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Abstract

Understanding the spatio-temporal patterns of emergence and circulation of new human seasonal 

influenza virus variants is a key scientific and public health challenge. The global circulation 

patterns of influenza A/H3N2 viruses are well-characterized1-7 but the patterns of A/H1N1 and B 

viruses have remained largely unexplored. Here, based on analyses of 9,604 hemagglutinin 

sequences of human seasonal influenza viruses from 2000–2012, we show that the global 

circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ 

substantially from those of A/H3N2 viruses. While genetic variants of A/H3N2 viruses did not 

persist locally between epidemics and were reseeded from East and Southeast (E-SE) Asia, 

genetic variants of A/H1N1 and B viruses persisted across multiple seasons and exhibited complex 

global dynamics with E-SE Asia playing a limited role in disseminating new variants. The less 

frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of 

antigenic evolution, lower ages of infection, and smaller less frequent epidemics compared to A/

H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with 

the less frequent travel of children, as likely drivers of the differences in the patterns of global 

circulation, suggesting a complex interaction between virus evolution, epidemiology and human 

behavior.

Owing to the frequency and severity of human seasonal influenza A H3N2 virus epidemics, 

recent work has focused on the global circulation dynamics of H3N2 viruses1-7. Studies 

have shown that, each year, H3N2 epidemics worldwide result from the introduction of new 

genetic variants from East and Southeast (E-SE) Asia, where viruses circulate via a network 

of temporally overlapping epidemics1,2,4,5, rather than local persistence1,3,6,7. In addition to 

H3N2, H1N1 viruses and two antigenically diverged lineages of influenza B viruses, B/

Victoria/2/1987-like (Vic) and B/Yamagata/16/1988-like (Yam), circulate among humans 

with lower but substantial disease burdens8,9. Despite their importance, the global 

circulation dynamics of former seasonal H1N1 viruses (preceeding the 2009 pandemic) and 

B viruses have been largely neglected.

Given that influenza A and B viruses cause similar symptoms and evolve by similar 

mechanisms of immune escape, we hypothesized that each would follow similar patterns of 

global circulation, with new genetic variants originating in E-SE Asia that rapidly replace 

existing genetic variants. To test this hypothesis we compared the global circulation patterns 

of the hemagglutinin (HA) genes of H3N2, former seasonal H1N1, Vic, and Yam viruses. 

We assembled datasets of HA sequences with complete HA1 domains for each subtype from 

the World Health Organization Global Influenza Surveillance and Response System and the 

Influenza Research Database10 covering 2000–2012. To reduce the impact of surveillance 
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biases, we subsampled these data to more equitable spatiotemporal distributions, resulting in 

datasets comprising 4006 H3N2, 2144 H1N1, 1999 Vic, and 1455 Yam HA sequences 

(Extended Data Fig. 1). Though deficient in viruses from Africa and Eastern Europe, these 

are the most geographically and temporally comprehensive seasonal influenza virus datasets 

assembled to date.

By estimating temporally-resolved phylogenetic trees for each subtype, we revealed faster 

rates of nucleotide mutation and amino acid substitution in H3N2 and H1N1 than in the B 

viruses (consistent with previous work11,12), but more genealogical diversity in B viruses 

than A viruses (Extended Data Table 1). This inverse relationship between evolutionary rate 

and genealogical diversity is expected if increased mutation rate correlates with antigenic 

drift13 and drives increased adaptive evolution, thus purging HA genetic diversity14. By 

inferring geographic ancestry using Bayesian phylogeographic methods15, we found a 

consistent pattern for H3N2 viruses (Fig. 1a) in which viruses worldwide rapidly coalesce to 

the trunk of the tree (average time to trunk = 1.42 years), with trunk viruses mostly 

originating from E-SE Asia (Extended Data Fig. 2a). This finding is consistent with 

previously reported patterns1,2,4,5, with E-SE Asia acting as the source population for 

epidemics worldwide.

In addition to China and Southeast Asia, India frequently contributed viruses to the trunk of 

the tree suggesting that the global circulation of H3N2 viruses is maintained by an E-SE 

Asian network that includes India. India’s role in the global dissemination of H3N2 viruses 

may have been similar historically, but India-wide influenza surveillance only began in 

2004. There were brief periods, notably the 2007–2008 Northern Hemisphere winter, when 

regions outside E-SE Asia contributed to the trunk of the H3N2 tree. However, these 

instances were rare and trunk viruses from outside E-SE Asia descended directly from 

viruses within E-SE Asia (Fig. 1a). Quantifying the average ancestry of strains from each 

geographic region in the 3 years prior to sampling showed prominent roles for China, India, 

and Southeast Asia in seeding epidemics in all regions (Extended Data Fig. 3).

Surprisingly, the global circulation patterns of former seasonal H1N1 viruses differed 

substantially from those observed for H3N2 viruses (Fig. 1). Like H3N2, most lineages of 

H1N1 viruses eventually coalesced with viruses from E-SE Asia and India. However, this 

coalescence was slower than for H3N2 viruses with prolonged co-circulation of 

geographically segregated H1N1 lineages (Fig. 1b, Extended Data Figs. 3 and 4). 

Geographic segregation of H1N1 viruses was particularly pronounced beginning in 

2004/2005, with the emergence of three co-circulating genetic lineages (Fig. 1b, nodes 1-3) 

that each independently acquired HA mutations leading to antigenic evolution from the 

A/New Caledonia/20/1999-like phenotype to the A/Solomon Islands/3/2006-like phenotype. 

These lineages circulated in Southeast Asia (node 1), China (node 2) and India (node 3), 

with the Indian lineage eventually spreading worldwide prior to the emergence of 

H1N1pdm09 viruses.

Phylogeographic analyses of B Vic and Yam viruses revealed further differences from 

H3N2 viruses with lineages frequently circulating outside of E-SE Asia for several years 

without evidence of seeding from E-SE Asia (Fig. 1c,d). Prominent examples include the 
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seeding of the North American 2006/2007 Vic season directly from 2005/2006 North 

American viruses and the seeding of the North American 2001/2002 Yam season directly 

from 2000/2001 North American viruses (Extended Data Fig. 4). Similarly, lineages of 

viruses within E-SE Asia commonly circulated exclusively in E-SE Asia for more than 1 

year. These long circulating E-SE Asian lineages were most apparent for Vic viruses where 

two lineages (Fig. 1c, nodes 1 and 2) persisted independently in China and SE Asia for over 

5 years without spreading to other regions and led to the co-circulation of three distinct Vic 

antigenic variants in different parts of the world during 2007/2008 (Extended Data Fig. 5a).

Patterns of persistence of genetic variants differed by subtype and region, with H3N2 

viruses persisting regionally for an average of ~6 months, H1N1 for ~9 months, Vic for ~13 

months and Yam for ~12 months. H3N2 viruses showed comparably short durations of 

persistence across the world (Fig. 1), with the exceptions of India and China. Patterns within 

China were characterized by North and South lineages contributing jointly to persistence as 

combining North and South phylogeny nodes resulted in substantially greater persistence 

estimates than from North or South lineages alone (Fig. 1). For H3N2, evidence for joint 

contributions to persistence by region pairs that exclude China is comparatively weak 

(Extended Data Fig. 6a, Supplementary Information). For Vic and Yam, the mean duration 

of persistence was longer than for H3N2 or H1N1 in most regions, particularly in India and 

China where mean durations were >2 years (Fig. 1, Extended Data Fig. 4). Duration of 

regional persistence correlated with the proportion of virus originating from that region 

(Extended Data Fig. 6b) and observed phylogeographic patterns were robust to subsampling 

assumptions (Supplementary Information, Extended Data Table 2).

To investigate differences in the global migration patterns of H3N2, H1N1 and B viruses, 

we used the spatiotemporally-resolved phylogenies to estimate the amounts of virus 

movement between regions (Fig. 2). Rates of movement between pairs of regions were 

highly correlated between viruses with Spearman correlation coefficients ranging from 0.65 

(H3N2 vs Yam) to 0.75 (H3N2 vs H1N1), suggesting similar global connectivity networks 

for all viruses. However, while the overall structure of the migration network was similar, 

H3N2 viruses moved between regions more frequently than H1N1 and B viruses (migration 

events per lineage per year H3N2 = 1.96, H1N1 = 1.27, Vic = 0.93, Yam = 0.97, Extended 

Data Table 1).

We hypothesized a relationship between rates of global movement and rates of antigenic 

drift: though rates of genetic evolution were similar for H3N2 and H1N1 viruses, both H1N1 

and B viruses evolved antigenically more slowly than H3N2 viruses13 (Extended Data Table 

1). We also hypothesized that lower rates of immune escape for B and H1N1 compared with 

H3N2 would lead to: younger average ages of infection as children increasingly comprise 

the largest pool of susceptible individuals; and smaller, less frequent epidemics owing to 

smaller populations of susceptible individuals13. These differences are consistent with 

results from several community-based cohort studies that found that children were more 

frequently infected with B viruses than were adults8,16,17. Age of infection data covering 

2002–2011 from Australia show that H1N1 and B viruses infect younger individuals than 

H3N2 viruses (Extended Data Fig. 5b-d, median age of infection H3N2 = 30y, H1N1 = 20y, 
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B = 16y) and epidemiological data from Australia and the United States show reduced size 

and frequency of H1N1 and B epidemics compared to H3N2 (Extended Data Fig. 5f-i).

Differences in age of infection may explain differences in global circulation as children 

travel long distances much less frequently than adults (Extended Data Fig. 5e). A previous 

study hypothesized that age-specific patterns of infection could lead to differences in contact 

rates and the spread of influenza types within the United States over the course of a single 

season18. Here, we hypothesized that differential global air travel provides a plausible 

mechanism by which H1N1 and B viruses show increased genetic differentiation and 

reduced rates of global migration across multiple seasons, compared to H3N2 viruses.

To test the impact of differences in age distribution of infection on global patterns of virus 

movement, we constructed a multi-patch transmission model. We modeled two scenarios for 

host movement: 1. age-independent mixing between patches; 2. age-stratified mixing with 

host movement derived from air travel passenger age data (Extended Data Fig. 5e). In the 

age-independent scenario, model parameters only differed in rate of antigenic mutation, 

leading to differences in observed rates of antigenic drift among viruses and hence epidemic 

size and frequency (Extended Data Fig. 7). Faster antigenic drift resulted in greater 

incidence and more adult infections (Fig. 3a,b), but only modest differences in virus lineage 

movement (Fig. 3c, B-like viruses differ from H3-like viruses by a factor of 1.2), consistent 

with slightly faster spread of antigenically novel strains. However, age-stratified mixing 

between patches intensified the effect of antigenic drift on migration rate and created 

differences in rates of movement between patches more consistent with those observed for 

H3N2 vs H1N1 and B (Fig. 3c, B-like viruses differ from H3-like by a factor of 1.6). In the 

scenario with faster antigenic drift, infections were more mobile due to greater frequency of 

adult infection, causing a knock-on effect on rates of viral movement. The model also 

suggests that the differences in patterns of regional persistence observed in the phylogenies 

might be shaped by a combination of differences in rates of antigenic evolution and 

variation in amplitude of epidemic seasonality, with slowly evolving viruses persisting 

longer than rapidly evolving viruses at low amplitudes of seasonal forcing (Extended Data 

Fig. 8a, Supplementary Information).

In the model, varying transmission rate rather than antigenic mutation rate also resulted in 

differences in the observed rate of antigenic drift, with higher transmission resulting in faster 

drift (Extended Data Fig. 8b). The relationship between antigenic drift rate and migration 

rate is similar regardless of whether drift is modulated by mutation rate or transmission rate 

(Extended Data Fig. 8b). This finding is in line with theoretical work showing that 

epidemiological processes can influence influenza virus evolution19,20. However, there are 

important virological differences between influenza viruses that are likely to impact the 

efficiency and tempo at which antigenic variation is generated and fixed, which could in turn 

affect epidemiology21-24 (Supplementary Information).

Regardless of the underlying drivers, there is a remarkable correspondence in model 

behavior, quantified as a stable relationship between observable rate of antigenic drift and 

global circulation patterns. The patterns of epidemic spread observed here suggest that 
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differences in ages of infection could explain patterns of global circulation across a variety 

of human viruses.

Methods

Sequence data

Hemagglutinin (HA) coding sequences for influenza A H3N2 viruses, former seasonal 

H1N1 viruses (preceding the 2009 pandemic), and influenza B virus lineages Victoria (Vic) 

and Yamagata (Yam) collected by the World Health Organization (WHO) Global Influenza 

Surveillance and Response Network including the National Institute of Virology, Pune, 

India between 2000 and 2012 were combined with human seasonal influenza virus 

sequences (minimum length = 984 base pairs) covering 2000 to 2012 from the Influenza 

Research Database10. After removing duplicate strains and strains overly divergent based on 

root-to-tip distances, the data set contained 9139 H3N2 sequences, 3789 H1N1 sequences, 

2577 Vic sequences and 1821 Yam sequences. Sampling locations for these sequences were 

parsed from strain names. Sequences were grouped into 9 geographic regions: USA/Canada, 

South America, Europe, India, North China, South China, Japan/Korea, Southeast Asia and 

Oceania. Specifics of this partitioning are shown in Extended Data Figure 1. Groups were 

chosen to maximize available sequences within each region while still providing enough 

geographic diversity to ensure nearly global coverage. Sequences from Africa, Central 

America, the Middle East and Russia were excluded because of a lack of sufficient numbers 

of sequences to provide comparable estimates to other regions.

In the raw sequence data, some regions, such as the USA, were over-represented. 

Additionally, more recent years were over-represented compared to years at the start of the 

study period. In order to control for these sampling biases, we subsampled the raw data 

randomly by location and time to create a more equitable spatiotemporal distribution. The 

USA had consistently more sequences available every year from 2000 to 2012, thus in order 

to maintain similar total numbers of sequences for each region across the entire study period 

it was necessary to sample fewer sequences per year from the USA. We selected 50 

sequences per region per year (40 for USA/Canada) for H3N2 and 80 sequences per region 

per year (45 for USA/Canada) for H1N1, Vic and Yam. This subsampling resulted in largely 

similar sequence counts across years and across regions for each virus, but overall more 

H3N2 sequences than H1N1 or B sequences, with 4006 H3N2 sequences, 2144 H1N1 

sequences, 1999 Vic sequences and 1455 Yam sequences (Extended Data Fig. 1). When 

selecting subsampled sequences we first selected sequences with full day-month-year 

collection dates and then longer sequences over sequences with less precise dates or shorter 

sequences. HA sequence data for 1630 H3N2 isolates, 1600 H1N1 isolates, 1394 Vic 

isolates and 881 Yam isolates have been deposited in the Influenza Research Database10 and 

accession numbers for all sequences used provided as Supplementary Information.

Phylogeographic inference

Time-resolved phylogenetic trees were estimated for H3N2, H1N1, Vic and Yam using 

BEAST v1.8.125 and incorporated the SRD06 nucleotide substitution model26, a coalescent 

demographic model with constant effective population size and a strict molecular clock 
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across branches. A strict molecular clock was chosen based on finding strong correlations 

between date of sampling and evolutionary distance in all datasets, as estimated by Path-O-

Gen v1.427. Using a strict clock also reduced the risk of model over-parameterization (for 

example, for the complete H3N2 data set with a relaxed clock, there would be 2 × 4006 – 2 

= 8010 branch-specific rates). Samples with imprecise dates (known only to the month or to 

the year) had their dates of sampling estimated assuming a uniform prior within the known 

temporal bounds28. Markov Chain Monte Carlo (MCMC) was run for 600 million steps and 

trees were sampled every 5 million steps after allowing a burn-in of 100 million steps, 

yielding a total sample of 100 trees for H1N1, Vic and Yam. With significantly more 

samples, H3N2 required a longer chain to converge. Here, MCMC was run in parallel for 2 

chains, each with 650 million steps sampled every 3 million steps with a burn-in of 500 

million steps and samples across chains combined, yielding a total of 100 sampled trees. 

These trees were treated as independent draws from the posterior space of trees when 

subsequently used in the robust counting and phylogeographic analyses29. Evolutionary 

rates in Extended Data Table 1 were estimated using the ‘renaissance’ counting methods of 

Lemey et al.30.

Phylogeographic patterns were estimated using a discrete-state continuous time Markov 

chain (CTMC) model, in which transition rates were estimated between each pair of 

regions15. We assumed a non-reversible transition model31 consisting of 72 separate rate 

parameters, each with a Bayesian stochastic search variable selection (BSSVS) indicator 

variable, and a separate overall rate of geographic transition. We assumed an exponential 

prior with mean of 1 for each transition rate, a negative binomial prior with mean of 9 and 

standard deviation of 9 for the total number of non-zero rates and an exponential prior with 

mean of 1 migration event per lineage per year for the overall geographic transition rate. 

MCMC was run for 12 million steps with a burn-in of 2 million steps, and parameters 

sampled every 10,000 steps and trees sampled every 100,000 steps, yielding a total sample 

of 1000 parameter states and 100 trees on which estimates were based. Pairwise migration 

rate estimates had an effective sample size (ESS) of 350 at the minimum and most had ESS 

greater than 500.

This procedure yielded posterior trees with the geographic states of internal nodes resolved. 

We analyzed these posterior trees using the program PACT v0.9.532 to compute the 

following summary statistics: a) genealogical diversity14, measuring the average time it 

takes for two randomly chosen contemporaneous lineages to coalesce, b) time to the most 

recent common ancestor (TMRCA)14, measuring the average time it takes for all 

contemporaneous lineages to find a common ancestor, c) genealogical FST, measuring the 

degree of population structure in contemporaneous lineages calculated as FST = (πb – 

πw)/πb, where πw is genealogical diversity between randomly sampled lineages from the 

same geographic region and πb is genealogical diversity between randomly sampled lineages 

from different geographic regions, d) persistence, measuring the average number of years 

for a tip to leave its sampled location, walking backwards up the phylogeny, e) migration 

rate, measuring the average number of migration events over the phylogeny divided by total 

tree length to give migration events per lineage per year, f) trunk location through time4, 

measuring the posterior distribution across sampled phylogenies of the trunk geographic 
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state, where the trunk is defined as all branches ancestral to viruses sampled within 1 year of 

the most recent sample, g) region-specific ancestral geographic history, measuring the 

distribution of geographic locations of tips belonging to a particular region traced backwards 

in time through the phylogeny averaged across sampled phylogenies. Statistics (a), (b), (c), 

(f), and (g) were calculated across 0.1 year genealogical windows. These procedures gave an 

estimate of credible intervals for inferred ancestral locations across posterior 

phylogeographic reconstructions.

Code and data availability

Sequence data has been deposited with the Influenza Research Database10 and accession 

numbers provided as Source Data. The entire bioinformatic pipeline, including data 

subsampling, preparing XML files for BEAST, setting up PACT analyses and rendering 

figures is available at https://github.com/blab/global-migration. Analysis and data files are 

archived on the Dryad Digital Repository under DOI 10.5061/dryad.pc641.

Surveillance, travel and age-structure data

We investigated epidemic size and frequency using virological isolation data between 2000 

and 2012 collected by the WHO Collaborating Centre for Reference and Research on 

Influenza at the Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne, 

Australia and the Centers for Disease Control and Prevention, Atlanta, USA (Extended Data 

Fig. 5f–i). These isolations were categorized by date of sampling and by virus type: H3N2, 

H1N1, Vic, or Yam. The data from VIDRL also contained information on patient age. The 

age structure of incidence was estimated by constructing a distribution of age of infection 

from individuals >5 y (owing to the overrepresentation of <5 year old patients for all 

subtypes) (Extended Data Fig. 5b–d). Median age of infection was 30 y (H3N2), 20 y 

(H1N1) and 16 y (B) and mean age of infection was 33.9 y (H3N2), 23.1 y (H1N1) and 23.2 

y (B). Median age of infection was significantly different for H3N2 vs H1N1 (P = 4.6 × 

10−29, Mann-Whitney U test), H3N2 vs B (P = 1.2 × 10−62) and H1N1 vs B (P = 0.041). 

The patient age data from VIDRL were potentially biased by testing strategy and the 

generally higher severity of H3N2 virus infections. Children and working age adults were 

more likely to be tested than the elderly but the greater severity of H3N2 virus infections 

might spread and flatten the patient age distribution. For this reason we additionally tested 

excluding individuals >65 y and recalculating summary statistics, finding median ages of 

infection of 27 y (H3N2), 19 y (H1N1) and 15 y (B) and mean age of infection as 28.0 y 

(H3N2), 22.2 y (H1N1) and 20.3 y (B). We classified children as 0-15 years and adults as 16 

years and older, and estimated proportion of childhood infections as 30% (H3N2), 52% 

(H1N1) and 60% (B). There are potentially other biases specific to individual sentinel 

physicians and hospitals that could affect sample collection. However, the estimate derived 

from the VIDRL data that ~60% of influenza B virus infections occur in children is 

consistent with other estimates (reviewed in Glezen et al.8). Other studies similarly 

corroborate the estimates of lower age of infection for H1N1 viruses as compared to 

H3N233,34.

Additionally, we analyzed the distribution of ages of ~102.5 million air passengers traveling 

through London Heathrow and London Gatwick airports in 2011 (Extended Data Fig. 5E) 
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reported by Civil Aviation Authority of the UK35. Assuming that children of ages 0 to 15 

make up 17% of the UK population (Office of National Statistics), this distribution suggests 

that children engage in air travel at 19% the rate of adults.

For the modeling described below, we estimated age-structured contact rates following the 

empirical mixing data provided by Mossong et al.36. These contact matrices were previously 

validated in modeling pertussis epidemiology37. We simplified the Mossong et al. mixing 

matrices to record child-to-child contacts, child-to-adult contacts, adult-to-child contacts and 

adult-to-adult contacts, where children were defined to be 0 to 15 and adults to be 16 or 

over. This resulted in the following mixing matrix

where rates are relative to child-to-child contact rates.

Epidemiological modeling

An individual-based model of influenza evolution and epidemiology was constructed 

following methods presented in Bedford et al.38. The model used here is identical to Bedford 

et al. except where specified below. The present implementation used a linear-strain 

space39,40, in which virus phenotype is represented by a continuous variable and cross-

immunity between viruses is a function of distance between viruses in this space. We 

parameterized the model to compare scenarios of age-structured mixing between regions and 

to compare viruses with different rates of antigenic drift.

The model was simulated for 120 years with daily time steps and the first 100 years 

discarded to allow equilibrium to be reached. We modeled a metapopulation with 

individuals equally divided into three regions (North, Tropics, South). Individual’s ages 

were tracked throughout the simulation and those less than 16 years old were classified as 

children and those 16 or older were classified as adults. Transmission occurred by mass 

action, with transmission rates modified by regional compartment and by age compartment. 

Thus, for example, the force of infection into children in the Tropics followed

where βj is the seasonally forced contact rate in region j, α ac represents adult-to-child 

transmission, mi represents between-region transmission in age class i, Iij represents the 

number of infecteds in age class i in region j, Sij represents the number of susceptibles in age 

class i in region j, and Nj represents the total number of hosts in region j. The northern and 

southern regions were seasonally forced in opposite phase with a sinusoidal function 

following ε, while the tropics had no seasonal forcing.

Each virus possessed a one-dimensional antigenic phenotype ϕv and after recovery a host 

‘remembered’ its infecting phenotype. For each contact event, the Euclidean distance from 
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infecting phenotype ϕv was calculated to each of the phenotypes in the host immune history 

ϕh1, …, ϕhn. Here, one unit of antigenic distance was designed to roughly correspond to a 

twofold dilution of antiserum in a hemagglutination inhibition (HI) assay41. The probability 

ρ that infection occurred after exposure was proportional to the distance d to the closest 

phenotype in the host immune history, following ρ = min{d s, 1}. Each day there was a 

chance μ that an infection mutates to a new phenotype. This mutation rate represents a 

phenotypic rate, rather than genetic mutation rate, and can be thought of as arising from 

multiple genetic sources. When a mutation occurred, the virus’s phenotype was moved 

either left or right randomly and mutation size sampled from an exponential distribution 

with mean step size δ avg. Epidemiological parameters for the baseline epidemiological 

scenario with notation following Bedford et al.38 were:

• Base transmission rate β = 0.88 per day

• Duration of infection 1/ν = 5 days

• Birth/death rate = 1/50 years

• Total population size N = 45 million

• Seasonal forcing in north and south ε = 0.15

• Antigenic scaling s = 0.07

• Antigenic mutation rate μ = 0.5 to 6.5 × 10 −4 per day

• Average mutation size δ avg = 0.3 units

• Child-to-child transmission α cc = 1.00

• Child-to-adult transmission α ca = 0.21

• Adult-to-child transmission α ac = 0.21

• Adult-to-adult transmission α aa = 0.26

• Child between-region transmission mc = 0.0020

• Adult between-region transmission ma = 0.0020

In the model with age-stratified mixing with host movement derived from air travel 

passenger age data, child between-region transmission mc was 0.0011 and adult between-

region transmission ma was 0.0060.

In the course of the simulation, the underlying infection history of who infects whom was 

recorded and output as a complete infection tree. Without ample within-host diversity owing 

to chronic infection, the complete infection tree also generated a fully observed phylogenetic 

tree. Examining geographic location across the phylogenetic tree allowed us to directly 

calculate migration rate as total migration events observed (transitions from one region to 

another) divided by total opportunity (tree length).

The simulation was parameterized to model H3-like, H1-like and B-like behavior (Extended 

Data Fig. 7) by modulating antigenic mutation rate μ in the primary analysis (Fig. 3) or 

transmission rate β as a secondary analysis (Extended Data Fig. 8b). Values for μ and β were 
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chosen based on observed attack rate, proportion of childhood infections and antigenic drift 

rate.

Source code for the simulation is available at https://github.com/trvrb/antigen/tree/global-

migration and parameter and results files are available at https://github.com/blab/global-

migration/tree/master/model.

Extended Data

Extended Data Figure 1. Spatial distribution of 4006 H3N2, 2144 H1N1, 1999 Vic and 1455 Yam 
samples
Circle area is proportional to the number of sequenced viruses originating from a location. 

Color indicates assignment to one of 9 geographic regions.
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Extended Data Figure 2. Inferred location of the trunk of H3N2 tree through time in the 
primary dataset (a) and in a smaller secondary dataset (b)
Colored width at each time point indicates the posterior support for viruses from a particular 

geographic location comprising the trunk of the phylogenetic tree. Colors correspond to 

colored circles in persistence insets in Figure 1. The secondary datasets consist of 1391 

H3N2 viruses, 1372 H1N1 viruses, 1394 Vic viruses and 1240 Yam viruses.

Extended Data Figure 3. Average inferred geographic history of region-specific samples for 
H3N2, former seasonal H1N1, Vic and Yam viruses from 2000 to 2012
In each panel, phylogeny tips belonging to a particular region were collected and their 

phylogeographic histories traced backwards in time averaging across the phylogenetic tree 

to combine all viruses within each region. The x-axis shows number of years backward in 
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time from phylogeny tips from a particular region and the y-axis shows the geographic make 

up as stacked histogram of the ancestors of these tips, where region color-coding 

corresponds to the legend in Figure 1. For example, the top left panel shows the ancestry of 

USA and Canadian H3N2 viruses. At x = 0, all of these viruses are still in the USA or 

Canada and so an unbroken yellow band takes up the entire y. However, at x = 1 year, a 

number of different geographic regions appear on the y. This indicates that, 1 year back, 

ancestors of USA and Canadian viruses are primarily found in Southeast Asia, India and 

South China. The pattern in the top right panel shows that the ancestors of USA and 

Canadian Yam viruses more often remain in the USA or Canada with approximately 50% of 

ancestors remaining 1 year back. Each panel is constructed by averaging across region-

specific tips within a tree, but also across sampled posterior trees.
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Extended Data Figure 4. Maximum clade credibility (MCC) trees for region-specific samples 
from USA/Canada, India and South China for H3N2, H1N1, Vic and Yam viruses
Each tree only contains viruses from a particular geographic region and thus tips are all a 

single color within a tree. Branch and trunk coloring have been retained from Figure 1 to 

highlight the inferred geographic ancestry of each lineage.
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Extended Data Figure 5. Antigenic map of Vic viruses primarily collected in 2008 (a), age 
distribution of infections for H3N2 (b), H1N1 (c) and B (d) in Australia 2000–2011, age 
distribution of ~102.5 million passengers at London Heathrow and London Gatwick airports 
during 2011 (e), timeseries of virological characterizations from 2000 to 2012 of viruses from the 
USA by US CDC and from Australia by VIDRL for H3N2 (f), H1N1 (g), Vic (h) and Yam (i)
In (a), the positions of strains (colored circles) and antisera (uncolored squares) are fit such 

that the distances between strains and antisera in the map represent the corresponding 

hemagglutination inhibition (HI) measurements with the least error following Smith et al.41 

using data on Vic viruses from the WHO Collaborating Centre for Reference and Research 

on Influenza at the Centers for Disease Control and Prevention, Atlanta, Georgia, USA. 

Strains are colored by antigenic cluster. Genetic clades corresponding to each antigenic 

cluster are marked with colored vertical bars in Fig 1c. The spacing between grid lines is one 

unit of antigenic distance corresponding to a twofold dilution of antiserum in the HI assay. 

In (f) to (i), virological characterizations are a surrogate for epidemiological activity that 

allow for accurate discrimination among H3N2, H1N1, Vic, and Yam viruses. These data 

generally reflect the relative magnitudes and frequencies of epidemics but in some cases will 

inflate magnitudes of very small epidemics due to preferential characterization of subtypes 

circulating at low levels.
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Extended Data Figure 6. Combined persistence estimates across pairs of regions for H3N2, 
H1N1, Vic and Yam (a) and Spearman correlation of a region’s persistence vs the region’s 
contribution to phylogenetic ancestry for H3N2, H1N1, Vic and Yam (b)
In (a) and (b), persistence is measured as the average waiting time in years for a sample to 

leave its origin backwards in time in the phylogeny, with waiting time averaged across tips 

within a tree and across sampled posterior trees. In each panel of (a), the diagonal shows 

persistence within each of the 9 study regions and within the combined region of ‘China’, 

for which nodes in North China and in South China were considered to belong to a single 

region. The estimates along the diagonal are equivalent to the means shown in Figure 1. Off-
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diagonal elements show persistence estimates for pairwise combinations of regions. For 

example, the off-diagonal for North and South China is exactly equivalent to the diagonal 

element for ‘China’ and the off diagonal for ‘China’ and India represents mean persistence 

when combining nodes from North China, South China and India. In (b), origin proportion is 

measured as the proportion of the time that a region is represented when tracing back 2 or 

more years from each tip in the phylogeny, averaged across tips within a tree and across 

sampled posterior trees. Spearman’s ρ is not significant for any individual virus. However, 

the probability of observing 4 instances where each virus has a ρ of at least 0.32 is 

significant (P = 0.0017, bootstrap resampling test).

Extended Data Figure 7. Simulation results for a model parameterized for slow antigenic drift 
(a), moderate antigenic drift (b), and fast antigenic drift (c)
Colors represent geographic regions with tropics in blue, north in yellow and south in red. 

Region-specific incidence patterns are shown in terms of cases per 100,000 individuals per 

week, patterns of antigenic drift in terms of increasing antigenic distance (roughly 

proportional to log2 HI units) over time and in the geographically labeled phylogeny. The 

parameterized antigenic mutation rate is 0.00015 antigenic mutations per infection per day 
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in (a), 0.00035 in (b) and 0.00055 in (c), while the realized antigenic drift rate is 0.29 

antigenic units per year in (a), 0.58 in (b) and 1.19 in (c). Between-region mixing is 5.26× 

faster in adults. Each panel shows output from a single simulation selected from the 112 

shown in Figure 3, and is intended to show model behaviors over a range of parameters, not 

necessarily the behavior of particular viruses.

Extended Data Figure 8. Simulation results showing relationship between antigenic drift and 
persistence as a function of seasonality (a) and simulation results showing the effects of 
modulating transmission rate β on model behavior (b)
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In (a), the seasonal forcing parameter ε follows ε = 0.00 (no forcing), ε = 0.04, ε = 0.08 and 

ε = 0.12 (moderate seasonal forcing). Points represent outcomes from a model in which 

adults travel between regions at 5.26× the rate of children. Solid black lines represent linear 

fits to the data. With 4 seasonality scenarios, 7 mutation rates and 8 replicates, there are 224 

individual simulations shown. Persistence is measured as the average time in years taken for 

a tip to leave its region of origin going backwards in time, up the tree. In (b), transmission 

rate β in contacts per day is varied and compared to its effect on observed antigenic drift (in 

antigenic units per year), attack rate per year, proportion of childhood infections and 

migration rate between regions (in events per viral lineage per year). One antigenic unit is 

roughly equivalent to one log2 HI unit. Black points represent outcomes from a model in 

which children and adults travel between regions at equal rates. Red points represent 

outcomes from a model in which adults travel between regions at 5.26× the rate of children. 

Solid black and red lines represent LOESS fits to the data. With 2 travel scenarios, 7 

transmission rates and 8 replicates, there are 112 individual simulations shown.

Extended Data Table 1
Posterior mean estimates (and 95% highest posterior 
density intervals) across viruses for evolutionary and 
phylogeographic parameters

Statistic H3N2 H1N1 Vic Yam

Total nucleotide rate* 5.0 (4.8–5.2) 4.4 (4.2–4.6) 2.7 (2.6–2.9) 2.8 (2.6–3.0)

Nonsynonymous rate* 2.2 (2.2–2.3) 1.9 (1.9–2.0) 1.0 (0.9–1.1) 1.0 (0.9–1.0)

Synonymous rate* 2.8 (2.7–2.9) 2.6 (2.5–2.7) 1.8 (1.8–1.9) 1.8 (1.8–1.9)

Antigenic drift rate
†

1.01 (0.98–1.04) 0.62 (0.56–0.67) 0.42 (0.32–0.52) 0.32 (0.25–0.39)

Diversity
‡

3.03 4.59 5.46 6.83

TMRCA
§

3.89 4.53 5.22 7.62

FST 
∥

0.30 0.36 0.37 0.36

Persistence
¶

0.50 (0.48–0.54) 0.79 (0.73–0.85) 1.07 (0.98–1.16) 1.03 (0.88–1.21)

Migration rate
#

1.99 (1.85–2.10) 1.27 (1.18–1.37) 0.93 (0.86–1.02) 0.98 (0.83–1.14)

*
Evolutionary rates are measured in terms of 10−3 substitutions per site per year.

†
Antigenic drift rates are from Bedford et al.13 table 2, and measures cartographic drift per year in terms of twofold 

dilution of antiserum in a hemagglutination inhibition (HI) assay.
‡
Diversity of contemporaneous lineages is measured as average time in years for two randomly sampled lineages to share a 

common ancestor.
§
Time to the most recent common ancestor (TMRCA) of contemporaneous lineages is measured as the average time in 

years for all lineages to find a common ancestor.
∥
FST compares diversity within regions to diversity between regions, so that FST = (πb – πw) / πb.

¶
Persistence is calculated as the average number of years for a tip to leave its sampled location, walking backwards up the 

phylogeny.
#
Migration rate is calculated as migration events per lineage per year between any two regions.
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Extended Data Table 2
Posterior mean estimates across viruses and datasets of 
regional persistence, migration rate and geographic 
population structure

Statistic Dataset H3N2 H1N1 Vic Yam

Persistence* Primary
§

0.51 0.79 1.07 1.03

Persistence* Secondary
∥

0.53 0.75 1.16 1.11

Persistence* Alternative
¶

0.50 0.76 1.28 1.12

Migration rate
†

Primary
§

1.96 1.27 0.93 0.97

Migration rate
†

Secondary
∥

1.89 1.33 0.86 0.90

Migration rate
†

Alternative
¶

2.00 1.32 0.78 0.89

FST 
‡

Primary
§

0.30 0.36 0.37 0.36

FST 
‡

Secondary
∥

0.29 0.35 0.36 0.37

FST 
‡

Alternative
¶

0.29 0.34 0.36 0.35

*
Regional persistence is measured as the average waiting time in years for a sample to leave its origin backwards in time in 

the phylogeny.
†
Migration rate is measured as migration events per lineage per year.

‡
FST compares diversity within regions to diversity between regions, so that FST = (πb – πw) / πb.

§
The primary datasets consist of 4006 H3N2 viruses, 2144 H1N1 viruses, 1999 Vic viruses and 1455 Yam viruses.

∥
The secondary datasets consist of 1391 H3N2 viruses, 1372 H1N1 viruses, 1394 Vic viruses and 1240 Yam viruses.

¶
The alternative datasets consist of 1967 H3N2 viruses, 1439 H1N1 viruses, 1756 Vic viruses and 1223 Yam viruses 

divided into 10 geographic regions (USA/Canada, South America, Europe, India, Japan/Korea, Southeast Asia, Oceania, 
China, Central America and Africa).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Maximum clade credibility trees for primary datasets of 4006 H3N2 viruses (a), 2144 
H1N1 viruses (b), 1999 Vic viruses (c) and 1455 Yam viruses (d)
Branch tips are colored by geographic region of virus collection; internal branches are 

colored by geographic region as inferred by Bayesian phylogeographic methods (region 

colors in persistence insets). In b) nodes 1-3 indicate co-circulating clades that diverged in 

2004. In c), nodes 1 and 2 indicate divergent clades of viruses from Asia, colored vertical 

bars indicate antigenic variants shown in Extended Data Figure 5a (green: B/Malaysia/

2506/2004-like, red: B/Hubei Songzi/52/2008-like, other post-2008 viruses: B/Brisbane/

60/2008-like). The inset to the top left of each tree shows duration of region-specific 

persistence measured as the waiting time in years for a virus to leave its geographic region 

of origin. Circles represent mean persistence across sampled viruses, while lines show the 

inter-quartile range of persistence across sampled viruses. Region “China”, shows the 

combined persistence estimate for North China and South China together.
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Figure 2. Estimates of mean pairwise virus migration rate
Line thickness between regions indicates average number of migration events per lineage 

per year. Arrowhead size indicates the strength of directionality of migration. For clarity, 

only arrows corresponding to migration rates greater than 0.25 events per lineage per year 

are shown. Circle area indicates the global proportion of ancestry deriving from each region.
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Figure 3. Relationship of antigenic drift to incidence (a), proportion of childhood infections (b), 
and geographic migration rate (c), in a multi-strain multi-region model of influenza transmission
Black points represent outcomes from a model in which children and adults travel between 

regions at equal rates. Red points represent outcomes from a model in which adults travel 

between regions at 5.26× the rate of children (Extended Data Fig. 5e). Solid black and red 

lines represent LOESS fits to the data. With 2 travel scenarios, 7 mutation rates and 8 

replicates, there are 112 individual stochastic simulations (Extended Data Fig. 7). Antigenic 

drift was measured in cartographic units13 per year (see Methods). In a) attack rate was 

measured as proportion of the total population infected yearly. In c) migration rate was 

measured in terms of migration events per lineage per year.
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