

100 100 100 Treatment decision (re-

graded, three expert

consensus)

The above table gives an overview over the used data sets along with the following information: name of the data set; whether the data collection was

prospective or retrospective; the period from which the data was collected; the treatment regimen that was used at the time; number of patients, eyes

and OCT scans in each data set; how each scan was labelled. Please see the Materials section for description of the labelling procedures. Data used for

regimen compliance calculation is omitted for clarity.
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training and tuning sets in addition to
volume scans from the original study,
significantly increasing available data.

The modified data set included in
total 84 489 scans (4898 patients) in the
training set and 10 107 scans (612
patients) in the tuning set. The internal
validation set contained 10 411 scans
(612 patients); external validation sets
A and B contained 1446 scans (215
patients) and 187 scans (187 patients)
respectively.

Prospective expert-graded gold standard

data set

Informed consent was prospectively
collected from 230 patients during the
period from 01.09.2020 to 01.02.2021
at the Department of Ophthalmology,
Rigshospitalet, Copenhagen. From
these, a selection of 200 eyes was made:
100 eyes in active treatment, and 100
eyes not receiving active treatment –
either undergoing routine follow-up as
a contralateral treatment-naive eye or
as a previously treated eye that is not
showing signs of CNV activity. Eyes
that were not treated in compliance
with the department’s regimen as
defined below, were not eligible for
inclusion. A single follow-up examina-
tion within the prospective period was
selected. Historical data were recorded
for every examination up to and
including the selected visit, comprising
visual acuity, treatment decision (num-
ber of prescribed injections with inter-
val and anti-VEGF agent, or length of
observation if no intravitreal injections
were prescribed), treatments adminis-
tered, OCT and fundus images and
status of fellow eye (last treatment
decision, if any, and visual acuity).

Treatment regimen and compliance

The Department of Ophthalmology
follows a modified O&P regimen, orig-
inally described by Parvin et al. (2017).
Patients’ treatment is administered in
pre-defined intensities, adjusted
according to disease activity following
rules set out by a drug-specific flow-
chart (Fig. S1). However, a clinician
might, on a case-by-case basis, choose
to deviate from the pre-defined depart-
ment guidelines.

For the purposes of the current
study, compliance to treatment regime
at any given consultation was opera-
tionally defined by two criteria. First,

the clinician-prescribed treatment dur-
ing the last follow-up must follow the
O&P treatment guidelines as described
above. Second, the patient must have
received the exact number of injections
prescribed, at intervals that do not
deviate more than 25% from the pre-
scription.

For the purpose of evaluating com-
pliance with the O&P regimen in the
clinic, data on prescribed and adminis-
tered treatments between 01.09.2018
and 01.09.2019 were used, comprising
11 215 follow-up consultations.

Ethics approval

This studywas approved by the regional
Data Protection Agency (jr. nr. P-2019-
726) and the Danish Patient Safety
Authority (filing nr. 3–3013-3214/1).

Methods

The goal of the current study was to
construct and evaluate the safety of a
comprehensive autonomous system for
the treatment of AMD patients during
follow-up, built around AI-based dis-
ease activity detection.

The initial steps were a continuation
of our previously published efforts to
train a deep learning model to recog-
nize oedema on OCT scans (Potapenko
et al. 2021). We trained an improved
temporally aware model on the previ-
ously published retrospectively col-
lected data set, where labels were
derived from PRN compliant treat-
ment decisions. Validation was per-
formed on the same three validation
cohorts, including two smaller sets that
were manually re-graded by experts to
denote the presence of oedema.

Our department has since transi-
tioned to the O&P regimen. By using
deterministic logic to augment the AI
model, the output could be presented
as treatment decisions compliant with
the new regimen. We evaluated this
system in a prospectively collected data
set of patient cases from the retina
clinic to ascertain its safety in a sce-
nario closest possible to a real-world
clinical setting. Original treatment deci-
sions from the retina clinic and the AI-
suggested treatment decisions were
compared with the gold standard treat-
ment decision in each case, defined by
consensus between three retina experts.

An overview of the training and
validation set-up is summarized in

Fig. 1, with a more complete overview
of the data sets presented in Table 1.
The process is described in more detail
below.

AI-based system for follow-up of AMD

patients

The AI system for follow-up of AMD
patients was designed to make treat-
ment decisions by evaluating clinical
and imaging data from the current and
the previous examinations. The system
consists of two main components: (i) a
deep learning-based model designed to
detect CNV activity on OCT scans, and
(ii) a layer of deterministic logic that
defines how the output of this model
should impact the management and
treatment of the patient. Such func-
tional division is analogous to the
decision-making process in clinical
practice: initially, the presence of
CNV activity is established by assess-
ing clinical and imaging findings; then,
by applying clinical guidelines (i.e.
those outlined by a regimen), the clin-
ician determines further treatment.

AI-based temporal detection of disease

activity

A deep learning model was constructed
to detect CNV activity on OCT scans.
Two model architectures with different
inputs were tested: (i) a model that
analysed current and previous OCT
scans, and (ii) a model that analysed
current and previous OCT scans along
with the current fundus photograph. A
brief overview of the technical imple-
mentation can be found below.

Previously reported model architec-
ture (Potapenko et al. 2021) was used
as a basis, with the following alter-
ations: (a) all B-scans were used instead
of the central six, connected by a max-
sum-pooling layer, (b) a spatial drop-
out layer with rate of 0.2 was intro-
duced after each convolution layer, and
(c) input resolution of slices was
increased to 384 9 384 (Fig. S2A and
B). The model was trained using the
training and tuning data sets as defined
above. Training was otherwise con-
ducted as described in Potapenko
et al. (2021).

To implement a temporal deep
learning network, transfer learning
was used. After training the above
model, the final fully connected layer
was discarded, and the weights of all
remaining layers were frozen. Each of
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the two consecutive OCT scans was
processed by the pre-trained layers,
with the output of both combined
using a new trainable fully connected
layer (Fig. S2C). This temporal model
could then be trained using the training
and tuning data sets as before but now
with two consecutive OCT scans as

inputs. The training process was other-
wise identical to the single scan model
above.

To evaluate whether including the
fundus image from the current exami-
nation as an input could increase the
performance further, a second version
of the temporal deep learning network

was created. This was done by adding a
third model alongside the two OCT
scan models, feeding forward to the
final fully connected layer (Fig. S2D).
The added network was structurally
identical to the one described for a
single OCT scan and was fully train-
able. To compare performance, per-
centile bootstrap method was used to
get 95% confidence intervals for all
performance metrics.

Decision thresholds for the temporal
model both with and without fundus
image input were defined by inspecting
their reliability curves (Fig. S3). Con-
fidence thresholds were chosen for
negative (disease activity not present)
and positive (disease activity present)
classifications. If model output was
numerically between these, the predic-
tion was considered unreliable.

Deterministic logic

The deterministic logic layer integrates
the AI model’s prediction of disease
activity with clinical parameters to
either make an autonomous treatment
decision (output 9 below) or ask for a
second opinion from a human ophthal-
mologist (output 1 through 8). When
asking for a second opinion, the system
will attempt to suggest an action (output
2, 3 and 5 through 8) or give a reason for
being unable to make an autonomous
decision (output 1 and 4). All outputs
are designed to be easily understandable
by an ophthalmologist with no prior
experience with the system or knowl-
edge of its internal workings.

All possible outputs from the system
are listed below; the corresponding
logic diagram can be seen in an
abridged version in Fig. 2, and in full
in Fig. S4.

1 Inclusion criteria not met. Data are
missing, the treatment prescribed is
non-compliant with the regimen or
the patient has not been compliant
with the prescribed treatment, as per
rules defined above.

2 Intraocular pressure high. If mea-
sured above 25 mmHg, an ophthal-
mologist needs to be consulted for
applanation tonometry and further
evaluation.

3 Visual acuity is below treatment
threshold. If the best-corrected
visual activity (BCVA) is below 0.1
decimal, an ophthalmologist is
needed to assess whether treatment
should be terminated.

Fig. 1. Stages of development and data utilization. This figure provides an overview of how the

various sources of data were used during the training and validation processes. Data sets used for

training, tuning and validation are shown, each with the following information displayed: number

of cases, whether the data were retrospectively or prospectively collected, and labelling

information. For the latter, the source of the labelling and what the labels denote is given. The

source of the labelling is accompanied by either an equality sign (‘=’) when expert re-grading is

used, or a tilde (‘~’) if labels are derived indirectly from PRN treatment decisions (refer to the

Materials section for more information). The figure differentiates between the validation of the AI

component alone (red pictogram ‘AI’) and the validation of the entire system (i.e. the AI

component together with the deterministic logic represented by the red pictogram ‘Logic’).

Finally, the figure states which sources the current performance metrics were compared with. For

a more detailed description of the data sets, see Table 1.
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4 AI model is uncertain. If AI model
output does not fall within the con-
fidence thresholds defined above, a
second opinion from a human oph-
thalmologist is required.

5 New activity in an inactive CNV.
Provided that no disease activity was
present during the last follow-up, and
no injections were prescribed or given,
newly detected re-activation of aCNV
requires a human ophthalmologist to
set the initial treatment frequency.

6 Treatment-resistant oedema. Disease
activity is present despite the last
two prescriptions being the most
intensive on the treatment chart
without improvement in BCVA (less
than 0.2 decimal). Re-evaluation of
treatment strategy or revision of the
diagnosis might be required.

7 Potential concurrent eye disease. If
BCVA has decreased at least 0.2
decimal since the last visit, but no
CNV activity is detected, examina-
tion by an ophthalmologist is war-
ranted to rule out concurrent ocular
comorbidity.

8 Discharge to primary care ophthal-
mologist. The patient can be fol-
lowed in the primary sector if neither
eye has shown CNV activity or
received intravitreal injections dur-
ing the last 6 months.

9 Treatment suggestion. If none of the
above exceptions occur, the current
position in the O&P treatment dia-
gram is found and – based on the
AI-determined presence of CNV
activity – the appropriate treatment
option from the diagram is chosen.

Graders

Three graders (FU, TI and JN) with 20,
12 and 8 years of experience in treating
AMD patients, respectively, indepen-
dently evaluated the examinations in
the prospective cohort using a specially
designed grading tool (Fig. S5). For
each case, the graders could examine a
timeline of all previous examinations
including visual acuity, previous treat-
ment decisions (number of prescribed
injections with interval and anti-VEGF
agent, or length of observation if no
intravitreal injections were prescribed),
treatments given, OCT and fundus
images, and status of the fellow eye
(last treatment decision, if any, and
visual acuity). After reviewing this
information, each grader was asked to
make a treatment decision.

Consensus was defined as either a
majority decision where at least two of
the graders had submitted identical
decisions, or in cases where all three
decisions were different, a re-evaluation
of the case in a plenary meeting to
establish a decision accepted by at least
two of the three graders.

AI system performance evaluation

Three a priori defined primary end-
points for this study were (1) the
system’s safety, that is agreement of
AI treatment decisions with expert
consensus compared with agreement
between decisions made in the clinic
with expert consensus, (2) the system’s
operational potential, defined as the
proportion of regimen-compliant
follow-ups that can be evaluated with-
out human intervention and (3) poten-
tial for overall automation, defined as
the percentage of follow-ups where an
autonomous decision can be taken,
that is regimen compliance in the
department multiplied by operational
potential.

Regimen compliance

To evaluate to which degree regimen
guidelines are followed in clinical prac-
tice, compliance criteria previously
described in the Materials section were
applied to each treatment decision in
the retrospective data. If the prescribed
treatment both followed department
guidelines and was administered as
prescribed, the decision was classified
as compliant. If a clinician chose not to
follow O&P guidelines when making
treatment decision, non-compliance
was classified as prescription-related
(i.e. prescription did not adhere to the
regimen). If the prescription was made
in accordance with department guide-
lines but was not administered as
prescribed (i.e. timing or number of
injections given did not match the
prescribed), it was classified as
patient-related.

Decision safety classification

Decision safety classification was based
on whether the prescribed treatment
was identical with the expert consensus
in terms of frequency, number and type
of injections, or time to follow-up in
case no intravitreal injections were
required. If identical, the treatment
was considered safe; otherwise, it was
considered unsafe. Two special cases

were considered separately. If the gold
standard was to discharge the patient
to the primary care ophthalmologist,
but a decision was made to keep
follow-ups at the hospital, the decision
was classified as safe, as it does not
pose a risk to the patient. If the gold
standard was to observe chronic
oedema without treatment, but a deci-
sion was made to continue intravitreal
injections, the decision was classified as
unsafe, as it could potentially expose
the patient to unnecessary risk.

The AI system’s request for a second
opinion is safe by definition, as the final
decision is taken by a human ophthal-
mologist. The system will nonetheless
suggest further treatment in some of
these cases; these can be similarly
classified as potentially safe or poten-
tially unsafe based on the rules
described above.

Results

Regimen compliance

Regimen compliance in the retina clinic
was found to be 81.6%. Prescription-
related non-compliance was found in
9.4% of eyes, with the remaining 9.0%
being due to patient-related non-
compliance.

Expert grading

Unanimous agreement was found in
46% of cases, higher in the passively
observed eyes (56%) than in actively
treated eyes (36%, p = 0.007). No two
graders were markedly more in agree-
ment than the other (number of cases
with agreement between JF and TI, JF
and JN, TI and JN, were 56%, 58%
and 63.5% respectively). In 11.5%
(n = 23) of the cases agreement was
not present after individual grading,
and consensus was instead reached
during a plenary meeting. Of these,
disagreements were on following
topics: number and interval of injec-
tions (n = 8), presence of chronic
oedema (n = 6), time to follow-up
appointment (n = 6), whether the
patient should be discharged (n = 2)
and whether a differential diagnosis
should be considered (n = 1). Graders
chose to deviate from the clinic’s treat-
ment regimen guidelines in 2.5% of
cases (n = 5), mostly on suspicion
of chronic or treatment-refractory
oedema (n = 3).
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Performance evaluation of the temporal

AI model

Both new models with and without
fundus photographs showed several
percentage points higher AUC than
the previously published model (0.900
(95% CI 0.894–0.906) for both new
models versus 0.857 (95% CI 0.846–
0.867) for the old model in the internal
validation data set), with the same
order of improvement in sensitivity
(0.836 (95% CI 0.827–0.845) and
0.837 (95% CI 0.828–0.846) versus
0.762 (95% CI 0.746–0.778) respec-
tively; detailed performance statistics
can be found in Table S1). Trends
towards improved performance could
be seen for some metrics (sensitivity
and accuracy) in the external validation
sets, but 95% confidence intervals
overlapped. The new temporal model
that incorporated fundus images failed
to improve performance over the
model without the fundus photographs
but increased architectural complexity.
It was therefore decided to exclude it
from further analyses.

Performance evaluation of the

comprehensive AI-based system for

follow-up of AMD patients

When validating against expert consen-
sus, the comprehensive AI system made
safe autonomous decisions in 67%

(n = 134) and unsafe decisions in 6%
(n = 12) of eyes, while asking for
second opinion in 27% (n = 54) of
cases (Table 2). Upon inspection,
unsafe decisions were due to presump-
tion of CNV activity where experts did
not find any (i.e. false positives;
n = 8), regular treatment where
experts decided on different treatment
due to chronicity (n = 2), lack of
detected activity where experts found
de-novo CNV activity (i.e. false nega-
tives; n = 1), and regular treatment
where experts wanted further imaging
to rule out differential diagnosis
(n = 1). A second opinion was mainly
requested due to the AI model not
reaching confidence level required for
an autonomous decision (46.3%,
n = 25). For the remainder of the
second opinion requests (n = 29),
treatment suggestions supplied by the
AI-based system were correct in 79.3%
(n = 23) of the cases.

The AI decisions were compared
with the decisions made in the retina
clinic in terms of their conformity with
the expert consensus. Cases where the
AI model gave prediction above confi-
dence threshold (autonomous or non-
autonomous) were considered
(n = 176). The AI system made the
same decisions as the expert consensus
(i.e. safe decisions) in 89.2% (n = 157)
of the cases, while the retina clinic

agreement rate with expert consensus
was 85.8% (n = 151; p = 0.42). If
only cases where the AI system took an
autonomous decision were considered
(n = 146), 91.8% (n = 134) were in
agreement with the expert consensus,
while in the retina clinic, 87.7%
(n = 128) of the decisions agreed with
the consensus (p = 0.33).

Interestingly, when only considering
the cases that needed to be discussed at
the consensus meeting (n = 23),
almost all decisions the AI-based sys-
tem made were second opinions
(n = 21; 20 of which were safe sugges-
tions), one autonomous decision was
safe, and one was unsafe. In compar-
ison, the retina clinic decisions were
split approximately in half by safe and
unsafe decisions (n = 12 and n = 11
respectively).

If the AI-based system could theo-
retically be tested on all AMD patients
followed at the department, the above
results need to be corrected for the fact
that 18.4% of the patients are non-
compliant with the regimen and are
thus by design excluded from consid-
eration by the algorithm. In absolute
terms, the results would then translate
into 22.0% of patients being sent to a
second opinion by a human ophthal-
mologist, 54.7% being given a correct
treatment and 4.9% being treated
incorrectly.

Fig. 2. AI system component overview. This figure provides an overview of the input and output of the AI-based system, along with a simplified

schematic of the internal components (the AI model and the deterministic logic). On the left, inputs are shown: clinical data from the current and

previous visit, along with treatment history of the prior 6 months, are directly processed by the deterministic logic component; OCT scans from the

previous and current visit are input first into the AI model (along with the fundus photograph for the model that supports it), and then the activity

score is passed into the deterministic logic component. After processing, the deterministic logic will output either an autonomous treatment decision

(number of injections with a given interval or follow without treatment) or a request for second opinion (elaborated by a reason or a suggestion for

further actions; list of possibilities shown on the right in yellow). For a more comprehensive overview of the deterministic logic component, see

Fig. S1. T – treatment, IOP – intraocular pressure, BCVA – best-corrected visual acuity, OCT – optic coherence tomography scan.

932

Acta Ophthalmologica 2022



Discussion

The continued rise in the number of
AMD patients expected during the
coming decade (Potapenko & la Cour
2021) will pose a challenge to public
ophthalmology services. Increased staff-
ing is unlikely to be a viable solution on
its own, prompting the need for novel
approaches. In this study, we propose
the first ever comprehensive system for
autonomous follow-up of AMD
patients that might fulfil this role.

The system’s most basic component
is its temporal AI model that detects
disease activity on OCT images. To
train such AI classifier requires data
labelled with the presence of oedema,
but with a data set of over 100 000 OCT
scans, manual labelling is impractical.

Labels that are easiest accessible can be
derived from treatment decisions.
These, however, are heavily influenced
by the treatment regimen used during
the time the data were collected, and are
not necessarily applicable in a setting of
a different regimen. We have previously
shown that a well-performing AI model
for the detection of oedema can be
trained on proxy labels derived from
PRN treatment decisions (Potapenko
et al. 2021). In the current study, this
model was further improved by includ-
ing information from the previous
examination, analogously to what a
clinician might do during patient eval-
uation. A layer of deterministic logic
was added so that the output of the AI
model (i.e. whether CNV activity is
present) could be translated into a
treatment decision compatible with the
O&P regimen currently in use at our
department. Information about visual
acuity, important in determining if fur-
ther treatment is futile, was also incor-
porated in the logic layer.

To gauge the performance of the
combined system of AI and determin-
istic logic, a clinically oriented valida-
tion was performed. We prospectively
collected a data set of 200 real-world
AMD follow-ups, including the treat-
ment decision made by clinicians at our
department. Each case was then re-
evaluated by three experienced retina
specialists who had access to full clin-
ical details and imaging history. Agree-
ment between the AI system’s decisions
and the expert consensus was com-
pared with the original treatment deci-
sions taken in the retina clinic,
providing information about the sys-
tem’s safety. Finally, we attempted to
determine the potential proportion of
AMD patients that could be autono-
mously followed by the proposed AI
system.

Temporally aware AI system architecture

The changes in the previously pub-
lished AI model architecture (Pota-
penko et al. 2021), resulted in a
substantial performance improvement.
The noticeable false-negative rate of
the previous model, hypothesized to be
related to undetected small quantities
of oedema, has been reduced and is
only 0.5% in the prospective data set.
This presumably relates to the new
model’s higher input resolution and the
addition of the temporal dimension.

The former is supported by similar
results for classification tasks in radi-
ology, where a larger input size can
improve performance (Sabottke &
Spieler 2020). The temporal approach
is novel and has never been attempted
for detection of neovascular AMD
activity before. Some research has,
however, suggested that recurrent neu-
ral networks – that by design operate
on temporal data – might be of value,
especially in progression analysis (Jiang
et al. 2018) but also disease detection
(Gheisari et al. 2021).

Performance evaluation showed sig-
nificant improvement in the data set
with labels derived from clinical deci-
sions, a process where temporal data is
actively used by the clinician. Improve-
ment was much less evident in the data
sets relabelled according to the pres-
ence of oedema based on isolated scans
only. This could relate to the current
model incorporating additional infor-
mation not contained within a single
scan, although the far smaller size of
the external validation sets undoubt-
edly plays a role.

The addition of fundus images had
little effect on the model’s performance.
Part of the explanation might be that
almost 90% of haemorrhages visible on
a dilated fundus examination result in
structural changes on OCT, and those
that do not, might not require treat-
ment (Patel et al. 2020). Moreover, the
current false negative rate is already
low, presumably further limiting the
usefulness of fundus photography as a
training input; a fundus examination is
more useful in detecting CNV activity
than ruling it out.

Labelling incongruence

Label incongruency has been covered
in some length in our previous work
(Potapenko et al. 2021). In brief, a
PRN treatment decision to treat or not
to treat usually encapsulates evaluation
of more than just oedema. Other con-
siderations may also play a role,
including haemorrhage on fundus pho-
tography, chronicity, patient prefer-
ences, compliance to prescribed
treatment and a clinician’s decision
not to follow guidelines. Thus, it is
not immediately clear that these labels
are suited as surrogates for an oedema-
based classification of OCT images.
Nonetheless, we demonstrate an AI
model for oedema detection that

Table 2. Safety classification of decisions in

the prospective validation data set made by the

AI system and the clinical staff at the retina

clinic.

n %

(A)

Autonomous decisions 146 73.0

Safe decision 134 67.0

Unsafe decision 12 6.0

Second opinion 54 27.0

Safe suggestion 23 11.5

Unsafe suggestion 6 3.0

AI pred. below confidence

threshold

25 12.5

Total 200

(B)

Safe decision 151 75.50

Unsafe decision 49 24.50

Total 200

AI

Retina

clinic

n % n %

(C)

Safe decision 134 91.8 128 87.7

Unsafe decision 12 8.2 18 12.3

Total 146 146

Briefly, if the decision was identical with expert

consensus decision, it was considered safe,

otherwise it was considered unsafe. See the

Methods section for more detailed description.

(A) Safety classification of treatment decisions

made by the AI system for the entire prospec-

tive data set (n = 200); (B) Safety classifica-

tion of treatment decisions made in the retina

clinic for the entire prospective data set

(n = 200); (C) Safety profile comparison

between treatment decisions made in the retina

clinic and by the AI system among the cases

where the AI system made an autonomous

decision only (n = 146).
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performs well despite being trained on
data with labels based on PRN treat-
ment decisions.

Temporality introduces additional
input heterogeneity (Fig. S6). Treat-
ment status between the previous and
the current OCT is not included in the
classifier. Time between examinations,
number of injections, injection inter-
vals and anti-VEGF agent used can
thus not be taken into account by the
AI model. Further complexity is intro-
duced by a number of other factors, for
example individual sensitivity to treat-
ment and quantitative changes in
oedema over time. It is therefore not
obvious that including the temporal
dimension would be advantageous. As
the performance nonetheless increased,
some structural elements independent
of the aforementioned factors must be
present on the previous OCT scans that
aid in oedema detection.

Additional label complexity is pre-
sent in the O&P data, since treatment
during de-intensification can be given
even if no oedema is observed (Fig. S2),
while this cannot occur during PRN-
compliant treatment (Fig. S6). The dif-
ference, however, appears not to have
influencedoedemadetection accuracy in
the prospective validation cohort. Con-
versely, this shows that PRN-derived
labels are more suitable for training
oedema detection than O&P labels, as
they, although not equivalent to
oedema, minimize input complexity.

Gold standard gradings

There are few studies that compare
independent expert grading in a similar
setting. We have previously reported
agreement between three experts on the
presence of oedema on OCT scans to
be 76.4% (Potapenko et al. 2021). This
is comparable to previously reported
findings, although, depending on which
features were assessed, inter-rater
agreement can vary widely (Chandra
et al. 2021, M€uller et al. 2021). A
clinical management decision for AMD
patients, despite being largely based on
the presence of oedema, is more
nuanced, and a lower consensus would
be expected. Even having taken this
added complexity into consideration,
unanimous agreement in less than half
of the cases must be considered low. A
significantly higher agreement was seen
in the eyes not being actively treated,
which is to be expected as complexity is

presumably less in these mostly dry
retinas. The consensus meeting showed
that the most common diverging opin-
ions were on what should be consid-
ered activity and chronic fluid. This is
unsurprising, as the topic of refractory
oedema is known to be complex, with
some advocating not to treat residual
subretinal fluid in certain cases (Bhav-
sar & Freund 2014, Jang et al. 2015).

Operational potential and regimen

compliance

Differing clinical opinions also manifest
in non-compliance with regimen guide-
lines. We found significant non-
adherence to prescription guidelines in
the retina clinic (9%), which was almost
fourfoldhigher than the experts’ (2.5%).
Discrepancies are perhaps even more
pronounced at different hospital depart-
ments: Age-adjusted rates of anti-
VEGF injections among AMD patients
varies greatly between the Danish
Regions, from 3% in Northern Jutland
to 6% in the Capital and Southern
Regions (Vittrup 2019). These substan-
tial differences, though doubtlessly
affected by a number of factors, raise
the possibility of patients receiving dis-
parate levels of care in different regions.
An advantage of a common autono-
mous follow-up system is that it always
provides regimen-compliant treatment
suggestions. This might help deliver
equal quality of care to all patients
independent of clinical environment
and geographical location.

As a best-case scenario, the automa-
tion potential reported in this study
would imply an almost two-thirds
reduction in the number of eyes seen
by ophthalmologists for AMD follow-
up at the retina clinic. A further
improvement in operational potential
can occur if implementation of the
system reduces non-compliance, conse-
quently increasing the number of
patients that can be controlled autono-
mously over time. The system’s flexibil-
ity allows patients to be freely moved in
and out of automatic follow-up, even
after a period of non-compliance, pro-
vided the last consultation and treat-
ment have both been compliant in terms
of prescription and execution. This
means that all patients are eligible to
be followed up autonomously at least
for a proportion of the follow-ups they
attend, provided they are not consis-
tently treated non-compliantly.

Safety and future potential of AI-based

system for AMD patient follow-up

We report for the first time on safety of
a novel AI-based system for manage-
ment of AMD patients, validated in a
prospective cohort of clinical cases.
Few real-world clinical implementa-
tions of AI systems have been adopted
to date, and only two systems have
received approval by the United States
Food and Drug Administration
(Abr�amoff et al. 2018, Ipp et al.
2021). Both the rationale behind the
clinically oriented system design and
validation procedure reported in the
current study are intended to shorten
the path to clinical implementation.

Conformity of autonomous deci-
sions to expert consensus was on par
with a large retina clinic. Two key
design aspects contributed to the sys-
tem’s safety: relegating the responsibil-
ity of making the primary diagnosis to
human ophthalmologists, and allowing
for second opinion requests. The for-
mer significantly reduces (although
does not entirely eliminate) the risk of
missing comorbidities and rare ocular
conditions, which would otherwise
pose a challenge for an AI system due
to limited training data (Ting et al.
2019). Consequently, the system can be
considered as a modality for treatment
titration after the indication has been
established – not as an autonomous
diagnosis and treatment modality,
potentially easing the legal approval
process.

The second opinion requests were
implemented to ensure the safety of
autonomous decisions by avoiding
complex cases and major treatment
changes. The validation appears to
support that this worked as intended;
in eyes where a consensus meeting was
needed to achieve agreement between
the experts (i.e. presumably the most
complex cases), the AI system almost
exclusively asked for second opinions.
Both among these cases, and second
opinion requests in general, almost half
received a suggestion for treatment that
matched the expert consensus.

The proposed modular design with a
separate disease activity detecting AI
model and a guideline directed non-AI
component makes the system adapt-
able to a variety of settings and depart-
ments. Treatment regimens, such as
PRN or other variants of treat-and-
extend, can be implemented by altering
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the deterministic logic without the time
and data required for re-training of the
AI model. System parameters, such as
the inclusion criteria and confidence
thresholds, can be easily adjusted ad
hoc after system deployment. This gives
granular control over how many
patients are managed by the system
and the number of second opinion
requests to human staff.

A large amount of research has been
dedicated to improving AI’s explain-
ability. Our group, among others, has
shown that methods such as class
activation map (CAM) can be used to
extract meaningful clinical information
about parts of OCT scans critical to AI
decisions, although this approach is
not without significant limitations
(Potapenko et al. 2021). Contrary to
this, deterministic logic used in our
system is more transparent and easily
understandable: It consists of a series
of explicitly defined conditions and
outcomes that can be understood and
followed intuitively (Fig. 2) without the
need for a complex interpretation
mechanism.

A future implementation of this
system in coordination with ophthal-
mology care providers in the primary
sector seems to have several advan-
tages. At the hospital level, this could
mean a significant reduction in the
number of follow-ups performed by
ophthalmologists. Human resources
can thus be re-allocated to other tasks,
for example reducing delays in the
initial AMD diagnosis and treatment,
which is known to be of major signif-
icance for patient outcomes (Ho et al.
2017). Alternatively, patients can be
followed locally using the system
deployed by a primary care provider,
only visiting the hospital for injections.
This would allow for shorter patient
travels, which is both beneficial for the
many elderly with limited mobility and
significant comorbidities and reduces
the environmental footprint. Finally, a
low rate of false negatives indicates
that the system is well suited for long-
term screening of patients with quies-
cent CNVs outside of the hospital
environment.

Limitations

This study demonstrates usability of
the AI-based system on real-world
patient cases, closely resembling
follow-up consultations in a retina

clinic. However, the current study is
still done in silico, with the logical next
step being an evaluation of a live
implementation alongside the clinicians
and validation at other institutions.
This might provide further perfor-
mance metrics and more granular
information on whether any critical
information is lost by omitting physical
examination and direct communication
with the patient. Importantly, it may
elucidate the system’s acceptance
among clinicians and patients. This
aspect has been explored in the litera-
ture before (Prahl & Enright 2017), but
few studies have tested it in clinical
practice. Lacking support from person-
nel or rejection by the patients might be
a major barrier to the system’s imple-
mentation.

The structure of the current study
did not allow estimation of how many
patients cannot be followed automati-
cally due to fellow eye needing either a
second opinion or not fulfilling the
inclusion criteria. This may possibly
have an impact on real-world automa-
tion potential.

The architecture of the AI model
could potentially be further enhanced.
Quantification of oedema may be help-
ful in a proportion of the decisions
made, for example in terms of response
to treatment and chronicity (Schmidt-
Erfurth et al. 2020, Schmidt-Erfurth
et al. 2021) – although this would
arguably significantly increase the com-
plexity of both the AI model and the
deterministic logic. Inclusion of treat-
ment administered between the current
and the previous OCT scans would
likely improve performance, but not
enough data could be gathered from the
period when the department used the
O&P regimen. Training on data from
the PRN regimen period is not possible
due to differing implication of treatment
status as previously described: treat-
ment is administered only due to signs
of CNV activity in PRN regimen, while
dry retinas can also be treated according
to the O&P regimen.

Finally, it is possible, that some
regimens require other parameters that
might not be as easy to encode deter-
ministically using the current algorithm
structure (for example concepts like
‘irreversible foveal damage’), and addi-
tional changes would be required. In
any case, a re-coded deterministic logic
component will require additional
validation.

Conclusions

This is the first study to demonstrate the
feasibility and safety of a comprehensive
temporally aware AI-based system for
follow-up of AMD patients. By com-
paring its performance to a unique
expert consensus data set containing
200 real-world cases, we were able to
demonstrate performance on par with
the decisions made in the retina clinic,
with especially low rates of false-positive
classification of CNV activity. Over half
of the eyes withAMDcould be followed
autonomously without additional risk
to the patient. The current results are
encouraging; however, a live implemen-
tation is needed to establish real-life
performance. Even if not deployed to its
full potential, the proposed algorithm
could greatly ease the pressure on the
public ophthalmology departments
from an increasing number of AMD
patients and be a part of an efficient
system for follow-up and treatment in
concert with the primary sector services.
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Supporting Information

Additional Supporting Information
may be found in the online version of
this article:

Figure S1 Schematic representation of
the observe-and-plan regimen-based
guidelines for (a) aflibricept and (b)
ranibizumab.

Figure S2 Deep learning model archi-
tecture, represented at different stages
of training.

Figure S3 Reliability curves.

Figure S4 Schematic representation of
the deterministic logic that defines
behaviour of the AI system.

Figure S5 Graphical user interface of
the validation tool used by the experts
to evaluate the prospective cohort of
200 cases.

Figure S6 An overview of possible
combinations of input data and output
labels.

Table S1 Performance metrics of the
original model as reported in Pota-
penko et al. 2021, compared to the two
new temporal model variants with and
without inclusion of fundus image
input.
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