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Fixational eye movements enable robust edge detection
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Human vision relies on mechanisms that respond to
luminance edges in space and time. Most edge models
use orientation-selective mechanisms on multiple
spatial scales and operate on static inputs assuming that
edge processing occurs within a single fixational
instance. Recent studies, however, demonstrate
functionally relevant temporal modulations of the
sensory input due to fixational eye movements. Here we
propose a spatiotemporal model of human edge
detection that combines elements of spatial and active
vision. The model augments a spatial vision model by
temporal filtering and shifts the input images over time,
mimicking an active sampling scheme via fixational eye
movements. The first model test was White’s illusion, a
lightness effect that has been shown to depend on
edges. The model reproduced the spatial-frequency-
specific interference with the edges by superimposing
narrowband noise (1–5 cpd), similar to the
psychophysical interference observed in White’s effect.
Second, we compare the model’s edge detection
performance in natural images in the presence and
absence of Gaussian white noise with human-labeled
contours for the same (noise-free) images. Notably, the
model detects edges robustly against noise in both test
cases without relying on orientation-selective processes.
Eliminating model components, we demonstrate the
relevance of multiscale spatiotemporal filtering and
scale-specific normalization for edge detection. The
proposed model facilitates efficient edge detection in
(artificial) vision systems and challenges the notion that
orientation-selective mechanisms are required for edge
detection.

Introduction

Edges are important features in the environment
because they demarcate surface and object boundaries.
An edge is a luminance discontinuity that is localized
in space and/or time and extends in one direction.
When edges are removed from the visual input,

perception becomes less sensitive or even fades away.
Replacing a luminance step by a ramp renders the
luminance difference between the plateaus less visible
(O’Brien, 1958). Similarly, smoothing the boundaries
of geometrical shapes or stabilizing the retinal input
via gaze-contingent displays leads to perceptual fading
(Troxler, 1804; Poletti & Rucci, 2010). Less extreme
cases of partial fading can be induced with masking
(Paradiso & Nakayama, 1991; Salmela & Laurinen,
2009; Betz et al., 2015a) and contour adaptation
experiments (Anstis, 2013; Betz et al., 2015b). In
all these cases, spatial or temporal interference with
edge-sensitive mechanisms leads to an impaired
perception of surfaces and image structures.

The phenomenological importance of edges
coincides with physiological mechanisms in the visual
system that respond to luminance discontinuities in
space and time. Neurons in the retina and thalamus
with their concentric center-surround receptive fields
are suited to detect edges and so are simple cells in V1
that are selective to spatial frequency and orientation
(Hubel & Wiesel, 1962, 1968; De Valois et al., 1982;
Parker & Hawken, 1988). This is why their function
is emulated in the so-called standard spatial vision
model (e.g., Schütt & Wichmann, 2017), where they are
implemented as (oriented) filters at different spatial
scales. Standard spatial vision models have been
developed to predict human contrast sensitivity, but
also have been used successfully to predict human
edge sensitivity. However, despite much effort either
including oriented filters at different spatial scales (Elder
& Sachs, 2004; Georgeson et al., 2007) or computing
additional orientation-selective features in the filtered
image (such as zero-crossings in the derivatives) (Marr
& Hildreth, 1980; Watt & Morgan, 1985; Canny, 1986;
Elder & Zucker, 1998), it has proven difficult to robustly
detect edges across different scenarios (Carandini et al.,
2005).

The standard spatial vision model relies exclusively
on spatial information assuming that the modeled
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processes occur within a single fixation and hence
under static viewing. However, under natural fixation
conditions, humans constantly move their eyes.
These so-called fixational eye movements (FEMs)
are involuntary and are composed of fast and large
microsaccades and slow and small ocular drift motions
(Ratliff & Riggs, 1950; Ditchburn & Ginsborg, 1953).
Tapping the maximum potential of eye-tracking
technology, it was demonstrated empirically that ocular
drift is crucial for high-acuity vision (Boi et al., 2017;
Ratnam et al., 2017; Intoy & Rucci, 2020) and might
serve to emphasize luminance discontinuities (Rucci
& Victor, 2015), that is, edges, even in the absence of
orientation-selective mechanisms (Kuang et al., 2012).

Picking up on these observations, here we combine
elements from active vision and spatial vision, and
propose a spatiotemporal model of human edge
detection. We investigate (1) whether an active sampling
of the visual input via fixational eye movements
facilitates human edge detection and (2) whether it is
possible to extract edges in time and space without
orientation-selective mechanisms. Our approach was
as follows. We take a standard spatial vision model
with unoriented Difference-of-Gaussians (DoG) filters
at multiple scales and augment it with a temporal
bandpass filter and subsequent temporal integration.
As model input, we use a sequence of images where
each time frame is sampled via ocular drift and hence a
slightly shifted view of the original (static) image.

We evaluate model performance in two test cases.
The first test case is the spatial-frequency-specific effect
of narrowband noise on White’s illusion. Figure 1
illustrates White’s illusion in the absence and presence
of narrowband noise of different center frequencies.
In the original noise-free stimulus (Figure 1A), two
equiluminant gray patches appear differently bright
when placed on either the dark or light bar in the
carrier grating. This lightness difference between the
target patches is virtually absent when the stimulus
is superimposed with narrowband noise with center
spatial frequencies between 1 and 5 cpd (Figure 1C;
Salmela & Laurinen, 2009; Betz et al., 2015a). As is
evident from the figure, this type of noise also effectively
interferes with the vertical low-contrast edges of the
target (compare Figures 1B, C, and D). It has therefore
been concluded that the reduction in lightness is mostly
attributable to the effective masking of those edges by
narrowband noise of intermediate spatial frequency
(Salmela & Laurinen, 2009). Although this effect is not
a direct measure of human edge perception, we think it
is a useful test case for an edge detection model, because
(1) it probes edge processing in a highly controlled
setting, (2) it shows the relevance of different spatial
frequencies for human edge detection (Elder & Zucker,
1998; Elder & Sachs, 2004), and (3) it has been shown
to pose a challenge for various multiscale vision models
(Betz et al., 2015a).

Figure 1. Narrowband noise between 1 and 5 cpd interferes
with White’s effect. (A) A gray patch on a black bar is perceived
as lighter than a gray patch on a white bar even though they are
equiluminant (= White’s effect). (B) White’s stimulus masked
with 0.58 cpd noise, (C) 3 cpd, and (D) 9 cpd assuming a
stimulus size of 5 cm at a viewing distance of 30 cm. White’s
effect is reduced in (C). Human subjects reported that edges are
hardly visible in (C). For demonstration purposes, the stimulus
contrast is higher in the figure than in the actual test stimuli.

Figure 2. (A) Example natural image taken from the Contour
Image Database (Grigorescu et al., 2003). (B) We added
Gaussian white noise to the images to test the robustness of
the model against noise. (C) Human-drawn contour map
provided with the Contour Image Database (Grigorescu et al.,
2003), which represents human contour detection performance
and which we use to evaluate model performance in both noise
conditions.

In the second test case, we compare the model’s edge
detection performance to human contour detection
in natural images, which has become a standard
comparison in computer vision. Complementary to the
first test case, this investigates how the model performs
under more realistic and less controlled conditions.
There are several openly available benchmark datasets
that contain high-resolution images of different
categories and so-called ground-truth contour maps
drawn by human observers (Figure 2; Martin et al.,
2001; Grigorescu et al., 2003). To derive these maps,
observers are instructed to trace the outlines of objects
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and not individual edges, which is why we refer to these
maps as contour rather than edge maps. To test the
model’s contour detection performance, we correlated
the model output with the ground-truth contour maps
from the Contour Image Database (Grigorescu et al.,
2003). We compared how the model performed for
images with and without superimposed Gaussian
white noise, because edge detection in white noise is a
challenge for artificial systems, whereas it has relatively
little effect on human perception (e.g., Burgess et al.,
1981; Goris et al., 2008; and compare Figures 2A
and B).

To anticipate, the model reproduced the spatial-
frequency-specific interference of narrowband noise on
the edge representations underlying White’s illusion
and robustly detected edges in natural images. Edge
signals emerged in the spatiotemporal filter responses
of the model as a consequence of actively sampling the
visual input. Orientation-selective mechanisms or other
directional features were not required.

Methods

Active spatiotemporal edge detection model

Figure 3 shows a schematic overview of the model.1
To mimic the active nature of visual processing during
fixations, we sample images from slightly different
viewpoints as they would occur as a consequence of

ocular drift. The resulting dynamic image sequence is
illustrated in Figure 3B. We simulate drift as Brownian
motion (Kuang et al., 2012) with a temporal frequency
of f = 100 Hz. This samples the temporal range that
the visual system is most sensitive to (Derrington &
Lennie, 1984; Zheng et al., 2007), while keeping the
computational cost low. We define the time period
T = 0.2s as this was proposed as a minimal fixation
duration (Salthouse & Ellis, 1980). We set the diffusion
coefficient D = 20 arcmin2

s to fit the magnitude of
recorded drift motions (Kuang et al., 2012). The
resulting input videos consists of T · f + 1 = 21
frames.

This dynamic input is then fed to the spatiotemporal
vision model, which is built upon the standard
components of early vision models: linear filtering
at multiple scales followed by nonlinear response
normalization within and integration across spatial
scales (Heeger, 1992; Carandini et al., 1997; Schütt
& Wichmann, 2017). We filter the dynamic input in
space and time (Figure 3C). Inspired by spatial tuning
properties of simple cells (De Valois et al., 1982), we
use five spatial DoG filters Gi( fx, fy) with peak spatial
frequencies (SFs) between 0.62 and 9.56 cpd in octave
intervals (Supplementary Figures S1A–E), defined in
the frequency domain as

Gi( fx, fy) = e−2π2s2i ( f 2x+ f 2y ) − e−8π2s2i ( f 2x+ f 2y ), (1)

where fx and fy denote the SFs in cpd and
s1−5 = [0.016, 0.032, 0.064, 0.128, 0.256] deg controls
the spatial scale of the DoG filters.

Figure 3. Model structure. We simulate the active sampling of the visual system within one fixation by applying drift (B) to the input
(A). We then filter the dynamic input with multiple spatial and one temporal filter (C). Each row illustrates the filtered responses at
different spatial scales i. We extract edges via temporal integration at each spatial scale (D). After normalization by the global means
Mi (E), we sum the signals into the final model output (F). We quantify model performance as the correlation between the aligned
model output and the ground truth (G).
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The temporal bandpass filter H (ω) was fitted to
the temporal tuning properties of macaque simple
cells reported in Zheng et al. (2007) with a peak
frequency of 9.52 Hz and no sensitivity to static inputs
(Supplementary Figure S1G). It is defined in the
frequency domain as

H (ω) = m1 e
−( |ω|

m2
)2

1 + (m3
|ω| )m4

, (2)

where ω denotes the temporal frequencies in Hz,
m2 = 22.9, m3 = 8.1, m4 = 0.8, and H (ω = 0) = 0.
Since m1 was negligible here, we set m1 = 1 (instead of
m1 = 69.3).

To spatiotemporally filter the input video S(x, y, t),
we perform

S′
i(x, y, t) = F−1(FS(x, y, t) · Gi( fy, fy) · H (ω)), (3)

where S′
i(x, y, t) denotes the filtered video at each

spatial scale i, F denotes the Fourier transform, and
F−1 denotes the inverse Fourier transform.

To temporally integrate the filtered videos S′
i(x, y, t),

we compute the squared mean separately at each scale i
(Figure 3D). Then, we normalize the integrated signals
St
i (x, y) by their mean activation Mi (Figure 3E). In the

final step (Figure 3F), we sum the normalized signals
over all scales into the model output according to

E (x, y) =
I=5∑

i

Ŝt
i (x, y). (4)

To avoid boundary effects, we crop the outer 0.5 deg
of the edge map E (x, y). To quantify edge detection
performance (Figure 3G), we correlate the model
output E (x, y) with a ground-truth template (Sebastian
et al., 2017). We define the ground-truth template as
a matrix of the same size as the model output with
nonzero entries at the location of the edges and zero
entries everywhere else. Since the edge locations in
E (x, y) slightly vary depending on the exact drift trace,
we align E (x, y) and the ground-truth edge template
to maximize cross-correlation before we calculate the
pixel-wise Pearson correlation.

Eliminating model components

To test which model components are crucial for
robust edge detection, we systematically eliminated
model components (Figures 3C–E). We label the
full model as ST-M-N (SpatioTemporal filtering–
Mean–Normalization) and label the control models
accordingly.

• S-M-N (Spatial filtering–Mean–Normalization):
This model omits temporal filtering. It performs
multiscale spatial filtering (S), temporal integration

via the squared mean (M), and normalization
within scales (N).

• ST-M (Spatiotemporal filtering–Mean): This
model omits the normalization. It is reduced to
spatiotemporal filtering (ST) followed by temporal
integration via the squared mean (M).

• T-M (Temporal filtering–Mean): This model omits
multiscale spatial filtering. It is reduced to temporal
filtering (T) followed by temporal integration via
the squared mean (M). Without multiple scales,
scale-specific normalization is not required.

• Canny: We also compare the model with an
optimized Canny edge detector (Canny, 1986)
because of its wide use in computer vision.
Optimization was required for each test case
individually to achieve good performance.
Technical implementation details are reported in
the Supplementary Material.

Computing the variance of the dynamic input

Mathematically, computing the variance of a signal
over time is analogous to filtering the signal with a
temporal filter that is insensitive to static inputs and
temporally integrating via the squared mean. To show
this equivalence, we introduce a second group of
control models in which we substitute the temporal
filtering (Figure 3C) by a variance operation in the
integration step (Figure 3D). Analogous to the first
group of control models, we progressively eliminate
model components to identify the ones crucial for
robust edge detection.

• S-V-N (Spatial filtering–Variance–Normalization):
Counterpart to the full model (ST-M-N). It
substitutes temporal filtering (S) and integration
via the squared mean by a variance operation (V).
It involves a nonlinear normalization at each spatial
scale (N).

• S-V (Spatial filtering–Variance): Counterpart to the
ST-M model. It replaces temporal filtering (S) by a
variance operation (V) and omits normalization.

• V (Variance): Counterpart to the T-M model. It
performs no filtering but directly computes the
variance (V) of the dynamic input over time.

Test Case 1: The spatial-frequency-specific
effect of narrowband noise

First, we tested whether the model can predict the
SF-specific interference of narrowband noise with the
edge representations in White’s stimulus. When White’s
stimulus (Figure 1A) is superimposed with narrowband
noise of about 1 to 5 cpd, the targets are hardly
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Figure 4. Human and model performance in Test Case 1.
Different rows showWhite’s stimulus with different grating
frequencies (A) and corresponding human (B) and model
(C) results. (B) Psychophysically measured illusion strength
(n = 11) as function of noise center frequency (x-axis). Error
bars indicate standard errors of the mean. Red stars indicate
the spatial frequency of the carrier grating. Dashed lines
indicate illusion strength for stimuli without noise. (C) Effect of
narrowband noise on the edge detection performance of all
models (n = 10 trials).

visible and the lightness effect is substantially reduced
(see Figures 1B–D). In psychophysical experiments,
observers’ perceived lightness of each target patch was
measured in a matching task (Salmela & Laurinen,
2009; Betz et al., 2015a). The effect of noise on perceived
lightness was quantified as the difference in matched
lightness for the target placed on the light versus the
dark bar. Target lightness was measured for different
grating frequencies, and the strength of the illusion was
selectively reduced for noise center frequencies of 1 to 5
cpd (Figure 4B).

Here we test whether the model’s edge detection
performance is also specifically impaired by narrowband
noise with center frequencies between 1 and 5 cpd
in comparison to noise with center frequencies
outside this range. We compare the model’s edge
detection performance to the psychophysical illusion
strength (Betz et al., 2015a), assuming that the
reduction in illusion strength is predominantly caused
by interference with the edges. The question how
exactly perceived lightness, and thus White’s effect,
is derived from the representation of the edges is an
open research question and beyond the scope of the
proposed model. It most likely involves additional
mechanisms such as edge integration, iso-orientation
suppression, figure-ground segmentation, or filling-in
(e.g., Grossberg & Todorovic, 1998; Domijan, 2015;
Betz et al., 2015b).

We reimplemented the stimuli used in Betz et al.
(2015a) that depict single-target White’s stimuli
(Figure 4A) and superimposed them with narrowband
noise. Stimuli were comprised of horizontal square
wave gratings (Michelson contrast = 0.05) with black
and white bars and a single gray patch. We used three
versions of White’s stimulus with different grating
frequencies (Figure 4A). The gratings with low, medium,
and high SFs contained 4, 6, and 12 bars, corresponding
to SFs of 0.2, 0.4, and 0.8 cpd. Total stimulus and
patch sizes were different for different SFs. The low SF
grating was 10.2×10.2 deg with patch size 2.55×2.55
deg, the medium SF grating was 7.65×7.65 deg, with
patch size 1.28×1.28 deg, and the high SF grating was
7.50×7.50 deg, with patch size 0.63×0.63 deg. The
stimuli were masked with bandpass-filtered white noise
with a one octave SF bandwidth. Corresponding to the
psychophysical design, we used six noise masks with
random instantiations and noise center frequencies
between 0.58 and 9 cpd in logarithmic steps. All noise
masks had a size of 16×16 deg with RMS contrasts of
0.2 (standard deviation divided by mean). Since ocular
drift evokes small shifts of the input, we required a high
stimulus resolution of 40 pixels per degree. Afterwards,
we fed the stimuli to the model and computed the model
response for each stimulus. We created ground-truth
templates with the edge locations and magnitudes of
the noise-free stimuli. Edge thickness was 0.1 deg as this
roughly matches the edge thickness generated by the
models. Model performance was quantified as Pearson
correlation between the ground-truth edge templates
and the aligned model outputs.

Test Case 2: Contour detection in natural images

To test the model under less artificial conditions, we
evaluated its contour detection capacities on natural
images. Images were taken from the Contour Image
Database (Grigorescu et al., 2003), which contains 40
grayscale images (512×512 pixels) of textured scenes
depicting man-made objects or animals in their natural
habitat. Each image is accompanied by a human-drawn
contour map, which we use as ground truth to evaluate
the different model performances (see Figure 2C). The
original purpose of the database was to evaluate the
contour detection performance of different algorithms
while suppressing texture edges. Observers were thus
instructed to trace all contours but not necessarily all
edges (Grigorescu et al., 2003). The ground-truth maps
therefore reflect human contour rather than human
edge perception.

We preprocessed the images before feeding them into
the models. We converted the image sizes from pixels
to degrees visual angle with a resolution of 40 pixels
per degree. This resulted in image sizes of 12.8×12.8
deg. Additionally, we normalized the pixel intensities
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between 0 and 1. To quantify model performance
relative to human performance, we correlated the model
outputs with the human-drawn contour maps from
the database. We again increased edge thickness in the
ground-truth maps to 0.1 deg to roughly match the edge
thickness generated by the models.

To evaluate the models’ robustness against noise,
we tested each of the different models on the images
from the database in the presence and absence of
Gaussian white noise. To keep the overall brightness
between images with and without noise comparable
(average difference in mean brightness = 0.0014),
we used noise with μnoise = 0 and σnoise = 0.1 and
cropped pixel intensities smaller than 0 and larger than
1 (values were substituted by 0 and 1, respectively).
We used Gaussian white noise because it challenges
the edge detection capacities of artificial systems,
while it has been shown to be relatively ineffective for
human perception (Burgess et al., 1981; Goris et al.,
2008). This can be informally confirmed by comparing
Figures 2A and B. Model performance was quantified
as Pearson correlation between the human-drawn
contour maps and the aligned model outputs. Human
contour maps were only available for images without
noise (Grigorescu et al., 2003).

Results

Test Case 1: The spatial-frequency-specific
effect of narrowband noise

Figure 4B shows the psychophysical data for White’s
effect as a function of the center frequency of the
narrowband noise (data from Betz et al., 2015a).
Analogously, Figure 4C shows the edge detection
performance of the models. The full model (ST-M-N,
blue curve) and its variance counterpart (S-V-N, brown
curve) show the highest and very similar performance.
More importantly, they reproduce the SF-specific effect
of narrowband noise on White’s effect as the edge
representations of these two models are most impaired
for noise center frequencies between 1 and 5 cpd. All
other models show an overall lower performance and
do not exhibit the SF-specific dip. Their performance
rather decreases with increasing noise center frequency.
This is also the case for the Canny edge detector
(lime curve) despite being optimized to reproduce the
psychophysical effect.

Test Case 2: Contour detection in natural images

Figure 5 plots the contour detection performance of
the models quantified as Pearson correlation between
model outputs and the human contour maps from the

Figure 5. Models’ contour detection performance in natural
images in the (A) absence and (B) presence of Gaussian white
noise. Lines indicate average model performance over all 40
images from the database (N= 10 trials). The full ST-M-N model
and its variance counterpart S-V-N are marked with an asterisk.
In panel A, the lines indicating performance of the ST-M (green),
T-M (lilac), and V (gray) models lie on top of each other. In panel
B, the lines indicating performance of the T-M (lilac) and V
(gray) models lie on top of each other. For results, see text.

database (Grigorescu et al., 2003). The full ST-M-N
model (blue curve), its variance counterpart S-V-N
(brown curve), and the optimized Canny edge detector
(lime curve) perform better than all other models in
the absence and in the presence of Gaussian white
noise (compare Figures 5A and B). The models without
multiscale spatial filtering (T-M, V; lilac and gray
curves) or without normalization (ST-M, S-V; green
and pink curves) were most affected by the noise. The
performance of the full ST-M-N model, the ST-M, and
the T-M model are close to the performances of their
variance counterparts S-V-N, S-V, and V.

Figure 6 shows the model outputs (or model
activations) before correlation with the human-drawn
contour maps. In the absence of noise, almost all models
respond to object outlines (e.g., bear) but also respond
to textural structures such as grass or reflections on
the water. The purely spatial S-M-N model generally
produces low activation for contours but high activation
for features such as the legs of the bear. The S-M-N
model demonstrates that additional, direction-selective
features are required to extract edges in purely spatial
models.

Model performances vary substantially between
different input images (compare individual data points
in Figure 5). Visual inspection of the model outputs
revealed that models perform poorly on images that
contain many high-contrast textures (see examples in
Figure 6). This is not too surprising, since we compare
the output of edge detection models to human-drawn
contour maps. “Falsely” detected edges were to be
expected as not all edges form part of a contour.
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Figure 6. Model outputs for example input image from Contour Image Database (Grigorescu et al., 2003) shown in Figure 2 for the
no-noise condition (top row) and the Gaussian white noise condition (bottom row). For results, see text.

Discussion

The aim of this study was to investigate whether a
spatiotemporal early vision model could successfully
extract edges in short fixational instances when the input
is actively sampled. In particular, we tested whether a
spatiotemporal strategy enables edge detection in the
absence of orientation-selective mechanisms.

Standard spatial vision models come in different
flavors, but their basic components are SF- and
orientation-selective units followed by nonlinear
response normalization and integration across channels
(Heeger, 1992; Geisler & Albrecht, 1995; Carandini
et al., 1997). They can account for many perceptual
phenomena such as contrast sensitivity, edge detection,
and brightness perception (e.g., Blakeslee & McCourt,
1999; Georgeson et al., 2007; Schütt & Wichmann,
2017). Spatial vision models operate on static inputs
assuming that the eyes are mostly still during fixations
and that FEMs, if anything, introduce noise to the
sensory input. Over the last two decades, however,
evidence has accumulated that FEMs play an active
role in visual processing and might emphasize edge
signals in the visual input (Kuang et al., 2012; Rucci &
Victor, 2015).

Inspired by these findings, we tested whether
ocular drift plays a role in human edge processing
by sampling the visual input in a characteristic way
during fixations. We tested the behavior of a standard
spatial vision model with unoriented filters that we
(1) extended by a temporal dimension and (2) fed
with an actively sampled sensory input. Such a model
is reminiscent of existing spatiotemporal models of
human motion perception (e.g., Adelson & Bergen,
1985) but has not been applied to static images at the
time scale of fixations. Our simulations show that edge
signals emerge in the spatiotemporal filter responses
of the proposed model as a consequence of the active
sampling. The full model (ST-M-N) outperformed an
optimized Canny edge detector as well as the purely

spatial (S-M-N) and the purely temporal (T-M) control
models. It reproduced the spatial-frequency-specific
interference of narrowband noise of 1 to 5 cpd with
the edge representations underlying White’s illusion,
and it robustly detected edges in natural images in the
presence and absence of Gaussian white noise.

In addition, we show that temporal filtering
and integration can be substituted by computing
the variance of the time-varying filter responses.
Computing the variance is more efficient, because
it requires a lower temporal sampling of the visual
input than the temporal filtering operation. It has
been suggested before that the temporal response
variations of cells at the front end of the visual system
can be used for edge detection. Hongler et al. (1998)
described the purely temporal resonant retina model,
which exploits small camera vibrations to detect edges
(see also Prokopowicz & Cooper, 1995). A related
idea is exploited in neuromorphic event-based vision
systems, which only register changes over time and thus
efficiently code input features such as edges (Gallego
et al., 2020). The resonant retina and the event-vision
ideas are most similar to our control model V, which
was however prone to high spatial frequency noise
in both test cases and performed worse than the
model proposed here. We will discuss the relevance of
multiscale spatial filtering and response normalization
below.

Edge detection without orientation-sensitive
mechanisms

Many neurons in V1 respond preferentially to
oriented bars of various widths and lengths, which is
why V1 has been ascribed the role of edge analysis
of the visual input (Hubel & Wiesel, 1962, 1968; but
see Carandini et al., 2005). In particular, simple cells
have served as inspiration for models of human edge
processing. Analogously to simple cells, these models
use linear filters at multiple spatial scales that are
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Figure 7. Consequence of ocular drift illustrated for an example
input image and for units at three different locations in (A). The
arrows indicate location shifts that result from ocular drift.
(B) The resulting dynamically sampled luminance signal is flat
for units at homogeneous image regions (orange and blue) but
fluctuates over time for units close to luminance edges (green).
(C) A temporal filter that only responds to fluctuating input
signals will not be activated by flat luminance signals (orange
and blue) but will generate large activations for the fluctuating
luminance signal (green).

sensitive to orientation. There are two subcategories
of simple-cell-inspired edge models: (1) models that
use oriented filters (e.g., Gaussian derivative filters)
to detect edges (Georgeson, 1992; Georgeson et al.,
2007) and (2) models that use unoriented filters (e.g.,
DoG or Gaussian filter) and detect edges by computing
additional directional features (e.g., zero-crossings or
directional derivatives) of the filtered outputs (Marr &
Hildreth, 1980; Watt & Morgan, 1985; Canny, 1986;
Elder & Zucker, 1998). What all these models have
in common is some dedicated orientation-sensitive
mechanism (oriented filters, zero-crossing or directional
derivatives), which is used to extract edge signals from
the visual input.2

The present model extracts edge signals without
dedicated orientation-selective processing because
the differential signal at luminance discontinuities is
conveyed in time. Temporal filtering of an actively
sampled input is sufficient to convert the temporal
variations of the input signal into discontinuities in
space (Figure 7). This may come as a surprise at first,
since particularly their orientation-selectivity made
simple cells popular as edge detectors. However, it
has previously been shown that model neurons with
circularly symmetric receptive fields, and hence no
orientation preference, emphasize edges in an image
(Kuang et al., 2012). The present model is still inspired
by properties of neurons in V1. It performs multiscale
spatial filtering of the visual input at each location
(Campbell & Robson, 1968) and it emulates spatial (De
Valois et al., 1982) and temporal (Zheng et al., 2007)
sensitivities of simple cells. Also, there are physiological
data showing that a substantial number of simple cells
are not tuned to orientation (Ringach et al., 2002;
Talebi & Baker, 2016). These cells have shorter response
durations than orientation-selective cells, are highly
reliable, and show no direction-selectivity (Talebi &

Baker, 2016). Such nonoriented simple cells seem to be
well suited to extract edge signals from the visual input
when considering drift motions.

Unoriented filters are computationally more efficient
for edge detection (Marr & Hildreth, 1980). Detecting
edges via ocular drift might reduce the number of
filters tuned to both spatial frequency and orientation.
In order to achieve orientation sensitivity in further
processing stages, the output of the proposed model
could still be processed by orientation-selective cells,
but these could be tuned to a much narrower spatial
scale.

Relevance of multiscale filtering and nonlinear
normalization

There is general agreement that the visual system uses
multiscale processing to extract edges (Watt & Morgan,
1985; Elder & Zucker, 1998). The reasoning for this
is twofold. Edges in the visual input come in different
sizes, at different distances, and at different sharpnesses
and hence differ in their amount of blur. Filters at
different spatial scales seem to be a proper response to
this variety. A multiscale approach also proves beneficial
when edges have to be detected in the presence of noise.
Our results corroborate the importance of multiscale
filtering for edge detection, because performance
substantially dropped in the presence of noise for the
purely temporal models (T-M, V model) and for the
Canny edge detector. This is particularly evident in Test
Case 1 (Figure 4C), presumably because the contrast of
the noise was comparatively large relative to that of the
grating.

A multiscale filtering system differs from a single-
scale system, only if there is subsequent scale-specific
processing. Our simulations suggest that it is the
nonlinear normalization within each spatial scale that is
crucial for robust edge detection. This became evident
from the model responses to the noisy images in Test
Case 2, where performance substantially dropped for
control models without normalization (Figure 5; ST-M,
T-M, S-V, V). We observed that without scale-specific
normalization, high spatial frequency contents in the
images dominated the model outputs (Figure 6; ST-M,
T-M, S-V, V).

Here we implemented a divisive normalization
scheme that was suggested to account for response
nonlinearities of simple cells in macaque V1 (Carandini
et al., 1997; Geisler & Albrecht, 1995; Heeger, 1992).
This follows the tradition of linear multiscale filtering
followed by a divisive response normalization, which is
routinely used in early vision models (Malik & Perona,
1990; Teo & Heeger, 1994; Watson & Solomon, 1997;
Schütt & Wichmann, 2017). Nonetheless, it should
be mentioned that the global normalization scheme
employed in the model is neurally not plausible, because
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it would require lateral or feedback connections across
the whole visual field (cf. discussion in Robinson et al.,
2007). A more realistic normalization scheme should
be local and it should consider that cells with similar
spatial frequency preferences interact more (Issa et al.,
2000). The main reason for implementing a global
normalization scheme was that it was required to
reproduce the psychophysical results in Test Case 1 and
that it was simple. Edge extraction in (noisy) natural
images, as in Test Case 2, was not sufficient to further
constrain the normalization scheme of the model. We
need more psychophysical data from experiments that
specifically probe human edge sensitivity in the presence
of various types of noise in order to constrain a more
biologically plausible normalization scheme.

Specificity of temporal filtering

The model’s edge detection capacities can be
attributed to the temporal filter, which responds only to
dynamically changing parts in the input. To illustrate
what this means, we have visualized the consequence of
ocular drift for homogeneous image regions and for a
luminance edge in Figure 7. Close to the edge, ocular
drift causes small image shifts between dark and bright
areas and hence causes the dynamically sampled signal
to fluctuate over time (green location in Figure 7). A
temporal filter tuned to nonzero temporal frequencies
will respond to these fluctuations. The dynamically
sampled signal in homogeneous image regions will stay
flat over time (orange and blue locations in Figure 7).
The temporal filter will not respond to these static
inputs. This model feature is in agreement with the
finding that the visual system is most responsive to
luminance transients (Derrington & Lennie, 1984;
Hawken et al., 1996). Our results show that the specific
properties of the temporal filter are not crucial to detect
edges. We can even substitute the temporal filtering and
subsequent integration by the variance operation. The
main difference between the two approaches is that the
temporal filter weighs the contributions of individual
spatial frequency components differently, whereas the
variance does not.

It has been shown that the temporal transients that
result from ocular drift specifically enhance the high
spatial frequency contents in the input (Rucci & Victor,
2015; Rucci et al., 2018). In the proposed model, we
observe neither an additional effect of temporal filtering
(compared to the variance) nor an enhancement of
high spatial frequencies. This is because we apply a
spatial-scale-dependent normalization scheme that
equalizes the contribution of each spatial scale in
the final model output. Control models without
spatial-scale-dependent normalization produced model
outputs dominated by high spatial frequency contents
(compare Figure 5; ST-M, T-M, S-V, V). This is to be

expected because ocular drift enhances high spatial
frequencies. Since our simulations suggest that robust
edge detection requires both multiscale filtering as
well as a scale-dependent normalization, it would be
interesting to see whether and how a more biologically
plausible normalization scheme could solve this
apparent discrepancy.

Limitations of test cases

To our knowledge, there is no standardized approach
to test models of human edge perception. Possible test
cases have been blur coding (Elder & Zucker, 1998;
Georgeson et al., 2007), Mach bands (Watt & Morgan,
1985), edge localization (McIlhagga, 2018), and edge
polarity discrimination in noise (Elder & Sachs, 2004).

Here, we have used two test cases to evaluate model
performance—one controlled and one more natural
task. The first test case was the spatial-frequency-specific
interference of superimposed narrowband (1–5 cpd)
noise on the edge representations underlying White’s
illusion. We chose this test case, because (1) it probes
edge processing in a controlled psychophysical setting,
(2) it shows the relevance of different spatial frequencies
for human edge detection (Elder & Zucker, 1998; Elder
& Sachs, 2004), and (3) it challenges multiscale vision
models (Betz et al., 2015a). Although the lightness effect
in White’s stimulus is an indirect measure of human
edge mechanisms, there are several findings that support
the assumption that the spatial-frequency-specific
interference with perceived lightness can be ascribed
to edge-sensitive mechanisms. As can be seen in
Figure 1, and as reported by participants in Betz et al.
(2015a), the edges in White’s stimulus are barely visible
when superimposed with narrowband noise around 3
cpd. Contour adaptation, which explicitly interferes
with edge-sensitive mechanisms, has been shown to
have a strong effect on lightness phenomena (Anstis,
2013). In particular, contour adaptation of the edges
orthogonal to the grating has been shown to abolish
White’s effect (Betz et al., 2015b). Thus, edges are
critical for perceived lightness at least in White’s effect,
and we also assume that the spatial-frequency-specific
interference of narrowband noise with White’s illusion
is a valid measure of human edge-sensitive mechanisms.
To fully account for the lightness effect (i.e., its
magnitude), additional mechanisms such as edge
integration, iso-orientation suppression, figure-ground
segmentation, or filling-in (e.g., Grossberg & Todorovic,
1998; Domijan, 2015; Betz et al., 2015b) need to be
considered.

The second test case was contour detection in natural
images in the presence and absence of Gaussian white
noise. We have chosen this test case to investigate to
which extent the edge detection capacities of the model
generalize to the more naturalistic task of human
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contour detection. We compared the performance
of our model with the human-drawn contour maps
provided in the Contour Image Database (Grigorescu
et al., 2003), which can be considered an approximation
of human ground truth. Human participants were
specifically asked to focus on the outlines of objects and
ignore more textural features for this task. In fact, it is
not clear what a full human-drawn edge map (instead
of contour map) would look like in natural images and
how this could be tested.

Natural images differ in their spectral contents
from the psychophysical stimuli used in Test Case 1
showing a characteristic reduction in spatial frequency
components that is inversely proportional to the
frequency itself. Contour detection in natural images
in the absence of additional noise does not constrain
human edge models well, because the models can simply
extract edges as high spatial frequency contents in the
input images. However, as should be clear from Test
Case 1, the human visual system extracts edges through
a rather narrow, intermediate spatial scale around 3
cpd (Figure 4; Shapley & Tolhurst, 1973). To test the
robustness of the tested models against small amounts
of noise, we have therefore added the Gaussian white
noise condition. We did not explicitly test it, but the
small amount of Gaussian white noise did not seem
to affect human contour detection much as the noise
is barely visible to the human visual system (compare
Figure 2; Burgess et al., 1981; Goris et al., 2008).

Conclusion

Existing models of early visual processes tend to
focus on spatial mechanisms to account for human
vision, often assuming short fixation periods in which
the retinal image is stable over time. This assumption
disregards the fact that our eyes are constantly moving
and that our visual system responds best to inputs that
change in space and time. Here, we have proposed
a spatiotemporal model of human edge processing
that combines standard components of spatial vision
models with an active-sampling strategy and temporal
filtering. The model successfully reproduced the
spatial-frequency-specific interference of narrowband
noise on the edge representations underlying White’s
effect and robustly detected edges in natural images
with and without Gaussian white noise. In the absence
of dedicated orientation-sensitive mechanisms, the
model challenges the notion that orientation-selectivity
is required for edge detection. Our findings corroborate
the notion that human vision is an active process and
that the visual system encodes visual information
efficiently in space and time.

Keywords: edge detection, spatial vision, active vision,
fixational eye movements, computational modeling
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Footnotes
1All code for the model and the test cases can be found at https://github.
com/computational-psychology/schmittwilken2022_active-edge-model.
2We provide a Jupyter-Notebook that implements these
mechanisms at https://github.com/computational-psychology/
schmittwilken2022_active-edge-model.
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