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Abstract

Spare-part management has a significant effect on the productivity of mining equipment.

The required number of spare parts can be estimated using failure and repair data collected

under the name of reliability data. In the mining industry, failure and repair times are decided

by the operational environment, rock properties, and the technical and functional behavior

of the system. These conditions are heterogeneous and may change significantly from time

to time. Such heterogeneity can change equipment’s reliability performance and, conse-

quently, the required number of spare parts. Hence, it is necessary for effective spare-part

planning to check the heterogeneity among the reliability data. After that, if needed, such

heterogeneity should be modeled using an adequate statistical model. Heterogeneity can

be categorized into observed and unobserved caused by risk factors. Most spare-part esti-

mation studies ignore the effect of heterogeneity, which can lead to unrealistic estimations.

In this study, we introduce the application of a frailty model for modeling the effect of

observed and unobserved risk factors on the required number of spare parts for mining

equipment. Studies indicate that ignoring the effect of unobservable risk factors can cause a

significant bias in estimation.

1. Introduction

Spare-part estimation plays a crucial role in logistic management. Effective spare-part planning

reduces equipment downtime and prevents unnecessary inventory, one of the most critical

wastes in the production process. Studies show that spare parts shortage is one of the main rea-

sons for downtime in mining equipment [1,2]. Mining companies often rely on the manufac-

turer’s recommendations. The required number of spare parts is calculated, mostly based on

reliability data, including time between failure (TBF) and time to repair (TTR). However, stud-

ies have shown that, in addition to TBF and TTR data, the operational conditions in which the

equipment is working should also be considered in spare-part planning [3]. For example, Bara-

badi et al. [4,5] have shown that ignoring the effect of operating conditions may lead to a 25%

difference in the estimated number of spare parts. Operational conditions and other factors

that may influence an item’s reliability characteristics are named risk factors (covariates). Risk

factors can be categorized as observed and unobserved risk factors. Unobservable risk factors

are those factors for which we have no possible way to form a database and perform analysis of
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their effects as we can for recordable factors (observable risk factors). Recently, the effect of

observed risk factors on reliability and the required number of spare parts has been studied.

For example, after presenting the reliability analysis algorithm with time data in the context of

mining studies, Kumar, in collaboration with Klefsjö [6,7], proposed the Proportional Hazard

Model (PHM) to analyze the effect of observable risk factors in reliability analysis. This model

was used in later years by various researchers in the field of mining, such as Ghodrati [8–12],

Abbas Barabadi [5], and Nouri Qarahasanlou [13–17], to analyze the reliability of mining

equipment and finally, the required number of spare parts. However, the PHM or its exten-

sions, such as the Stratified Cox Regression Model (SCRM) can only be used to analyze observ-

able risk factors. Although unobserved risk factors may significantly change the required

number of spare parts, most reliability studies have ignored their effect.

Researchers in other fields such as medicine have used the frailty model (Mixed Propor-

tional Hazard Model) to isolate the effect of unobserved risk factors. In this model, all unob-

servable risk factors and measurement errors are considered a random multiplier phrase and

added to the PHM model. Vaupel et al. [18] were the first to use the term ‘frailty’ for univariate

survival models. Gutierrez [19] studied frailty and shared frailty models, compare their charac-

teristics, and analyzed the frailty model’s survival data. The frailty models of survival data

appear similar to regression models due to the heterogeneity and random effects. Frailty is a

hidden multi-effect on the hazard function’s performance, with a mean of 1 and variance of θ,

which has been estimated along with the model’s other parameters. Since 2006, some studies

on reliability have used the frailty model for modeling the impact of unobservable risk factors

on the reliability of the components, intending to make decisions about maintenance and

repair [20–23]. For example, Asha [24] employed the frailty model for a load-sharing system

and demonstrated that the reliability analysis for a heterogeneous case varies significantly com-

pared to a homogeneous one. Asfaw and Lindqvist [25] utilized the frailty model for modeling

the effect of observable and unobservable risk factors on wind turbine reliability, using Pois-

son’s process. Slimacek and Lindqvist [26] examined the unobservable heterogeneity results in

repairable systems by the heterogeneous Poisson’s process (Power-law). The results of their

studies show that when there are several similar systems for examination, there will be an

unknown heterogeneity between the systems, and ignoring such unobserved heterogeneity

may lead to wrong decisions.

Mining operational conditions are not identical, and, in reality, it is a heterogeneous envi-

ronment in which characteristics change significantly. The frailty model is a suitable model

that can be used for molding the effect of unobserved heterogeneity on the required number of

spare parts in the mining industry. Despite the frailty model’s suitability, its application is not

well developed in reliability engineering. There is no such application for spare-part estimation

as far as we know. This paper’s primary motivation is to develop a framework for spare-part

estimation, considering the effect of observed and unobserved heterogeneity, using a frailty

model. The rest of the paper is organized as follows. In Section 2, the proposed framework is

discussed; after that, its application is discussed in Section 3. Section 4 provides conclusions.

2. The methodology: Spare-part prediction using frailty model

Fig 1 shows the framework for spare-part prediction using a frailty model. The framework

includes three steps:

Step 1: Context identification

• Item identification and boundaries’ definition

• Failure and repair process identification
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• Reliability data collection and risk factor exploration

Step 2: Reliability analysis of the selected item

• Reliability model selection

• Parameters’ estimation

Step 3: Spare-part management

• Spare-part estimation

• Inventory management

2.1 Context identification

Context identification of an item is essential in the spare-part estimation process using frailty

modeling. This step consists of three sub-steps:

• Item identification and boundaries’ definition

• Failure and repair process identification

• Reliability data collection and risk factor exploration

In the first step, the system and its components should be identified. After that, its bound-

ary needs to be determined for the selected component (item). The boundary will determine

the required data and information needed. Moreover, it will prevent the identified item’s over-

lapping with adjacent items [27]. Two influential factors to be considered in setting the bound-

aries are the study level (fleet/machine/component) and the data constraints. In general, if the

study level includes a fleet, each machine is considered as a component, each series as a subsys-

tem, and the entire fleet as the system. If the study subject is a specific machine/item of equip-

ment, it needs to be broken down into its components for further study [28]. Different

Fig 1. Spare parts based on reliability and risk factors.

https://doi.org/10.1371/journal.pone.0247650.g001
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methods, such as reliability block diagram, fault tree, reliability graph, and simulation, can be

used to identify the item and set its boundaries. The selected item’s failure and repair process

needs to be studied in the next step. The failure data collection methods can be divided into

quantitative and qualitative approaches. The failure and repair data can be collected through

documents, archived documents, visits and interviews, direct observations, joint observations,

and artificial work [29]. Besides, the item’s operating conditions data should be collected and

sorted for further analysis as risk factors. The data needed for reliability analysis, and especially

spare-part management, include the type of failure, failure time, repair data, and their

observed risk factors [30].

After data collection, the collected data should be checked for any heterogeneity in the next

step. Among various methods proposed for the homogeneity test, the likelihood ratio test,

Akaike information criterion (AIC), and the Bayesian information criterion (BIC) are stan-

dard tests for examining homogeneity in a specific database [31,32]. For example, under the

assumption of Weibull distribution for failure data, the likelihood ratio will be as follows:

R ¼ 2 lnLðbl; bb; bZ; byÞ � lnLðbl0;
bb0; bZ0; 0Þ

� �

ð1Þ

where bl and bb are the estimated parameters for Weibull distribution, bZ is the regression coeffi-

cient for observed risk factors, and by is the degree of heterogeneity due to the effect of unob-

served risk factors.

2.2 Reliability analysis of item

For effective reliability analysis, the collected data’s best-fit model should be identified. In addi-

tion to the heterogeneity test, the time dependency of observed risk factors should be evaluated

to select the appropriate model. The available time-dependency analysis models can be catego-

rized into analytical and graphical approaches. Among the analytical models, the Schoenfeld

Residuals test is one of the most widely used analytical tests [33–35]. In general, based on the

nature of collected data, if there is an unobservable risk factor, the frailty model is appropriate;

otherwise, the PHM and its extension can be used for reliability analysis. In the presence of p1

time-independent risk factors, (z), and p2 time-dependent risk factors, (z(t)), the frailty model

takes the following form [33,34]:

lðt; z; zðtÞ; aÞ ¼ al0ðtÞexp
Xp1

i¼1

Zizi þ
Xp2

j¼1

djziðtÞ

" #

ð2Þ

where λ0 (t) is the baseline hazard rate, the function exp½
Pp1

i¼1
Zizi þ

Pp2

j¼1
djziðtÞ� captures the

effect of observed risk factors, and α is the frailty. The α> 1 are said to be frailer for reasons

left unexplained by the observed risk factors and will have an increased risk of failure, while

items with α< 1 are less frail; hence, given a specific observed risk factor pattern, they tend to

be more reliable. If there is no effect from unobserved risk factors, then α = 1, and Eq (1) will

reduce to the PHM [9]. As Eq (2) shows, frailty represents one or more unobserved risk fac-

tors’ cumulative effect. Given the relationship between the hazard rate and the reliability func-

tions, it can be shown that the conditional reliability function, R(t;z;z(t)|α), can be written as

[33,34]:

Rðt; z; zðtÞjaÞ ¼ fRðt; z; zðtÞÞga ð3Þ

The unconditional (population) reliability function can then be estimated by integrating

the unobservable α. If α has probability density function g(α), then the population or
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unconditional reliability function is given by [33,34]:

Ryðt; z; zðtÞÞ ¼
Z 1

0

Rðt; z; zðtÞÞ
� �agðaÞda ð4Þ

The relationship between the survival function and the hazard function still holds uncondi-

tional on α, and thus we can obtain the population hazard function, using [33,34]:

ly t; z; zðtÞð Þ ¼ �
d
dt

Ry t; z; z tð Þð Þ½Ryðt; z; zðtÞÞ�� 1
ð5Þ

The gamma distribution with the mean equal to one and variance θ is the most widely

applied frailty distribution. The unconditional reliability function with gamma distribution

unobserved risk factors is given by [33,34]:

Ry t; z; z tð Þð Þ ¼ ½1 � ylnfRðt; z; zðtÞÞg�� 1=y ð6Þ

In general, distribution should be selected to represent the baseline reliability. Baseline reli-

ability represents a system’s reliability when there is no effect from observed and unobserved

risk factors. The best-fit distribution for the baseline can be determined using a goodness-of-

fit (GOF) test such as AIC and BIC criteria. These two criteria are based on the information

and are utilized by classically comparing the maximum likelihood value to select the appropri-

ate model. These two criteria are formulated as follows [31]:

AIC ¼ � 2� lnðlikelihoodÞ þ 2� k ð7Þ

BIC ¼ � 2� lnðlikelihoodÞ þ lnðNÞ � k ð8Þ

where k indicates the number of estimated parameters, and N represents the number of obser-

vations (failures). The model with the smallest AIC and BIC values will be selected as the most

appropriate choice in an appropriate model fitting. Further information on these two criteria

can be found in [31,36].

After model selection, the reliability parameter should be estimated. Having the event

times, (t0i, ti, di), for i = 1,. . .,n with the ith observation corresponding to the time (t0i, ti], with

either failure occurring at a time ti (di = 1) or the failure time being right-censored at time ti (di

= 0); the likelihood function for failure data can be used for parameter estimation as follows:

LnL ¼ ln
Yn

i¼1

fRyiðti; zi; ziðtÞg
1� diffyiðti; zi; ziðtÞg

di

Ryiðti; zi; ziðtÞ
ð9Þ

where fθi is the probability density function.

2.3 Spare-part management

This step includes the spare-part estimation and inventory management. After the selection of

an appropriate model for reliability modeling of the selected item, the meantime to failure ð�TÞ
and the standard deviation of time to failure (σ(t,z;z(t)))) for the selected item can be calcu-

lated. These are the two main elements for estimating the required number of spare parts. Dif-

ferent mathematical models have been developed to estimate the required number of spare

parts of repairable and non-repairable items. For example, the homogeneous Poisson process

and renewal theory are two widely used mathematical models to estimate the required number

of spare parts for non-repairable items. The homogeneous Poisson process is a particular state

of the renewal process. Renewal theory is also used to estimate spare parts for parts with
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variable hazard rates. Based on the homogeneous Poisson process model, with this assumption

that the replacements are made within the �T , the mean number of failures (Mt) can be esti-

mated by renewability function as [5,10]:

Mt ¼
t
�T
þ

sðt; z; zðtÞÞÞ=�T

� �2
� 1

2
ð10Þ

where

�T ¼
Z1

0

tf ðtÞdt)
f ðtÞ¼� R0ðtÞ

¼ �

Z1

0

tR0ðtÞdt ¼
Z 1

0

RðtÞdt

¼

Z 1

0

½1 � ylnfRðt; z; zðtÞÞg�� 1=y

� �
dt ð11Þ

s t; z; zðtÞÞð Þ ¼

Z1

0

ðt � �TÞ2f ðtÞdt)
f ðtÞ¼� R0ðtÞ

¼ �

Z1

0

ðt � �TÞ2R0ðtÞdt ¼ 2

Z 1

0

tRðtÞdt � �T 2

¼ 2

Z 1

0

tRðtÞdt � �T 2

� �1
2

¼ 2

Z 1

0

t ½1 � ylnfRðt; z; zðtÞÞg�� 1=y

� �
dt � �T 2

� �1
2

ð12Þ

The mean number of failures for a specific period (typically on an annual basis), M(t), we

can estimate the “Economic Order Quantity (EOQ)” and reorder point to eliminate the possi-

bility of facing shortages. This EOQ can be calculated by [9]:

EOQ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2MtS
H

r

ð13Þ

S is an order cost per purchase order, and H is the cost of storing a unit in stock for a year.

Finally, the reorder point (Rp) should be estimated. Rp can be estimated based on the different

scenarios where lead time and demand can be constant or varying. For example, under the

assumption of constant lead time and variable demand, Rp can be estimated by:

Rp ¼ Average demand during lead timeþ Safety stock ¼ ð �Mt � LÞ þ ðZ� sdLTÞ ð14Þ

where �Mt is average demand in time scale (day, week, or months) L is a lead time in same time

scale Z is the number of standard deviation needed to achieve the defined cycle-service level

and σdLT is the standard deviation of demand during lead time. It should be mentioned that Z

value is the inverse of the standard normal cumulative distribution for a given service level.

For more information see [37,38].

3. Case study

Golgohar iron mine is located 50 km southwest of Sirjan city. Currently, there are seven active

sections in this mine. Section No. 1, with a definite reserve of 228 million tons and an annual

extraction of 12 million tons, is one of these sections. In this section, most of the loading ore

and waste rocks operations are performed by Caterpillar excavators. The production system is

a series configuration; if the loading system fails, the entire extraction operation will stop.

Hence, excavator spare-part planning is crucial to reduce excavator downtime and,
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consequently, stoppages in mining activity. Due to the nature of the rock and the mine’s opera-

tional condition, the excavator bucket nail fails frequently and needs to be changed regularly.

In this study, the excavator bucket nail (EBN) is considered for further analysis.

Fig 1 shows that the failure mechanism and its associated risk factors should be identified

after boundary selection. The reliability data for EBNs and their associated risk factors are col-

lected from different sources, including daily reports, repair shop reports, meteorological

reports, and interviews with specialists and experts. Table 1 shows the identified risk factors

and their associated quantitative values. According to Table 1, working shifts (morning, even-

ing, and night shifts), type of rock (high-density ores and tailings), and operator crew are

defined as scaled risk factors, while the temperature (z4) and precipitation (z5) are considered

continuous risk factors. In Table 2, a sample of the collected failure data and their associated

risk factors are shown. According to this table, the first failure happened after 59.8 hours, dur-

ing the night shift, while the operational condition temperature was 6.74˚C. At the time of fail-

ure, there was precipitation (20.9 mm per hour), the excavator was working on tailings, and

operator crew No. 3 was working with the machine.

In the next step, the collected reliability should be explored for the presence of unobserved

heterogeneity, as well as time-dependency risk factors. In this study, the LR test in Eq (1) is

used to evaluate the homogeneity of the data as below:

R ¼ 2 lnLðbl; bb; bZ; byÞ � lnLðbl0;
bb0; bZ0; 0Þ

� �

¼ 23:56 ð15Þ

R’s value for the excavator bucket nail is equal to 23.56, with a P-value equal to zero that

indicates that the null hypothesis (absence of unobserved heterogeneity) should be rejected in

favor of an alternative hypothesis. In other words, there are unobservable risk factors that need

to be modeled in the reliability analysis. Hence, a frailty model can be used for reliability analy-

sis. In the next stage, the risk factors’ time-dependency should be investigated, checked using

Table 1. The classification of risk factors.

Risk Factors Classified Quantitative Values

Shift (z1) Morning 1

Evening 2

Night 3

Type of Rock (z2) Tailings 1

Ore 2

Operator Crew (z3) A 1

B 2

C 3

D 4

Temperature (z4) Continuous risk factors

Precipitation (z5) Continuous risk factors

https://doi.org/10.1371/journal.pone.0247650.t001

Table 2. Some of the TTF data associated with Caterpillar excavator risk failure factors.

Failure Number Time to Failure (TTF) Failure Status Risk Factors

Shift Temperature (C) Precipitation (mm) Type of Rock Operating Group

1 59.8 0 3 6.74 20.9 1 3

2 14.28 0 1 2.59 11.07 2 2

3 26.19 1 2 11.24 19.13 1 1

4 26.48 1 3 12.45 18.18 1 1

https://doi.org/10.1371/journal.pone.0247650.t002
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the Schoenfeld residual test. The result of this test is shown in Table 3. As this table shows, the

p-value for all risk factors is more than 5%. Hence, the null hypothesis, which is the time-

dependency of risk factors, can be rejected. In other words, all risk factors can be considered

time-independent risk factors.

The best-fit distribution for the baseline hazard rate needs to be identified in the next step.

In this analysis, the Weibull distribution and Exponential distribution are nominated to repre-

sent the R(t;z;z(t)). AIC and BIC statistics are used to determine the best-fit distribution. The

results of AIC and BIC statistics are shown in Table 4. The frailty model with exponential base-

line distribution (exponential frailty) has the lowest value and has the most appropriate fit

among the nominated distributions. Furthermore, the Cox-Snell residual diagram is used to

check the model’s goodness graphically. In this test, if the hazard function follows the

45-degree line, it can be concluded that exponential distribution is an appropriate model for

the reliability modeling of the data. As Fig 2 shows, the hazard function follows the 45-degree

line and, hence, the exponential distribution can be used to model the reliability data of the

EBN. According to this model, the reliability function of the EBN can be written as:

Ryðt; zÞ ¼ 1 � yln e�
t

Scaleð Þ
shape

� �expð
Pn

j¼1
oiziÞ

( )" #� 1=y

¼ 1 � yln e�
t
bð Þ

a� �expð
Pn

j¼1
oiziÞ

( )" #� 1=y

ð16Þ

where σ and β are shape and scale parameters of the exponential distribution, ωi is the regres-

sion coefficient of risk factors, and θ is the heterogeneity degree.

Using the likelihood function, the shape and scale parameters of the exponential distribu-

tion, the coefficients of risk factors, and the frailty function’s heterogeneity value are calcu-

lated. The results are shown in Table 5.

As shown in Table 5, only the type of rock has a p-value less than 5%, and the rest of the

identified risk factors have a p-value greater than 5%. Hence, only the type of rock has a signifi-

cant effect on the reliability performance of the EBN. Hence, the exponential-frailty reliability

function of the EBN can be developed as:

Ry t; zð Þ ¼ 1 � 0:297� ln e�
t

97:232ð Þ
1� �expð0:604z2Þ

� �� �� 1=0:297

ð17Þ

In the next step, the classical approach has been used to estimate the reliability of EBN. The

classical approach is used to check the Frailty model’s result with the current practice. In the

Table 3. The P-value values for the estimation of the PH of risk factors.

Risk Factors P χ2 D.F P-value

Shift 0.005 0 1 0.92

Temperature -0.075 2 1 0.13

Precipitation 0.001 0 1 0.98

Type of Rock 0.014 0 1 0.77

Operational Group 0.035 1 1 0.47

Total Test - 3 5 0.73

https://doi.org/10.1371/journal.pone.0247650.t003

Table 4. The GOF values of regression functions.

Model AIC BIC

Weibull Frailty 1527.6 1564.7

Exponential Frailty 1525.6 1558.6

https://doi.org/10.1371/journal.pone.0247650.t004
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classical approach, the only variable is TTF. We nominate several distributions, including Wei-

bull, lognormal, exponential. The result of GOF tests showed that the best fit distribution is the

Exponential distribution with the parameters shown in Table 6.

Based on the estimated parameters in Table 6, the reliability function of the EBN can be

developed as:

R t; zð Þ ¼ e
� t

1
0:012ð Þ ð18Þ

Using Eq (17) and the defined value for the rock type in Table 1 (Tailings: 1 and Ore: 2), Fig

3 shows the calculated reliability graph for 100 hours of operation of the EBN while it works

on ore rock (Scenario No. 1) and tailing rock (Scenario No. 2). Moreover, Eq (18) is used to

plot the reliability of EBN without considering the observed and unobserved risk factors.

As this graph shows, the reliability of the EBN at the end of 50 hours of operation is 68.80%

on ore rock and 50.90% on tailing rock. It can be concluded that more spare parts are needed

while it is working on tail rocks. Moreover, it showed that the reliability of EBN is underesti-

mated in the classical approach compared to ore rock and overestimated compared to tailing

rock, which is estimated based on the frailty model.

Fig 2. The Cox-Snell residual diagram of the exponential frailty model.

https://doi.org/10.1371/journal.pone.0247650.g002

Table 5. The Exponential frailty estimated parameters.

Risk Factors Risk Factor Coefficients Standard Error η p-value 95% Con. Interval

Shift 0.016 0.075 0.22 0.825 -0.13 0.163

Temperature -0.003 0.008 -0.43 0.67 -0.018 0.012

Precipitation -0.005 0.006 -0.73 0.468 -0.017 0.008

Type of Rock 0.604 0.134 4.52 0 0.342 0.866

Operational Group -0.084 0.056 -1.49 0.135 0.193 0.026

Degree of heterogeneity θ = 0.297

Baseline parameters Shape Parameter:1; Scale Parameter: 97.232

https://doi.org/10.1371/journal.pone.0247650.t005
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Using the result of reliability analysis, the required number of spare parts can be estimated.

As the selected item is non-repairable. Two parameters, σ(t,z;z(t))) and �T need to be estimated

within the performance time interval, t. The numerical values of these two parameters, in Sce-

nario No.1, can be calculated as:

�T ¼
Z 1

0

RðtÞdt ) �T ¼
Z 1

0

1 � 0:297� ln e�
t

97:232ð Þ
1� �ð1:83Þ

� �� �� 1=0:297

dt ¼ 75:59 ð19Þ

s t; z; zðtÞÞð Þ ¼ 2

Z 1

0

t 1 � 0:297� ln e�
t

97:232ð Þ
1� �ð1:83Þ

� �� �� 1=0:297

dt � �T 2 ¼ 118:53 ð20Þ

Having σ(t,z;z(t))) and �T operation time, the number of spare parts required (Mt) can be

calculated. Here, the estimation is carried out for 365 days, with an average daily operation of

21.5 hours. By considering the probability of a 5% shortage, the required number of spare

parts is shown in Fig 4.

Table 6. The Exponential classical estimated parameters.

Coef. Std. Error Z P>|z| 95% Confidence Interval

_cons -4.386 0.048 -90.740 0.000 -4.481 -4.291

Lambda 0.012 0.001 20.690 0.000 0.011 0.014

https://doi.org/10.1371/journal.pone.0247650.t006

Fig 3. Reliability diagram of the classical and frailty exponential function for EBN.

https://doi.org/10.1371/journal.pone.0247650.g003
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As Fig 4 shows, the excavator needs more spare parts when it works on tailing rock (Sce-

nario No. 2). Moreover, the Frailty model’s obtained result is significantly different from the

classical approach. Finally, by considering the equivalent cost of 2$ per nail, the order cost of

0.5$, the annual maintenance cost of 0.2$, with an average delay time of five days and a confi-

dence level of 90%, the number of economic order quantities (EOQ) and the Reorder Point for

the excavator bucket are calculated and shown in Fig 5. Reflected by the second scenario, if the

warehouse level reaches 2.57 (in reality, 3), we have to order 33.28 (in reality, 33) nails.

Fig 4. The number of EBN.

https://doi.org/10.1371/journal.pone.0247650.g004

Fig 5. The amounts for re-order shipping and the economic order quantities of EBNs.

https://doi.org/10.1371/journal.pone.0247650.g005
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3.1. Conclusion

Spare-part estimation is the main element of spare-part management. The effective spare-part

prediction will eliminate unnecessary stoppage and avoid the high costs of delays in the supply

of spare parts at the time of repairs. Moreover, it optimizes the inventory size and minimizes

the inventory management costs. In this study, we developed a frailty-based approach for

spare-part estimation, incorporating the effect of observed and unobserved risk factors. In this

approach, firstly, sorting and classifying the time series data and risk factors. Then homogene-

ity test needs to be carried out to assess the presence or absence of unobservable risk factors.

After that, the meantime to failure and the standard deviation of failure need to be evaluated.

In estimating these parameters, available studies mostly ignore the effect of unobserved risk

factors. Hence, in this paper, we generalized the previous approach to calculate the values of

mean time to failure and the standard deviation of failure in the presence of observed and

unobserved risk factors. The homogeneity test results show that some unobservable risk factors

affect the EBN reliability performance. Hence, the frailty model is used to isolate the effect of

unobserved and observed risk factors. The spare-part estimation analysis showed that ignoring

the unobserved risk factors can lead to unrealistic estimations. Based on the frailty model,

240.36 EBNs are needed for the excavator if it is going to work on ore rocks. However, ignor-

ing the risk factors reduces this to 138.76, which is an unrealistic estimation and can cause an

unplanned stoppage of the excavator due to the shortage of EBNs.
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