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Abstract

Human bocavirus (HBoV) is a member of the genus Bocavirus, family Parvoviridae, and

subfamily Parvovirus and was first identified in nasopharyngeal aspirates of Swedish chil-

dren with acute respiratory tract infection (ARTI) in 2005. It is the causative agent of naso-

pharyngeal aspirate disease and death in children. The HboV genomic structure is a linear

single-stranded DNA (ssDNA). Its clinical pathogenic characteristics have been extensively

studied, however, at present the molecular mechanism underlying the pathogenesis of

HBoV infection is not completely clear. In this study, a total of 293 differentially expressed

proteins (DEPs) between ARTI cases and healthy plasma samples were characterized

using isobaric tags for relative and absolute quantitation (iTRAQ)-coupled bioinformatics

analysis, among which 148 were up-regulated and 135 were down-regulated. Gene Ontol-

ogy (GO) and Cluster of Orthologous Groups of proteins (COG) annotated an enrichment

of DEPs in complement activation and biological processes like immunity, inflammation, sig-

nal transduction, substance synthesis, and metabolism. Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis enriched DEPs mainly in the Wnt signaling pathway (ko04310),

PPAR signaling pathway (ko03320), intestinal immune network for IgA production

(ko04672), complement and coagulation cascades (ko04610), Toll-like receptor signaling

pathway (ko04620) and B cell receptor signaling pathway (ko04662). Further, expression

levels of three candidate proteins (upregulated PPP2R1A and CUL1, and downregulated

CETP) were validated using western blotting. Our investigation is the first analysis of the

proteomic profile of HBoV-infected ARTI cases using the iTRAQ approach, providing a foun-

dation for a better molecular understanding of the pathogenesis of ARTI in children.

Introduction

Human bocavirus (HBoV) is the causative parvovirus with a linear single-stranded DNA

(ssDNA) genome [1, 2] belonging to the family Parvoviridae and the subfamily Parvovirinae of

the genus Bocavirus. HBoV can cause respiratory tract diseases and acute gastroenteritis [3],
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which together are a significant worldwide contributor to morbidity and mortality in children

up to age 5 [4, 5]. Since HBoV was first detected in 2005 in children with respiratory infections

[1], four different subtypes have been identified (HBoV 1, 2, 3, and 4) [6–8]. HBoV-1 was pre-

dominantly detected in the respiratory tract, whereas the three other types (HBoV-2, HBoV-3,

and HBoV-4) were mainly identified in stool and associated with gastroenteritis [8]. However,

HBoV can also found in asymptomatic people [9]. A genomic study of HBoV suggested a rear-

rangement of the HBoV group into two classes: human bocaparvovirus 1 (including the previ-

ous HBoV-1 and HBoV-3) and human bocaparvovirus 2 (including the previous HBoV-2 and

HBoV-4) [10].

HBoV infects individuals worldwide with the average prevalence in respiratory tract

samples ranged from 1.0% to 56.8% and in stool specimens from 1.3% to 63% [11]. HBoV is

transmitted around the year but infections are enriched during winter and spring [12]. The

prevalence of HBoV-1 ranged from 1.5 to 19% in children diagnosed with acute respiratory

diseases [13], whereas the prevalence of the three other types ranged from 1% to 26%, 0.4% to

5%, and 0% to 2% in fecal samples from subjects with gastrointestinal illnesses, respectively

[14,15]. Clinical symptoms in HBoV-infected patients include rhinitis, pharyngitis, cough,

dyspnea, wheezing, pneumonia, acute otitis media, fever, nausea, vomiting, and diarrhea [9].

The coinfection rates of cases with respiratory infections and HBoV-positivity ranges from

8.3% to 100%, and the coinfection ratio is 46.7% relative to gastrointestinal manifestations

[16]. Lekana-Douki et al. (2018) reported that in 810 nasal swabs and 317 fecal specimens

from up to 5-year old children with influenza-like illness or diarrhea in Gabon, 32 (4.4%) and

7 (2.2%) were positive for HBoV [17]. Further, coinfections ratio with at least one other respi-

ratory virus, or intestinal viruses were 84.4% and 42.8%, respectively.

Delays in the diagnosis of infectious disease and the inappropriate use of antibiotics are

generally caused by diagnostic uncertainty. Therefore, the development of diagnostic markers

for infectious diseases will facilitate more rapid diagnosis and the distinction between infection

and non-infectious diseases, leading to improved management, better treatment course and

outcomes, and a reduction in the inappropriate use of antibiotics. Proteomics provides for a

comprehensive global analysis and is widely used to investigate complex biological functions

[18] for identification and characterization of proteins related to pathogenesis and virus-host

interactions, contributing to new knowledge of the pathogenesis of various diseases. Two-

dimensional gel electrophoresis (2DE) and matrix-assisted laser desorption ionization-time-

of-flight mass spectrometry (MALDI-TOF/MS) are widely applied to study the proteomic

expression profiles of host cells responding to viral infections, such as severe acute respiratory

syndrome [19], H1N1 influenza virus [20], and spleen and kidney necrosis virus [21]. How-

ever, 2DE has certain distinct disadvantages, including the ability to identify only a limited

number of proteins within a sample and its insensitivity to small and low-abundance proteins.

Isobaric tags for the relative and absolute quantitation (iTRAQ) along with nano liquid chro-

matography mass spectrometry (NanoLC-MS/MS) has emerged as a more powerful quantita-

tive proteomic method because of its high sensitivity and reproducibility, particularly for

quantifying low-abundance proteins in the examined samples [21–25].

Knowledge of the pathogenesis of HBoV is very limited, mainly caused by the short of spe-

cific cell lines for virus culture or experimental animal models [9]. A deep knowledge of patho-

genesis of HBoV is essential for the prevention and treatment of HBoV. Currently, iTRAQ-

based proteomics have been widely applied to study differentially expressed proteins (DEPs) of

virus-host interactions for understanding the host response to viral infection [22, 24,25]. In

the present study, iTRAQ coupled with LC-MS/MS was used to detect and characterize differ-

entially expressed proteins in the plasma of the respiratory tract in patients infected with

HBoV and healthy controls. The results will provide novel insight into the regulatory
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mechanism of HBoV-infected respiratory tract and potential proteins that provide for diag-

nostic and therapeutic strategies in respiratory tract patients infected with HBoV.

Materials and methods

Plasma sample preparation

A total of 10 patients with HBoV-infected acute respiratory tract infection (ARTI) and 10

healthy controls from the 3rd hospital of Wuhan participated in the present study, along with

the corresponding patients’ clinical information. Each case group and control group consisted

of 6 males and 4 females aged from 9 to 60 months. Each patient provided informed consent,

and the study protocol was approved by the Ethic Committee of the 3rd Hospital of Wuhan.

Patients with ARTI were diagnosed by two pathologists, who worked independently and were

blinded to the present study.

Nasopharyngeal aspirates (NPA) were sampled from 695 children cases that were diagnosed

in the Third Hospital of Wuhan from January 2018 to June 2018. The clinical characteristics

including disease history, prevalence, symptoms, and signs of nasopharynx inflammation were

used for diagnosis, which were confirmed by peripheral blood testing and chest X-ray examina-

tions. Additional protocols including bacterial culture and virus isolation, virus serology,

immunofluorescence, an enzyme-linked immunosorbent assay, and hemagglutination inhibi-

tion tests were used to further verify diagnostic results when needed.

Viral genomic RNA was extracted from NPA for RT-PCR of nucleocapsid protein gene

(VP 1NP 2 gene). Positive specimens were subjected to nucleic acid sequencing that was

aligned with known HBoV gene sequence for HBoV-infection confirmation, from which 10

cases were sampled for peripheral blood. Ten patients with bruised knees, elbows, and fore-

head from January to June 2018 at the 3rd hospital of Wuhan were recruited as controls for

sampling of peripheral blood. Medical records for each cases and controls are accessible to

identify individual participants during or after data collection.

Peripheral blood from cases and healthy controls was collected and mixed well in EDTA-

containing Vacutainers (Becton Dickinson, Franklin Lakes, USA) to prevent clotting. The

blood specimens were placed at 4˚C for 3–4 h, and centrifuged at 5000 rpm for 5 min. The

supernatant was carefully isolated and stored at -80˚C. The plasma from the case 1–3, 4–6, and

7–10 were respectively pooled to form three biological replicates BR1, BR2, and BR4 for pro-

tein isolation. Similarly, the plasma from the controls 1–3, 4–6, and 7–10 were respectively

pooled to form three biological replicates ZC1, ZC4, and ZC7.

Protein isolation, digestion, and iTRAQ labeling

Protein lysate (7M Urea/2M Thiourea/4% SDS/40 mM Tris-HCl, pH 8.5/1 mM phenylmethyl-

sulfonyl fluoride (PMSF)/2 mM EDTA) was added to an appropriate amount of each sample,

mixed well, and incubated for 5 min on ice. We then added dithiothreitol (DTT) at a final con-

centration of 10 mM, followed by ultrasound in an ice bath for 15 min, and centrifugated for

20 min at 4˚C. The supernatant was transferred to a new centrifuge tube, to which we added a

4-fold volume of cold acetone and placed it overnight at -20˚C.

The acetone protein precipitant was collected by centrifugation, dried in air, and redis-

solved in 8 M urea/100 mM triethylamonium bicarbonate (TEAB) (pH 8.0) solution. DTT was

added to a final concentration of 10 mM for the reduction reaction in a water bath at 56˚C for

30 min, and subsequently added iodoacetamide to a final concentration of 55 mM for an alkyl-

ation reaction at room temperature for 30 min in the dark. The Bradford method was used to

determine the final protein concentration.
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100 μg of protein from each of samples were digested with trypsin. The protein solution

was diluted 5 times with 100 mM tetradecyltrimethylammonium bromide (MTEAB), and

then we added trypsin at a mass ratio of 1:50 (pancreatin:protein) for enzymatic hydrolysis

overnight at 37 ˚C. The peptide segments were desalted using a C18 column and lyophilized in

vacuo.

The peptide was solubilized with 0.5 M TEAB for labelling according to the iTRAQ-8 stan-

dard kit (SCIEX) instruction, and mixed for fractionation in Durashell C18 column (5 μm, 100

Å, 4.6 x 250 mm) using an Ultimate 3000 HPLC system (Thermo DINOEX, USA). The peptide

segment was separated by increasing the concentration of Acetonitrile (CAN) under alkaline

conditions at the flow rate of 1 ml/min. One tube was collected every minute, and a total of 42

secondary fractions were collected and merged into 12 fractions. The merged fractions were

desalted on the Strata-X column and dried in a vacuum.

LC-MS/MS analysis

The mass spectrometry data were captured by TripleTOF 5600 plus liquid chromatography-

mass spectrometry (SCIEX) coupled with an Eksigent nanoLC system (SCIEX, USA). The

polypeptide sample was dissolved in 2% acetonitrile / 0.1% formic acid, and added to the C18

capture column (5 μm, 100 μm x 20 mm). Gradient elution was performed in a C18 analytical

column (3 μm, 75 μm x 150 mm) at a flow rate of 300 nL/min using a 90 min gradient. Two

mobile phases were buffer A (2% acetonitrile, 0.1% formic acid and 98% H2O) and buffer B

(98% acetonitrile, 0.1% formic acid and 2% H2O). For IDA (Information Dependent Acquisi-

tion), the 1st-order mass spectra (MS1) were scanned with an ion accumulation time of

250ms, and the 2nd-order mass spectra (MS2) of 30 precursor ions were collected with ion

accumulation time of 50ms. MS1 and MS2 spectra were captured in the range 350–1,500 m/z

and 50–2,000 m/z, respectively. Precursor ions were excluded from reselection for 15 s.

Data analysis

ProteinPilot Software (version 4.5, Applied Biosystems, MDS Sciex) was applied to analyze the

raw MS/MS file data by searching against UniProt database containing 20,240 sequences (uni-

prot-swissprot-Homo.fasta) with parameters as followings: the instrument was TripleTOF

5600; cysteine was adjusted with iodoacetamide for iTRAQ quantification; biological qualifica-

tions contained ID focus and trypsin digestion; the Quantitate, Bias Correction and Back-

ground Correction was examined for protein quantification and normalization. Only proteins

with at least one unique peptide and unused value� 1.3 (credibility� 95%) were used for fur-

ther analysis.

Proteomic data of iTRAQ were quantified using Proteinpilot software (version 4.5, Applied

Biosystems, MDS Sciex). The means of pairwise comparisons between biological or technical

replicates were first normalized as the ratios, and the minimum ratio was used as p-values to

screen the differential expressed proteins (DEPs) by student’s t test (two-tailed or unpaired).

DEPs were accounted to be significant using p< 0.05 and fold changes > 1.5 (upregulated)

or< 0.67 (downregulated) as cutoff criteria.

Gene Ontology (GO), pathway enrichment, and cluster analysis

The DEPs were assigned GO Terms (http://geneontology.org/) to stratify gene products in

three groups: molecular function (MF), biological process (BP), and cellular components

(CC). The functional annotation of DEGs was performed with Clusters of Orthologous Groups

of Proteins System (COG, http://www.ncbi.nlm.nih.gov/COG/) by identifying a cluster of pro-

teins being orthologous across at least three lineages and likely corresponds to an ancient
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conserved domain. Pathways enrichment analysis was performed by the Kyoto Encyclopedia

of Genes and Genomes (KEGG) (https://www.kegg.jp/). Pathway enrichments were statisti-

cally examined by Fisher’s exact test, and those with an adjusted p< 0.05 were recognized as

significant.

Western blotting analysis

Western blot analysis of the same plasma samples from HBoV-patients and controls was per-

formed to validate proteomic quantitation of the 3 candidate proteins PPP2R1A, CUL1, and

CETP. Briefly, plasma samples were diluted 10-fold. Twenty μl of each sample was loaded to

membrane, treated with antibodies for PPP2R1A, CUL1, and CETP (1:1000), and exposed for

2 min, 10 min and 10 s, respectively.

Results

Protein profile obtained by iTRAQ- coupled LC-MS/MS analysis

In total, 399625 spectra were identified from the iTRAQ analysis, from which 158700 spectra

were matched to known spectra (39.71%), and 8361 were unique spectra, and 1048 were pro-

teins. The distributions of unique peptides showed 795 proteins containing at least 2 unique

peptides, accounting for 75.86% of total proteins (Fig 1A). The average length of the peptides

was 15.45, and mainly concentrated between 7 and 20 with the 11(Fig 1B). The average cover-

age of proteins was 21.18%. The percentages of proteins with 0–10% and� 20% of coverage

were 39.12% and 38.36%, respectively, indicating a higher credibility of the proteins in the

present study (Fig 1C). Repeatability analysis (coefficient of variation) showed 70.12% and

63.80% of the cumulative percentages of CV of the plasma from case and control groups using

20% as the threshold of CV, indicating a higher reproducibility of the plasma samples from the

cases (Fig 1D).

In total, 1018 DEPs were quantified by iTRAQ coupled with LC-MS/MS analysis, among

which 966, 529, and 717 proteins were annotated by GO, COG, and KEGG, respectively (Fig

2). Many proteins were uncharacterized because of limited annotation in the database, and

further investigation of their function is needed.

In total, 293 DEPs were characterized, among which 148 DEPs were significantly upregu-

lated, and 135 DEPs were downregulated using a quantitative ratio over 1.5 (fold change > 1.5

or< 0.67) and a p< 0.05 as cutoff criteria.

Functional classification of DEPs

These 293 DEPs were assigned to 24 groups according to their function as listed in the COG

annotation. The top two groups were post-translational modification and general function

prediction only, followed by translation, ribosomal structure and biogenesis, and signal trans-

duction mechanism (Fig 3).

DEPs were assigned to Biological Process(BP), Molecular Function(MF), and Cellular

Component(CC) (Fig 4 and S1 File). For the BP category, DEPs were well distributed in differ-

ent biological processes, and the major functional categories were cellular process (9.94%),

metabolic process (8.84%), biological regulation (8.17%), regulation of biological process

(7.84%) and response to stimulus (7.25%). In the MF category, DEPs were mainly assigned

to binding (51.59%), catalytic activity (23.92%), enzyme regulator activity (7.60%) and struc-

tural molecule activity (4.48%). In the CC category, DEPs were mainly enriched in cell part

(16.30%), organelle (15.97%), extracellular region (12.90%) and extracellular region part

(12.64%). Significant differences in GO functional classifications were observed between
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upregulated and downregulated DEPs. As shown in Fig 2, downregulated DEPs had two

unique GO terms- electronic carrier activity and receptor regulator activity in the CC category

compared with upregulated DEPs. There were also significant differences in the percentage of

DEPs assigned to the same functional terms between upregulated and downregulated DEPs.

KEGG analysis was also applied using the Database for Annotation, Visualization, and Inte-

grated Discovery (DAVID) (https://david.ncifcrf.gov/) to functionally enrich gene functions

and to identify functional and metabolic pathways. The upregulated DEPs were mainly

enriched in the proteasome (18) and metabolic pathways (11). The pathways associated with

downregulated DEPs were related to complement coagulation cascades (34), staphylococcus

aureus infection (18), phagosome (13), and metabolic pathways (11) (Figs 4 and 5, S1 File).

Four functions including metabolic pathways, systemic lupus erythematosus, microbial metab-

olism in diverse environments, and glycolysis/gluconeogenesis were common in the top 10

pathways enriched from both downregulated and upregulated DEPs.

Validation of protein identification and quantification by western blot

Three candidate proteins (upregulated PPP2R1A and CUL1, and downregulated CETP) were

validated by western blotting (Fig 6) to confirm the results of iTRAQ-labeled LC-MS/MS anal-

ysis. The results of western blotting are consistent with those determined from iTRAQ.

Fig 1. The distributions of unique peptide (A), peptide length and peptide count (B), molecular weight and protein sequence

coverage (C), and repeatability analysis (coefficient of variation) (D).

https://doi.org/10.1371/journal.pone.0225261.g001
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Discussion

From the standpoint of host cell proteins, interactions between a virus and its host are highly

complicated processes, frequently resulting in abundant alterations in the expression of signal-

ing pathway proteins [26]. A set of proteomic approaches have been widely used to investigate

viral-host interactions [22, 24, 25, 27, 28] for a better understanding of pathogenesis. In the

present study, we performed iTRAQ combined with LC-MS/MS analysis in the plasma of

respiratory tract patients infected with HBoV. In total, 1048 proteins were determined, of

which 148 DEPs were significantly upregulated and 135 downregulated. We then validated

three candidate proteins by western blotting analysis, which supported our iTRAQ results.

These DEPs were associated with a lot of biological processes such as complement activation

and biological processes including immunity, inflammation, signal transduction and regula-

tion, substance synthesis, metabolism metabolic pathways, protein processing in endoplasmic

reticulum and protein turnover mediated by the proteasome. They were enriched the in Wnt

signaling pathway (ko04310), peroxisome proliferator-activated receptor (PPAR) signaling

pathway (ko03320), intestinal immune network for IgA production (ko04672), complement

and coagulation cascades (ko04610), Toll-like receptor(TLR) signaling pathway (ko04620),

and B cell receptor signaling pathway (ko04662) (S1 File). The profiles of the present study

provide a foundation for the development of diagnostic biomarkers and therapeutic schemes,

and the identified DEPs provide novel insight into the potential pathological mechanism eluci-

dating HBoV infection.

Fig 2. Total proteins identified by iTRAQ and annotated by GO, COG and KEGG analysis.

https://doi.org/10.1371/journal.pone.0225261.g002
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PPP2R1A (Protein Phosphatase 2, Regulatory Subunit A Alpha), belonging to the PPP fam-

ily of phosphatases, is participated in negative regulation of a variety of vital cellular processes

such as cell growth and division. Cullin 1 (CUL1) is a human protein from cullin family, and

acts an important role in protein degradation and protein ubiquitination. Both PPP2R1A and

CUL1 belong to immune response genes [29], and play a crucial role in various cellular activi-

ties during HBoV infection as a host restriction factor to suppress transcription in astrocytes.

In the present study, viral-related proteins PPP2R1A and CUL1 were unregulated to modulate

the Wnt signaling pathway (ko04310) and transforming growth factor-β (TGF-β) signaling

pathway(ko04350) (S1 File), consistent with previous results [29–31]. Wysocki et al. (2012)

discovered upregulated PPP2R1A during PRRSV infection [29]. CUL1 was upregulated to

modulate cell multiplication, migration, invasion and metastasis [30, 31]. Wnt signaling path-

way is a critical pathway in cell cycle control, whereas TGF- β signaling pathway plays a critical

role in cell signaling regulation of multiple vital processes including multiplication, discrimi-

nation, apoptosis, EMT, and migration. TGF- β signaling pathway was demonstrated to being

a doubtful advantage in normal and pathogenic development, especially in organ fibrosis, vas-

cular disorders, and carcinoma. Previous studies reported the dysregulation of the Wnt signal-

ing pathway during pseudorabies virus (PRV) infection [24] and the enhanced influenza virus

mRNA and virus production by triggering Wnt pathway [32]. The reaction to EBOV infection

was regulated by TGF- β signaling pathway[33], and the improved secretion of TGF-β1 and

vascular endothelial growth factor (VEGF) in EBOV-infected cells were improved by tempo-

rally upregulating TGF-β-modulated signaling responses. TGF-β that is secreted from host

cells is a latent and non-acting complex, and triggered by the neuraminidase (NA) of influenza

Fig 3. COG function classification of the DEPs.

https://doi.org/10.1371/journal.pone.0225261.g003
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A virus to modulate its signaling function [34]. The quantity of active TGF-β was increased in

the culture medium, and partial cells with high quantity of the integrin subunit α5 and fibro-

nectin infected by influenza A [35]. Particularly compared with binding to mannose the adhe-

sion of bacteria to fibronectin was also improved[35]. TGF-β signaling was interfered with

viruses in many ways, such as adjustment of TGF-β protein expression and TGF-β receptors

or SMADs factors. Further study is needed to elucidate TGF-β-regulated mechanism in inter-

fering with HBoV infection.

Protein turnover is a highly regulated bioprocess managing infinite multitude pathways for

maintaining cellular homeostasis and modulating the cellular environment [36]. Cellular

growth control was affected by mass protein degradation with proteasome to cause aberrant

cell cycle progression, transcription, DNA repair, apoptosis, and angiogenesis [37]. Protea-

some is functioned as a crucial element in the reproduction of many viruses, and in antiviral

immune defenses [38]. Proteasome-dependent, ubiquitin-independent degradation is highly

observed during viral infections. In the present study, 18 DEPs were enriched in proteasome

function catergory. Interestingly, all of the 18 proteins were upregulated. Among them, CUL1

was involved in ubiquitin-mediated proteolysis (ko04120) (S1 File). Ubiquitin molecules

altered covalently substrates targeted by that proteasome [16]. As a 76 amino acid protein ubi-

quitin covalently linked to substrates at N-terminal or lysine residues through its C-terminal

amino acid and then added ubiquitin molecules to one of seven lysine residues for assembling

ubiquitin chains. Polyubiquitin chains were affixed the targeted substrates to the proteasome

by direct interplay between Rpn13 and Rpn10 subunits of the 19S RP [39] in leading covalently

marked proteins for proteasomal degradation. Further study is needed to elucidate potential

functions of these upregulated DEPs during HBoV infection.

Fig 4. GO function of the DEGs. Proteins were clustered into three main categories: CC, BP, and MF. The y-axis represents the

percentage of a specific category of proteins in each main category.

https://doi.org/10.1371/journal.pone.0225261.g004
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Cholesterol ester transfer protein (CETP) is a glycoprotein connecting to high-density lipo-

proteins (HDL) in blood and engaging in the movement of neutral lipids such as cholesteryl

ester and triglyceride amongst lipoprotein particles. Biological function of CETP is not fully

understood, however, CETP is involved in regulation of PPARs signaling pathway (ko03320)

and TLRs signaling pathway (ko04620), thus playing key anti-inflammatory roles for protein

family including bactericidal permeability increasing protein (BPI). Germline-encoded pattern

recognition receptors (PRRs) regulates the host intrinsic immune system for intrinsically

defensing pathogen attacks PRRs were demonstrated to distinguish host segments from patho-

gens through identification of conserved regions within a group of pathogens to activate sig-

naling cascades for terminating the expression of antimicrobial products, inflammatory

Fig 5. KEGG pathway analysis of the upregulated and downregulated DEGs.

https://doi.org/10.1371/journal.pone.0225261.g005

Fig 6. Validation of 3 DEPs by western blot analysis. Top, PPP2R1A antibody test (65kd). Middle, CUL 1 antibody test (90kd).

Bottom, CETP antibody test (75kd).

https://doi.org/10.1371/journal.pone.0225261.g006
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cytokines, and chemokines [40]. Among three families of PPRs (TLRs, RIG-I-like receptors

(RLRs), and nucleotide binding-oligomerization domain (NOD)-like receptors (NLRs) [41],

TLRs act as essential molecules of the host intrinsic immune system to sense the conserved

molecular signatures within a group of pathogens and trigger intrinsic immune responses to

pathogen attacks. Numerous TLRs were proven to involve in the early interaction between

host cells and attacking pathogens in coordination with viral reproduction and/or host

responses to finally affect viral pathogenesis. Pathogens have developed approaches for escap-

ing or defecting signaling through the TLR pathways for survival and replication. PPARs

belong to the nuclear receptor superfamily including PPARα, PPARβ/δ and PPARγ, and criti-

cally regulate cellular differentiation and development, metabolism, and tumorigenesis [42].

The expression of genes involved in lipid metabolism, adipogenesis, maintenance of metabolic

homeostasis, and inflammation was modulated by heterodimers of PPARs—retinoid X recep-

tor (RXR) heterodimers to induce anticancer impacts in various tumors. PPAR activity was

transcriptionally regulated by nongenomic cross-talking with phosphatases and kinases such

as ERK1/2, p38-MAPK, protein kinase A (PKA), protein kinase C (PKC), 5’ AMP-activated

protein kinase (AMPK), and glycogen synthase kinase-3 (GSK3). In the present study, CETP

was downregulated during HBoV infection, potentially representing a novel pharmacological

target for HBoV treatment.

Energy and small molecule metabolites such as adenosine triphosphate (ATP), nicotin-

amide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide phosphate

(NADPH), and carbon are essential for the multiplication of virus in host cells [43], among

which pyruvate is a core molecule for various forms of eukaryotic and human metabolism. As

the end-product of glycolysis, pyruvate in the cellular cytoplasm is preprogramed being a

major fuel input for delivery into mitochondria to support citric acid cycle carbon flux as Sev-

eral enzymes such as newly reported mitochondria pyruvate carrier, pyruvate dehydrogenase,

and pyruvate carboxylase participated in the regulation of mitochondrial pyruvate metabolism

for overall pyruvate carbon flux. In the present study, 22 DEPs were classified into metabolic

pathways, among which 11 DEPs were upregulated and 11 were downregulated. These pro-

teins mainly participated in glycolysis and pyruvate metabolism, demonstrating that HBoV

used energy and small molecule metabolites from the host cell for multiplication by hijacking

host cell metabolic processes. The understanding of the regulatory mechanisms and critical

proteins in glycolysis and pyruvate metabolic pathways after HBoV infection might provide a

potentially novel targets for antiviral drug discovery and therapeutic development through

metabolic pathway inhibitors.

The endoplasmic reticulum (ER) is on many molecular chaperones for protein folding and

assembly [44] is very important for protein synthesis and maturation. ER was poisoned by a

protracted enormous increasing of free calcium levels in the cytoplasm and mitochondria,

leading to the severe form of stress on traget cells. Therefore, ER dysfunction was mainly

caused by toxic accident that generated in the pathogenic development to block vital ER

responses or ER calcium pool has been confirmed being one of the principal targets of toxic

metabolites or intermediates such as oxygen free radicals produced during the pathogenesis of

acute disorders and degenerative diseases. ER dysfunction was mainly caused by toxic inter-

mediates generated in pathogenic development to block vital ER reactions or fully activation

of unfolded protein response (UPR) and ER-associated protein degradation (ERAD). The

entire UPR plays an essential role in regulation of x-box-binding protein 1 (XBP1) function as

a transcription factor during ER stress. However, the reaction to ER stress is blocked when

XBP1 protein synthesis is interrupted to certain level. ER stress is further aggravated by trig-

gering ER- (ERAD) to deteriorate unfolded proteins through the ubiquitin/proteasomal path-

way that is defective in acute disorders and degenerative diseases. In the present study, 10
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DEPs participated in protein processing in the ER, consistent with the results of previous stud-

ies [45, 46], which revealed facilitation of viral replication by ER alternations and activation of

the unfolded protein response with viral infections. Interestingly, all of the 10 proteins were

upregulated, including the heat shock proteins 71 kDa, 105 kDa (hsph1), and hsp90-alpha and

beta-1(S1 File). Heat-shock response activation was thought to play a virus-specific function

assuring appropriate protein synthesis by facilitating protein folding. Previous studies con-

firmed the involvement of Hsp90 in the assembly and nuclear transfer of viral RNA polymer-

ase subunits and facilitation of viral replication in various virus including HIV-1[47], ebola

virus [48] and rotavirus [49]. Therefore, Hsp90 might be a potential target inhibitor for pre-

venting viral infections [50]. Other upregulated ER-stress proteins including calreticulin and

calnexin important for calcium storage and protein folding [51] were shown to act crucial role

in viral infections [52, 53]. Further study is needed to elucidate the functions of these proteins

in preventing HBoV infection.

In conclusion, the findings of the present study provide a comprehensive knowledge of the

proteomic profiles of HBoV-infected ARTI patients using iTRAQ-based quantitative proteo-

mics. In total, 293 proteins were significantly altered, among which 148 were upregulated and

135 were downregulated. These preliminarily proteomic results are needed for further valida-

tion to confirm the functional roles of these proteins in the pathogenesis of HBoV, thereby

enabling novel antiviral therapeutic targets of HBoV infection.
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