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Abstract: Background: The role of aberrant DNA methylation in allopurinol-induced severe cuta-
neous adverse reactions (SCARs) is incompletely understood. To fill the gap, we analyze the DNA
methylation profiling in allopurinol-induced Stevens-Johnson syndrome (SJS) and toxic epidermal
necrolysis (TEN) patients and identify the DNA methylation signature for predisposing allopurinol
hypersensitivity. Methods: Genome-scale methylation analysis was conducted using the Illumina®

HumanMethylation450 BeadChip. Weighted Gene Co-Expression Network Analysis (WGCNA) was
utilized to analyze the data. Results: A total of 21,497 annotated promoter regions were analyzed.
Ten modules were identified between allopurinol hypersensitivity and tolerance, with turquoise and
yellow modules being the most significant correlation. ATG13, EPM2AIP1, and SRSF11 were the top
three hub genes in the turquoise module. MIR412, MIR369, and MIR409 were the top three hub genes
in the yellow module. Gene Ontology (GO) analysis revealed that the turquoise module was related
to the metabolic process in intracellular organelles and the binding of various compounds, proteins, or
nucleotides. The yellow module, however, was related to stimulus sensory perception in cytoskeletal
elements and the activity of the receptor or transducer. Conclusion: DNA methylation plays a vital
role in allopurinol-induced SCARs. DNA methylation profiling of SJS/TEN is significantly related to
autophagy and microRNAs (miRNAs).

Keywords: drug hypersensitivity; epigenetics; DNA methylation; allopurinol-induced severe cu-
taneous adverse reactions (SCARs); weighted gene co-expression network analysis (WGCNA);
ATG13; microRNAs

1. Introduction

Previously we found that allopurinol-induced severe cutaneous adverse reactions
(SCARs) are strongly associated with HLA-B*58:01, with 94.57% of patients carrying the
allele [1]. HLA-B*58:01 is the biomarker for allopurinol-induced SCARs. However, un-
derstanding how allopurinol triggers the disease and brings forth autoimmune reactions
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is not complete. The current concept is the HLA-dependent cytotoxic T cell-mediated
delayed-type IV hypersensitivity reactions. The drug covalently binds to the major histo-
compatibility complex (MHC) in the antigen-presenting cells and stimulates the specific
cytotoxic T lymphocytes and cascade release of cytokines, such as the perforin, granzyme,
and granulysin [2,3]. These cytokines or chemokines act upon keratinocytes and epithelia
to trigger the cytotoxic autoimmune reactions resulting in massive death of keratinocytes
and mucous cells. In Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN),
T lymphocytes behave autologously cytotoxic to the homologous target cells.

We found that not all patients carrying HLA-B*58:01 develop SCARs, nor do SCARs
patients occur exclusively in HLA-B*58:01 carriers. Why do some carriers have immune
privilege? We already know that drug hypersensitivity is a multi-gene interaction complex
disease and that many genes and molecules are involved [4]. The mechanism of drug
hypersensitivity is not fully elaborated and demands promising targets for treating drug-
induced SCARs. As such, growing evidence supports that some epigenetic regulators
are risk factors for some autoimmune diseases. For instance, histone modification and
DNA methylation are risk factors for systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA), multiple sclerosis (MS), and other diseases [5–9]. Recent studies have shown
that drug hypersensitivity was closely related to microRNAs (miRNAs) [10,11]. Another
investigation described the overexpression of miRNA-18a-5p inhibited the expression of B-
cell lymphoma/leukemia-2-like protein 10 (BCL2L10), which is an endogenous protein that
inhibits apoptosis. The overexpression of miRNA-18a-5p led to endogenous keratinocyte
apoptosis in TEN. Plasma levels of miRNA-18a-5p could be a biomarker for TEN [12].
These data show that epigenetic modifications are involved in autoimmune diseases and
drug hypersensitivity.

DNA methylation is an essential part of the epigenetic landscape that may play a
critical role in drug hypersensitivity. DNA methylation refers to the CpG dinucleotide 5′

cytosine transformation into 5′ methylcytosine under the catalysis of DNA methyltrans-
ferase (DNMTs). This modification does not change DNA gene sequences but regulates
gene expression. CpG islands are stretches of DNA 500–1500 bp long with a CG:GC ratio of
more than 0.6, GC content greater than 50% [13], and located near the CAT box (CCAAT) to
regulate transcription efficiency. CpG islands contain abundant cytosine (C) and guanine
(G) connected with a phosphate bond (p), and they often are not methylated [14,15]. In
mammals, CpG sequences are rare in the genome because the cytosines in such an arrange-
ment tend to be methylated. They often appear in specific genes, especially the promoter
region, the first exon region, and the end of the housekeeping genes [13]. A total of 50–70%
of human gene promoters have CpG islands [16].

There are approximately 40,000 CpG islands in mammalian genomes. In the healthy
human genome, the CpG sites of CpG islands are usually in a non-methylation status,
while the CpG sites outside the CpG islands are usually methylated. This methylation
state can form stable retention during cell division. The table will be turned over in
tumorigenesis. In tumor suppressor genes, the CpG islands located in the promoter regions
are hypermethylated, leading to the compressed structure of chromatin and inactivation
of tumor suppressor genes [17]. Moreover, CpG island methylation is also involved in
embryonic development, transcription, chromatin structure, X-chromosome inactivation,
genomic imprinting, chromosome stability, and other diseases’ biological processes [18,19].

To better elucidate the DNA methylation signature for predisposing drug hypersen-
sitivity, we aim to examine the whole-genome DNA methylation profiling of allopurinol-
induced SCARs and allopurinol-tolerant patients. We use Weighted Gene Co-Expression
Network Analysis (WGCNA) and Gene Ontology (GO) annotation to analyze the methyla-
tion data in allopurinol-induced SCARs and find the new pathways that might contribute
to the disease. The differentially methylated genes might reveal the potential pathways
associated with allopurinol hypersensitivity and offer promising avenues of exploration
for the future development of therapeutics.
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2. Materials and Methods
2.1. Patients

The inclusion criteria were as follows. All participants had to be of Han Chinese
descent. The allopurinol-induced SCARs patients, including SJS, TEN, and SJS/TEN
overlap, were diagnosed by dermatologists according to Roujeau criteria [20]. SCARs had
to occur within three months of allopurinol use, with diminished or relieved symptoms
upon withdrawal. SJS and TEN are severe reactions and are commonly overlap in the clinic.
SJS and TEN are characterized by fever and mucocutaneous lesions (mouth, lips, genital,
and anal regions), which lead to epidermal death and sloughing. SJS is defined as skin
detachment < 10% of the total body surface area, SJS/TEN overlap as 10–30%, and TEN as
>30% skin detachment. The control patients were allopurinol-tolerant, defined as patients
who took allopurinol for a least three months but showed no evidence of cutaneous adverse
reaction. Patients were enrolled from 20 different hospitals across China.

The exclusion criteria were patients with a medical history of bone marrow transplan-
tation, chemotherapy, or cancer. Patients who met the inclusion criteria but did not comply
with the exclusion criteria were enrolled.

Our study enrolled 15 allopurinol-induced SCARs patients (3 TEN, 2 SJS/TEN overlap,
and 10 SJS) and 20 allopurinol-tolerant patients. The characteristics of included patients are
shown in a previous publication [21].

2.2. Blood Sample Collection, Genomic DNA Extraction, and Methylation Beadchip Assay

Two ml peripheral blood samples were collected from the patients to extract the
genomic DNA. The DNA quality was checked in 0.8% agarose gel electrophoresis,
which should have clear bands, and the length is longer than 10 kb without noticeable
degradation. The OD260/280 value was between 1.7–2.1; the DNA concentration was no
lower than 50 ng/uL; the total DNA was no less than 2 ug.

The Illumina® HumanMethylation450 BeadChip assay (35 chips) was conducted
following the manufacturer’s manual. The principle was to use sulfite to treat genomic
DNA. If the C is methylated, it will remain unchanged; if C is not methylated, it will be
bisulfite conversed to U, and be further converted to T by PCR amplification. Briefly, the
genomic DNAs were bisulfite conversed and denatured and neutralized. Double strand
DNAs were broken into fragmentation, precipitated, and hybridized with microarray.
The hybridized microarray was washed, the single bases were extended and stained.
Finally, the microarray was scanned, and the data were extracted. The methylation array
has 484,660 microarray probes, covering 99% of human RefSeq genes, with an average of
17 CpG sites per gene region distributed across the promoter, 5′UTR, first exon, gene
body, and 3′UTR of each gene. It covers 96% of CpG islands, island shores, and those
regions flanking island shores (island shelves) [22].

2.3. Analysis Software

The WGCNA package and the necessary libraries in the Bioconductor of the R software
were used to analyze the regulatory network of methylation profiling. The differentially
methylated genes were identified. The functional annotations and analysis were conducted
using GO databases (http://geneontology.org/, accessed on 25 October 2021) for three
aspects: Molecular Function, Cellular Component, and Biological Process.

2.4. Screening Differentially Methylated Positions and Regions

Analyzing differentially methylated positions (DMPs) can help find the significantly
differentially methylated CpG single position. To find the biological significance of these
significantly methylated CpG positions, we analyzed it with the genome position, which
was differentially methylated regions (DMRs). DMRs are divided into genomic tiling,
gene, promoter, and CpG island [23]. Screen DMRs can help to explain how the significant
methylation modifications cause gene expression regulation, such as the hypermethylation
in promoter regions results in gene suppression [18].

http://geneontology.org/
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The methods that analyze the DMRs include Illumina Methylation Analyzer (IMA) [24],
City of Hope CpG Island Analysis Pipeline (COHCAP) [25], The Chip Analysis Methyla-
tion Pipeline (ChAMP) [26], and RnBeads [27]. Our analysis combines the linear fitting
algorithm limma [28], COHCAP, and RnBeads, and uses a Combined Rank to sort DMPs
and DMRs. The Combined Rank uses a comprehensive sorting algorithm with methylation
β value, paired T-test (p-value), and False Discovery Rate (FDR). The higher the sort, the
higher the reliability of DMPs and DMRs, and vice versa.

2.5. Algorithm of Weighted Gene Co-Expression Network Analysis (WGCNA)

Each co-expression network corresponds to an adjacency matrix. The adjacency
matrix represents the strength of the connection between each pair of genes. The chip
can only detect the methylation of a single CpG site, while the β value and M value can
to measure the degree of methylation [29]. Therefore, we designed a variety of methods
to construct and screen methylation co-expression networks, including using a single
DMP or DMR, using β or M values to measure methylation, and using methylation data
adjusted network topology parameters, etc. Finally, we constructed a co-model of the
“unsigned” type (see Formula (1)) by using the M values in the promoter regions and the
β value of 14. The soft threshold was set to 14 to achieve a maximum balance between
free topology fitting and connectivity.

aij =
∣∣∣cor(xi, xj)

β′
∣∣∣ (1)

(xi and xj are the degree of methylation in the upstream promoter region of i and j genes.
cor: correlation; β′ is the soft-thresholding power for constructing a co-expression network.
β′ sets the gene network to obey a scale-free distribution is a correlation index, which is
different from the β value that measures the degree of methylation).

2.6. The Definition of Dissimilarity Measurement in WGCNA

WGCNA uses dissimilarity to cluster, namely, measure the dissimilarity between
different genes. The “topological overlap” between two genes reflects the strength of
the connection between them. The definition of Topological Overlap Matrix (TOM) is
defined below [30–32]:

TOMij =
∑u 6=i,j aiuauj+aij

min(ki , kj)+1 − aij
(2)

To convert this matrix into dissimilarity to measure gene distance, TOM was converted
into dissimilarity TOM (distTOM) by distTOMij = 1− TOMij . u was a gene other
than i and j. The dissimilarity values calculated by TOM can produce specific modules.
We analyzed the highly connected genes (hub genes) in the specific modules together
with the biological annotations and aimed to uncover the genes or signal pathways with
clinical significance.

3. Results
3.1. The Methylation Array Data Were Quality Controlled and Normalized

The raw data of the 35 methylation chips were quality-checked. Quality-check sug-
gested the data were of high quality and could be normalized. The “Function Normaliza-
tion” algorithm was used to normalize the IDAT raw data files in the methylation array
according to the probe categories, methylated and unmethylated signals, and gender [33].
After normalization, the β and M values were more evenly distributed, the chip back-
ground noise and the error between the chipset was minimized, and the reliability of the
subsequent DMPs screening was improved.

β = M
M+U+α (3)

M = log 2
(

M+α
U+α

)
(4)
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M = log 2
(

β
1−β

)
(5)

β and M values were utilized to measure the methylation of each CpG site. The β value
is the methylation percentage with a range [0, 1]. The closer it is to 1, the higher degree
of methylation, and vice versa. In Formula (3), M and U values represent methylated and
unmethylated signal intensity; α is an arbitrary predetermined threshold set at 100. The M
value (not the M value in Formula (3)) was initially defined in Formula (4) [29], and α in
the formula was defined as 1.

Due to more than 95% of the probes in the chip having signal strengths higher than
1000, the effect of the α values in Formulas (3) and (4) are negligible. Therefore, the M
value is regarded as the logit conversion of the β value [34], see Formula (5). After logit
conversion, the β value with the value range of [0, 1] can be converted into the M value with
[−∞,+∞] range. The β value describes the percentage of methylation, which is relatively
robust but rough to describe the degree of methylation due to close value of positions or
regions. Therefore, β value is converted to M value with a broad range. After conversion,
the M value has a high sensitivity to methylation changes. Therefore, our study uses both
the β value and the M value to measure changes in the degree of methylation. The closer
the M value to −∞, the lower methylation of the CpG position. The closer the M value to
+∞, the higher methylation of the CpG position.

3.2. Screening Differentially Methylated Positions and Regions

After data quality control and normalization, 465,686 CpG sites were obtained and
were further analyzed to identify the DMPs and DMRs. The 465,686 CpG sites with the top
100 DMPs in “combinedRank” in red were shown in Figure 1A. DMPs with ranks higher
than the threshold (CpG site 137,828; Tiling 9483; promoter 159; genes 3334; CpG island
494) in red were shown in Figure 1B. The whole-genome CpG sites were volcano plotted
with differential β values and negative logarithm transformed p-values (Figure 1C).

Our study focuses on the DMRs in the promoter region since it is closely related to
the regulation of gene transcription [18]. Among 465,686 CpG positions, 30,911 are in
the promoter region. After removing the promoters that are not translated into proteins,
including ribosomal RNA promoters, pseudogene promoters, and unannotated promot-
ers, we finally analyzed 21,497 annotated promoter regions (Table S1). The DMRs in
the promoter region detected from hypersensitivity patients against allopurinol control
patients (20 vs. 15 patients) were shown in Figure 1A’, with the top 100 DMRs in “combine-
dRank” shown in red. The DMRs with ranks higher than the threshold were shown in red
(Figure 1B’). The whole-genome promoter regions were volcano plotted with the mean
differential β values and negative logarithm transformed p-values (Figure 1C’).

3.3. Selection of Parameters for WGCNA

WGCNA is used to find functionally similar genes or connected gene loci. We set the
cut-off value as 0.15 in WGCNA analysis and obtained 10 different modules. Combining
“Gene Significance, GS” (see Formula (6)) and the number of genes in each module, we got
the most significant modules of turquoise and yellow.

GSi = −log2(p− valuei) (6)

(In this formula, p− value is the difference in the methylation level of the promoter
region between the “normal group” and the “hypersensitivity group” obtained according
to the linear fitting algorithm limma [28]. The greater the GS, the greater the significance,
and vice versa).

To better illustrate the turquoise and yellow modules, we made cluster dendrograms
with modules of whole-genome methylation correlation networks (Figure 2A,B) and a
histogram with module Gene Significance (GS) (Figure 2C). Turquoise and yellow modules
had the most significant correlation with allopurinol hypersensitivity (Figure 2B, circled
highlighting the dark yellow color) and high Gene Significance values (Figure 2C, high-
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lighted in grey). In these two modules, we defined the link relevance as 0.22 and 0.20
in the turquoise and yellow, respectively, to demonstrate the association network (both
correlation indexes > 0.89). The full lists of promoter genes in the turquoise and yellow
modules were shown in Tables S2 and S3, respectively.

Figure 1. The detected DMPs or DMRs of control vs. hypersensitivity reactions. (A) Top 100
DMPs. The x- and y-axis are the mean β values of the control group against the hypersensitivity
reactions group. The red points represent the top 100 DMPs. (B) DMPs with a rank higher than
the threshold. The x- and y-axis have the same meaning as (A). The red points represent DMPs
higher than the threshold. (C) The volcano plot of whole-genome CpG sites. The x- and y-axis
denotes the mean differential β values and negative logarithm transformed p-value, respectively. The
asymmetrical distribution of (C) revealed that the detected hypermethylated and hypomethylated
sites were in different regions, which indicates the high quality of the methylation array. (A’) Top
100 DMRs in promoter regions. The x- and y-axis are the mean β values of the control group against
the hypersensitivity reactions. The red points represent the top 100 DMRs. (B’) Promotor region
DMRs with a rank higher than the threshold. The x- and y-axis have the same meaning as (A’).
The red points represent DMRs higher than the threshold. (C’) The volcano plot of whole-genome
promoter regions. The x- and y-axis denotes the mean differential β values and negative logarithm
transformed p-value, respectively. The asymmetrical distribution of Figure (C’) revealed that the
detected hypermethylated and hypomethylated sites were in different regions, which indicates the
high quality of the methylation array.

3.4. Hub Genes Selection

Hub genes indicate genes with more connected nodes than other genes in a network.
In methylation co-expression networks, hub genes are usually at the core of the network,
reflecting their key regulatory role in biological processes or pathways. Therefore, a
network composed of several hub genes can represent the characteristics of a network, such
as specific signal transduction pathways and metabolic pathways.

Using the “intramodular connectivity” and “gene significant parameters” in the
turquoise and yellow modules, we displayed the module eigengenes and hub genes
(Figure 3A,B). Some promoter regions were hypermethylated, while others were hypomethy-
lated in turquoise and yellow modules (Figure 3A). The scatter plots of hub genes in the
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turquoise and yellow modules show how these genes were distributed (Figure 3B). The
top 20 hub genes with high connectivity and high significance in the turquoise and yellow
modules were marked in the corresponding positions in the dashed circles, from high
to low in two modules (Figure 3C). The greater the degree of connectivity (Membership
Measurement, MM), the greater the number of genes connected to it, namely, more genes
are connected to hub genes. Gene Significance (GS) indicates the degree of significant
difference in genes; the larger the GS, the greater the significant difference. GS and MM are
close to a positive correlation.

Figure 2. Weighted correlation network analysis (WGCNA) to identify gene modules highly corre-
lated with methylation traits of allopurinol-induced severe cutaneous adverse reactions. (A) Cluster
dendrogram and modules of whole-genome methylation correlation network. The top part is the
cluster dendrogram of selected 21,497 promoters. The first color frame denotes the distribution of
different modules, and the second color frame shows the significant methylated promoters. The hy-
permethylated and hypomethylated promoters are marked with red and green in the hypersensitivity
reactions group, respectively. The threshold is defined as p-value < 0.02. (B) The two-dimension
cluster dendrogram of top 1000 promoter regions. The top 1000 promoters are significant with
the p-values smaller than 0.01. The left and top bars show the cluster dendrograms and modules
of the top 1000 promoters with the same colors in Figure 2A. The middle heatmap represents the
correlation of paired genes. The color close to red and the color close to white denotes the high and
low correlation, respectively. The turquoise and yellow modules have a high self-concentration and
contain a large number of significantly methylated promoters. (C) Histogram of module GS. The
x-axis and y-axis denotes modules and GS values. The legend shows the numbers of promoters in
each module. GS: Gene Significance. (D) The correlation network map of the promoter region in
the turquoise module. The connection correlation was set to 0.22, and the correlation coefficient was
>0.89. (E) The correlation network map of the promoter region in the yellow module. The connection
correlation was set to 0.20, and the correlation coefficient was >0.89.
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Figure 3. The hub genes in the turquoise and yellow modules. (A) The eigengene plots of turquoise
and yellow modules. The top denotes the heatmaps of 35 samples, each row represents a promoter
region, and each column represents a sample. The bottom denotes the bar plots of eigengene in
each sample. The turquoise color represents the turquoise module, and the yellow color represents
the yellow module. (B) The scatter plots of hub genes in turquoise and yellow modules. The x-axis
represents the inner-modular connectivity, and the y-axis represents the gene significance. The
dashed line points out the threshold (p-value = 0.05). The top 20 hub genes with the highest inner-
modular connectivity are marked. (C) The top 20 hub genes in the turquoise module and yellow
module. The background color represents the different modules. MM: Membership Measurement;
GS: Gene Significance.
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In Figure 3B, the y-axis is GS and the x-axis is MM. The calculation formula of MM is
as follows:

MMyellow(i) = cor
(

xi, MEyellow

)
(7)

To analyze the biological functions corresponding to the turquoise and yellow modules,
GO annotations were made for these two modules, including “Biological Process (BP)”,
“Molecular Function (MF)”, and “Cellular Component (CC)” (Figure 4). The p-value
refers to the significance of the gene set annotated in the yellow and turquoise modules.
GO analysis revealed that the turquoise module was related to the metabolic process in
intracellular organelles and the binding of various compounds, proteins, or nucleotides.
The yellow module, however, was related to stimulus sensory perception in cytoskeletal
elements and the activity of the receptor or transducer.
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4. Discussion

This is the first study using WGCNA method to study allopurinol hypersensitivity
to the best of our knowledge. We established the co-expression network of the DMRs in
the promoter region. The characteristic of the network is excellent, indicating the high
reliability of the data. The DMPs and DMRs suggest gene methylation is another crucial
factor associated with allopurinol-induced SJS/TEN.

WGCNA is primarily used to build a co-expression network based on the expression
levels of transcriptome [30–32]. Horvath et al. first proposed a gene co-expression network
for DNA methylation in the aged human brain and blood tissue [35]. WGCNA is a
widely used data mining method for genomic analysis. Instead of relating individual
genes to phenotype, WGCNA focuses on the relationship between a few modules and the



J. Pers. Med. 2022, 12, 525 10 of 13

trait, which significantly alleviates the multiple testing problem inherent in microarray
data analysis [36]. The WGCNA algorithm assumes that the gene network obeys scale-
free topology and defines a gene co-expression correlation matrix and the adjacent gene
network function. Then, the dissimilarity coefficient in different nodes is calculated to
build a hierarchical clustering tree. The different branches of the clustering tree represent
different gene modules, and those genes with a similar degree of similarity are clustered
into one module. The genes in the same module have a high co-expression similarity,
while those in the different modules have a relatively low co-expression similarity. Finally,
the relationship between the modules and phenotypes or disease are explored, and the
therapeutic targets for disease or genetic networks are identified.

We found that the modules of turquoise and yellow have a high correlation with
allopurinol hypersensitivity. ATG13 (autophagy-related protein 13), EPM2AIP1 (EPM2A
(laforin) interacting protein 1), and SRSF11 (serine and arginine-rich splicing factor 11) are
the top three significant genes in the turquoise module (Figure 3C). ATG13 is an important
autophagy gene that works together with ULK1 (Unc-51-like autophagy activating kinase
1) to regulate the TOR kinase signaling pathway in autophagy and moderate the ATG13-
ULK1-RB1CC1 (RB1 inducible coiled-coil 1) complex. A ULK1/2 binding-deficient ATG13
variant resulted in diminished but not completely abolished autophagic activity in HEK 293
cells, highlighting a peptide motif at the C terminus of ATG13 is required for the binding of
ULK1/2 to initiate the autophagy [37]. Atg13 knockout resulted in a fetal loss in mice, and
those embryos showed growth retardation and myocardial growth defects. Atg13 deficiency
blocked autophagosome formation at an upstream step in fibroblasts and showed enhanced
TNF-α-induced apoptosis. This phenomenon was not seen in other Atg-deficient mice nor
by simultaneous deletion of Ukl1 and Ulk2 [38]. ATG13 is most likely an important gene that
mediates SJS/TEN autophagy and immune recognition. The EPM2AIP1 gene is a vital gene
regulating laforin protein, and the laforin protein transmits chemical signals and breaks
down unneeded or abnormal proteins. EPM2AIP1 plays a crucial role in Lafora disease (LD),
a fatal form of progressive myoclonus epilepsy characterized by neurodegeneration and the
presence of intracellular polyglucosan inclusions (Lafora bodies) in different tissues [39].
Moreover, EPM2AIP1 is glycogen synthesis-associated. The absence of Epm2aip1 in mice
impaired allosteric activation of glycogen synthesis, decreased hepatic glycogen synthesis,
increased liver fat, caused hepatic insulin resistance, and protected against age-related
obesity. On the contrary, another study showed Epm2a knockout mice had enhanced
insulin response [39,40]. Despite disparity, it suggests that EPM2AIP1 is a regulator of
insulin sensitivity. SRSF11 ranks third place in the turquoise module. SRSF11 plays a role in
pre-mRNA processing and alternative splicing which confers a growth advantage [41,42].
SRSF11 loss leads to aging-associated cognitive decline [43]. Mouse cocaine intake induced
H3K36me3 enrichment and alternative splicing of Srsf11, showing Srsf11 has the function
to regulate downstream splice events to augment cocaine-reward behavior [44].

The top hub genes in the yellow module are miRNAs, such as MIR412, MIR369,
MIR409, etc., which shows that miRNAs play a crucial role in SJS/TEN. In addition,
TP53AIP1 (tumor protein p53 regulated apoptosis-inducing protein, ranks sixth in the
yellow module) participates in p53-mediated cell apoptosis. p53, a tumor suppressor gene,
is involved in regulating keratinocyte apoptosis. p53 mutations are seen in skin precancers
and sun-exposed skin, which harbors thousands of p53-mutant keratinocyte clones [45].
Therefore we assume that the p53-mediated keratinocyte necrosis pathway may play a role
in drug hypersensitivity.

Our study has limitations. We found that DNA methylation traits play an important
role in regulating drug hypersensitivity. But we do not know the different methylation
status leads to the expression of different genes, thus affecting drug metabolism and
causing drug hypersensitivity, or if the different methylation status is the outcome of drug
hypersensitivity. Moreover, the genes identified by WGCNA need to be further investigated
to verify their function in allopurinol hypersensitivity. Ideally, the methylation data could
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be analyzed together with RNA-seq data to explore the molecular mechanism of drug
hypersensitivity. RNA-seq data will be further addressed in the future.

5. Conclusions

The methylation profile in allopurinol-induced SCARs patients (TEN, TEN/SJS, and
SJS) is significantly different from allopurinol-tolerant patients. This indicates that methyla-
tion plays an important role in drug hypersensitivity. WGCNA identifies the turquoise and
yellow modules that are highly correlated with methylation traits of allopurinol-induced
SCARs patients. ATG13 and MIR412 are the most significant hub genes in the turquoise
and yellow modules. The autophagy signaling pathway mediated by ATG13 may be the
critical pathway that mediates SJS/TEN autophagy and immune recognition in SJS/TEN.
The methylation changes of miRNAs and pre-mRNA splicing factor genes suggest that the
noncoding RNAs are also involved in the epigenetic regulation of allopurinol hypersensitiv-
ity. p53 may be involved in the regulation of keratinocyte apoptosis. GO analysis suggests
allopurinol hypersensitivity differs from allopurinol tolerance in multiple biological path-
ways, such as stress response, binding, energy metabolism, and receptor activity. The small
molecules or protein interventions that target autophagy and miRNAs/pre-mRNA splicing
may provide promising targets for treating drug hypersensitivity. Our study provides new
ideas for the prevention and treatment of allopurinol-induced SJS/TEN. More data are
needed to test the effectiveness of these potential treatment targets in patients.
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