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Purpose. To evaluate the diagnostic performance of deep learning with a multichannel fusion three-dimensional convolutional
neural network (MCF-3DCNN) in the differentiation of the pathologic grades of hepatocellular carcinoma (HCC) based on
dynamic contrast-enhancedmagnetic resonance images (DCE-MR images).Methods andMaterials. Fifty-one histologically proven
HCCs from 42 consecutive patients from January 2015 to September 2017 were included in this retrospective study. Pathologic
examinations revealed nine well-differentiated (WD), 35 moderately differentiated (MD), and seven poorly differentiated (PD)
HCCs. DCE-MR images with five phases were collected using a 3.0 TeslaMR scanner.The 4D-tensor representation was employed
to organize the collected data in one temporal and three spatial dimensions by referring to the phases and 3D scanning slices
of the DCE-MR images. A deep learning diagnosis model with MCF-3DCNN was proposed, and the structure of MCF-3DCNN
was determined to approximate clinical diagnosis experience by taking into account the significance of the spatial and temporal
information from DCE-MR images. Then, MCF-3DCNN was trained based on well-labeled samples of HCC lesions from real
patient cases by experienced radiologists. The accuracy when differentiating the pathologic grades of HCC was calculated, and the
performance of MCF-3DCNN in lesion diagnosis was assessed. Additionally, the areas under the receiver operating characteristic
curves (AUC) for distinguishing WD, MD, and PD HCCs were calculated. Results.MCF-3DCNN achieved an average accuracy of
0.7396±0.0104with regard to totally differentiating the pathologic grade ofHCC.MCF-3DCNNalso achieved the highest diagnostic
performance for discriminatingWDHCCs from others, with an average AUC, accuracy, sensitivity, and specificity of 0.96, 91.00%,
96.88%, and 89.62%, respectively.Conclusions.This study indicates thatMCF-3DCNNcan be a promising technology for evaluating
the pathologic grade of HCC based on DCE-MR images.

1. Introduction

Hepatocellular carcinoma (HCC), the most common pri-
mary malignant liver tumor, is the second most common
cause of death related to malignancy in the world, and more
than 500,000 new patients are diagnosed annually [1, 2].
Although the surgical resection of HCC has been improved,
patient prognosis remains poor due to the high recurrence
rate. According to the “World Health Organization classifica-
tion of tumors of the digestive system”, HCC can be classified
into four pathologic grades, well-differentiated (WD), mod-
erately differentiated (MD), poorly differentiated (PD), and

undifferentiated, based on the tumor’s cellular and structural
atypia. The pathologic grade of HCC is one of the most
important factors in evaluating early recurrence after surgical
resection [3]. Compared to WD or MD HCCs, PD HCC has
a poorer prognosis and higher tumor recurrence. PD HCC
is also associated with a worse survival rate than WD or
MD HCCs. Therefore, it is helpful to evaluate the pathologic
grade of HCC before treatment. Preoperative liver biopsy is
the gold standard for pretreatment pathologic grade of HCC;
however, this method is not widely used in clinical practice
due to several limitations, including invasiveness, sampling
error, and bleeding. The development of noninvasive imaging

Hindawi
BioMed Research International
Volume 2019, Article ID 9783106, 12 pages
https://doi.org/10.1155/2019/9783106

http://orcid.org/0000-0002-1868-2746
http://orcid.org/0000-0002-9551-2660
http://orcid.org/0000-0002-8473-3257
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9783106


2 BioMed Research International

techniques to safely and accurately assess the pathologic
grade of HCC would benefit the selection of an optimal
treatment method for patients and improve their survival
rate.

Increasing numbers of studies have explored noninva-
sive evaluations of the pathologic grade of HCC, such as
diffusion-weighted imaging (DWI) to assess water diffusion
and dynamic contrast-enhanced magnetic resonance images
to evaluate tumor vascularity [1, 4]. One alternative imaging-
based approach to evaluate the pathologic grade of HCC is to
assess the internal structure or texture. Texture can be defined
as a complex visual pattern in an image that consists of
simpler subpatterns with characteristic features [5, 6]. These
features can be objectively assessed via quantitative texture
analysis. Wu Z et al. [7] evaluated the diagnostic accuracy
of texture analysis in determining the malignancy of HCCs
based on contrast-enhanced MR images, and they found
that both gray-level run-length nonuniformity and average
intensity can reflect the pathologic grade of HCC.

In recent years, convolutional neural networks (CNNs)
have become one of the most advanced deep learning net-
works. CNNs exhibit a powerful mechanism in representa-
tion learning directly from data instead of manual features
while displaying good performance in revealing the local
characteristics instead of global characteristics. Deep learn-
ingwithCNNshas reportedly [8] achieved good performance
in the pattern recognition of images/videos. As one of
most important areas of computer vision, CNNs are being
applied to medical image analysis [9, 10]. Some preliminary
achievements of computer-aided diagnostic techniques based
on CNNs have also been obtained in medical image analysis
for the detection, segmentation, and grading of abdominal
lesions in a broad spectrum of diseases [11–14]. Regarding
practical clinical experience in the diagnosis of HCC from
DCE-MR images, the salient appearance features in MR
images and the changes among different phasic images serve
as vital clues for determining the grade of HCC.Therefore, we
hypothesize that aCNNmodel, especially 3DCNN, can reveal
image characteristics and diagnostic patterns that reflect the
pathologic grade of HCC, taking into account both spatial
and temporal information.

In this study, we use a multichannel fusion 3D convo-
lutional neural network (MCF-3DCNN) to extract temporal
sequence information and spatial texture information from
five-phasic DCE-MR images. Based on the learned temporal-
spatial features, the grade of HCC is determined at the
end of the network of MCF-3DCNN. To develop a well-
trained MCF-3DCNNdiagnosis model, patient samples were
annotated by experienced radiologists. This retrospective
study aims to investigate the diagnostic performance of our
proposed MCF-3DCNN model for the differentiation of the
pathologic grade of HCCs based on DCE-MR images.

2. Materials and Methods

2.1. Patients. This retrospective study was approved by the
Institutional Human Ethics Board after waiving written
informed consent. From January 2015 to September 2017, 132
consecutive patients underwent dynamic contrast-enhanced

MRI (DCE-MRI) and other conventional magnetic reso-
nance imaging sequences for the evaluation of HCC in the
Department of Radiology, Beijing Friendship hospital. The
inclusion criteria were as follows: (1) pathologic grade of
the HCCs was available; (2) no previous treatment, such
as liver resection, transcatheter arterial chemoembolization,
radiofrequency ablation, or percutaneous ethanol injection;
(3) five-phasic liver DCE-MR images were available, includ-
ing precontrast, later arterial, portal venous, equilibrium
phase, and delay phase images. The exclusion criteria were as
follows: (1) prominent artifacts that affected the observation
of HCCs; (2) an interval between MRI examination and
resection longer than 2 weeks; (3) inaccurate time point of
phase. As a result, the study included 42 patients, with 34
men and 8 women. The mean age was 59.35±8.09 years, with
a range from 40 to 80 years. The patients’ demographics and
pathologic information are summarized in Table 1.

2.2. Pathologic Examinations. Patient’s lesion specimenswere
obtained from different way including surgical resection,
tumor biopsy, and liver transplantation. The decisions to
take were made according to a combination of tumor’s size,
location, number, the presence/absence of metastasis, the
status of patient and liver function. Accordingly, two patients
with tumors more than two underwent liver transplantation;
12 patients without indication for surgery underwent tumor
biopsy; the remaining patients underwent either open liver
resection or laparoscopic liver resection.

All obtained specimens were first fixed in 10% neutral-
buffered formalin and then embedded in paraffin wax.
Specimens embedded in paraffin blocks were cut into four-
to five-𝜇m-thick slices in preparation for histochemical stain-
ing. Neoplastic lesions were subjected to hematoxylin-eosin
staining, and Hepar-1, cytokeratin 19, and c-kit staining were
performed if needed. The background liver was subjected
to routine staining methods including hematoxylin-eosin,
Masson trichrome, and periodic acid Schiff after diastase.The
pathologic differentiation grade of each HCC was assigned
via consensus agreement between two experienced patholo-
gists who were blinded to the clinical history and radiologic
examination results of patients. According to the HCC
pathologic grading system issued in 2010 by theWorldHealth
Organization for classification of tumors of the digestive sys-
tem, HCCs were subcategorized into three grades: WD, MD,
and PD.When there were different grades within a tumor, the
grade of the tumor was determined by the most predominant
differentiation. These procedures were performed as routine
examinations. A total of 51 pathologically confirmed HCCs
based on surgically resected specimens were included in this
study. The pathological classifications of the HCCs included
nine WD, 35 MD, and seven PD HCCs.

2.3.MRI. MRI signal reception was performed in a 3.0TMRI
whole-body scanner (750W, GE Healthcare, Milwaukee, WI,
USA) with an eight-element phased array coil. The gradient
strength and the gradient slew rate were 50 mTm−1 and 200
mTm−1ms−1, respectively.

The DCE-MRI examination was performed using the tri-
directional LAVA (liver acquisitionwith volume acceleration)
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Table 1: Clinical characteristics of 42 patients and pathological features of the tumors.

Well-differentiated Moderately differentiated Poorly differentiated
Number 9 35 7
Age (years) 61.44±6.80 58.31±7.70 61.857±11.00
Sex

Male 7 30 6
Female 2 5 1

Tumor Diameter (mm)
Mean 2.83±1.78 3.45±1.64 2.75±0.99

AFP
Mean 44.75±102.59 54.88±84.46 1350.76±1545.56

Cirrhosis 7(77.8%) 18(51.4%) 5(71.4%)
Child-Pugh Score

5 4(44.4%) 24(68.6%) 5(71.4%)
6 4(44.4%) 6(17.1%) 1(14.3%)
7 1(11.1%) 5(14.3%) 1(14.3%)

Child-Pugh stage
A 8(88.9%) 30(85.7%) 6(85.7%)
B 1(11.1%) 5(14.3%) 1(14.3%)

BCLC Classification
A 3(33.3%) 26(74.3%) 4(57.1%)
B 6(66.7%) 9(25.7%) 0(0%)
C 0(0%) 0(0%) 3(42.9%)

protocol with a breath-hold and the following parameters:
repetition time/echo time, 4.1 msec/1.9 msec; flip angle, 12∘;
matrix size, 288×170; section thickness/interslice gap, 4mm/0
mm; field of view (FOV), 380 mm; rectangle FOV, 0.85.With
these parameters, the entire liver can be covered in a single
breath-hold of 10 seconds. The DCE-MR images consisted of
precontrast, later arterial, portal venous, equilibrium phase,
and delay phase images, which were acquired at 0 second,
26 seconds, 60 seconds, 180 seconds, and 300 seconds,
respectively, after a rapid injection of 0.1 mmol/kg body
weight (0.2 ml/kg) of Gd-DTPA (Magnevist, Bayer-Schering
Pharma, Berlin, Germany) at a rate of 2 ml/s. This was
immediately followed by a 20 ml saline flush at a rate of 2
ml/s through a power injector.

Other MR sequences were also performed, including
in- and opposed-phase spoiled gradient-recalled echo T1-
weighted imaging (T1WI), respiratory-triggeredT2-weighted
fast spin-echo imaging with fat-suppression, and respiratory-
triggered single-shot echo-planar DWI with two b values (0
and 600 s mm−1).

2.4. Data Preprocessing

2.4.1. Data Annotation. The generation of a sufficiently large
amount of well-annotated training data from existing cases is
the key step in the development of theHCCdiagnosticmodel.
A tumor location annotation tool was developed based on
Python’s standardGUI libraryThinter, whichwas used to save
the position information of each HCC on Digital Imaging
and Communications in Medicine (DICOM) data. After
training on five cases that were not included in this study,

all annotation was performed manually by one radiologist
(X.P.Wang, with 5 years of experience in abdominal imaging)
and subsequently verified by the other radiologist (D.W.
Yang, with 10 years of experience in abdominal imaging).
To minimize bias, both radiologists were blinded to clinical
history and pathologic diagnosis. First, a rectangular region
of interest (ROI) was placed on the slice with the maximum
area of an HCC lesion. The rectangular ROI completely
covered the entire lesion as well as a small number of other
tissues around the HCC lesion. Second, the numbers of slices
at the top and bottom ends of the z-axis were recorded so
that the 3D position information about the entire lesion was
marked. The 3D position information was used as the input
data.

2.4.2. Data Normalization. At the preprocessing stage, we
normalized the intensity value of the volume of MR images
to the range of [0, 1] according to (1). This normalization is
helpful for reducing the noise caused by the high intensity
values of the images. In contrast to natural images, the
intensity values of MR images have a wide range and,
accordingly, high resolution, which reflects more details in
MR images.

𝐼 =
(𝐼 − 𝐼min)

(𝐼max − 𝐼min)
, (1)

where 𝐼 and 𝐼 denote the normalized and original intensity
values, respectively. 𝐼min is the minimum intensity value
of the whole volume, and 𝐼max is the maximum intensity
value after trimming the top 1% grayscale value. This type
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Figure 1: Data representation with a 4th-order tensor.

of normalization preprocessing has been widely employed in
related work [12].

2.4.3. Data Representation with a 4th-Order Tensor. Based on
the location of the HCC obtained at the annotation step, the
intensity value of the center slice located at the ROI, that is,
the chopped volume enclosing the HCC at each phase, was
obtained from the original DICOM data. As the volume of
HCC generally varies among different cases, processing by
deep neural networks is not feasible. Therefore, the cross-
sectional dimension of the HCC was normalized to a fixed
size to adapt to the neural network. In this paper, we set the
size of the normalized HCC slice as 32×32. Along the vertical
angle of view, we selected two neighboring cross-sectional
slices at both sides of the center slice with the largest lesion
region. Therefore, the size of the HCC lesion volume was
set to 32×32×5. Taking into account dynamic information
because the HCC lesion has five phases in each case, the data
for each HCC lesion were represented as 4th-order tensors
with a size of 32×32×5×5. The structure and strategy of the
tensor-based representation are illustrated in Figure 1.

In Figure 1, S0 to S4 denote the five phase numbers of the
DCE-MR images, and 1 to 5 indicate the cross-sectional slice
numbers of eachHCC lesion. Based on the tensor-basedHCC
data representation method, a model for DCE-MR images
with 4 dimensions containing 3D spatial and 1D temporal
information was established by splicing each 2D slice of the
five phases of HCC into a 3rd-order tensor and then splicing
the 3rd-order tensors of the five slices into a 4th-order tensor.

2.4.4. Data Augmentation. To realize well-trained deep net-
works, a large dataset is required to prevent overfitting of
the obtained diagnostic model, but existing patient cases
are not sufficient. To overcome the shortage of samples,
data augmentation was performed referring to the general
approach adopted in the computer vision field. In this paper,
we performed data augmentation by performing operations
of transposition, rotation, and flipping on the samples, that
is, the rectangular ROI enclosing the suspicious HCC lesion
within MR images, in both the training set and the testing
set. After the operations of transposition, 90∘ rotation, and
flipping (horizontal and vertical), the amount of data was
increased 8-fold compared with the original dataset.

2.5. Deep Learning Model with the MCF-3DCNN

2.5.1. Principle of Model. To reveal the characteristics of the
temporal and spatial information of the DCE-MR images to
aid HCC diagnosis, we propose a MCF-3DCNN model that
contains several separate 3D-CNNs with the same structure.
Each independent channel of the 3DCNN deep learning
model is employed to extract the features of the 3rd-order
tensors of the serial phases of lesion slices at the same cross-
sectional layers of HCC MR images. In this way, the local
characteristics of the dynamic change and 2D spatial infor-
mation contributing to lesion diagnosis in the same sectional
layer are extracted. This strategy is consistent with clinical
diagnosis experience and takes into account both the phasic
change and local spatial region information. Furthermore,
to provide robust diagnosis, additional neighboring sectional
layers are considered. Therefore, by concatenating the output
from each channel, the features of each cross-sectional layer
reflecting the serial temporal and 2D spatial characteristics
are combined to provide comprehensive knowledge of the
temporal and 3D spatial information of DCE-MR images
of HCC. The concatenated features are then provided to
the subsequent category computing network to generate the
corresponding diagnosis results. Here, the parameters of the
model are trained based on an annotated dataset containing
well-labeled HCC lesion regions and grading degrees from
real clinical patient cases and experienced radiologists.

2.5.2. Structure of the Model. Figure 2 illustrates the net-
work structure of the proposed MCF-3DCNN. Our pro-
posed MCF-3DCNN contains five 3D CNNs with the same
structure. According to this structure, the 4th-order tensor
representation of the data is split into five separate 3rd-order
tensors. The 4th dimension in our approach refers to the
layer of the cross-section. The remaining 3rd-order tensors
contain one temporal dimension and two spatial dimensions,
which refer to the phases and the 2D lesion slice at one
cross-sectional layer of DCE-MR, respectively. The 3rd-order
tensors at the 5 layers are used as the input for the five separate
3D CNNs. Considering the limitation of sample volume, we
use a compact structure of the 3D CNN network to avoid
the burden of large-scale parameter computing. In the paper,
each 3D CNN is configured with two conventional layers
denoted as C1 and C2, two max pooling layers denoted as M1
andM2, and one fully connected layer naming FC1.Then, the
output of each 3D CNN is concatenated directly as the input
of the common fully connected layer FC2. The output of the
FC2 layer is connected to the softmax network to compute
the category result as a reference for diagnosis.

The fusion structure obviates the need to find a com-
pletely novel computing solution to process the four-
dimensional tensor. Moreover, the proposed fusion structure
facilitates the application of the mature 3DCNN to deal with
the four-dimensional data by splitting it into several indepen-
dent 3Ddatasets. Therefore, the general experience is referred
to in the hyperparameter configuration of each 3DCNN
network. First, the basic configuration parameters of the
convolution layers, max pooling layers and full connection
layers are set in the general way, as listed in Table 2. A rectified
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Figure 2: The architecture of the MCF-3DCNN.

Table 2: Specification of the basic parameters of the MCF-3D CNN.

Layer Input Size Kernel Size Kernel Number Stride Output Size
C1 32×32×5 3×3×3 6 1×1×1 30×30×3
M1 30×30×3 2×2×1 6 2×2×1 15×15×3
C2 15×15×3 4×4×3 8 1×1×1 12×12×1
M2 12×12×1 2×2×1 8 2 6×6×1
FC1 36 - 32 - 32
FC2 160 - 32 - 32
Softmax 32 - 3 - 3

Table 3: Specification of the numbers of samples in the three categories of the dataset for collection/augmentation/resampling.

Datasets
Number of HCC samples | Augmentation |
Label Shuffling

Poorly Moderately Well
Training 4 | 32 | 128 26 | 208 | 128 6 | 48 | 128
Testing 3 | 24 | 64 9 | 72 | 64 3 | 24 | 64
Total 7 | 72 | 192 35 | 280 | 192 9 | 56 | 192

linear unit (ReLU) [15] is used as the activation function. The
initial values of the convolution kernels are generated under
the Gaussian distribution constraint. The adaptive moment
estimation (Adam) optimization algorithm [16] is employed
in parameter tuning with minimization of cross-entropy loss.
Furthermore, to avoid overfitting, learning rate reduction and
the dropout method [17] with a ratio of 0.5 are used at the
training stage.

2.6. Training and Testing Strategy for MCF-3DCNN. As a
general problem in medical image analysis, the imbalance of
training samples of HCC also needs to be taken into account
during the training of our MCF-3DCNN for pathologic
grading evaluation.The sample amounts in the differentHCC
grading categories vary significantly. In fact, the classification
performance of trained CNNs based on class-imbalanced
samples is prone to fitting the categories with more samples,
which is detrimental for obtaining a universal effectivemodel.
Various types of solutions have been proposed to overcome
the problem of imbalanced samples [18]. In this study, we use

a practical compromised label-shuffling method that takes
an appropriate number of samples from each category of
samples. The determined number is normally the medium
sample number of all categories. This is feasible in our
application because the balance dataset obtained through
resampling from the augmented training data will not signif-
icantly influence the results.

For the task of noninvasive assessment of the pathologic
grade of HCC in this study, the collected HCC samples
labeled with three degrees of differentiation was reorganized
into three categories. After data augmentation, the training
dataset was resampled using a compromise label-shuffling
method. Specifically, we randomly resampled 128 samples
from each category in the augmented training set, and
repeated extraction was allowed during resampling. The test
dataset was subjected to similar processing with a sample
number setting of 64. The specifications of the sample
numbers in the training and testing datasets are listed in
Table 3, where each set of three numbers, such as “4 | 32 |
128”, indicates the sample numbers in the three categories of
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Table 4: The diagnostic performance of each pathologic grade of HCC using test data.

Data Accuracy Sensitivity Specificity AUC
Poorly 0.7708±0.0539 0.3437±0.0449 0.9429±0.0612 0.6448±0.0469
Moderately 0.6823±0.0221 0.7031±0.0453 0.6719±0.0341 0.7067±0.0322
Well 0.9100±0.0303 0.9688±0.0403 0.8962±0.0593 0.9641±0.0391
∗Data expressed as the mean±SD.

original collection, data augmentation, and resampling with
the compromise label-shuffling method, respectively.

The MCF-3D CNN model in this study was established
using Keras (https://keras.io/) and TensorFlow [19]. The
dataset was formed based on the expert annotation and sub-
sequent data preprocessing, augmentation and resampling.
Then, the MCF-3D CNN was trained on the training set
with a batch size and epoch of 32 and 1000, respectively.
After the MCF-3DCNN model was trained, the diagnostic
performance of noninvasive differentiation of the pathologic
grade of HCC was evaluated based on the testing sets.

2.7. Statistical Analysis. For statistical analyses, the Scikit-
learn toolkit version 0.19.1 (http://scikit-learn.org/stable/
index.html) was used. The average accuracy, as well as the
recall and precision, was generally calculated among ten
test sessions of the evaluation of the pathologic grade of
HCC by using the MCF-3DCNN. Data were expressed as the
mean ± standard deviation. The Matplotlib toolkit version
2.2.2 (https://matplotlib.org/) was used to map the confusion
matrix and perform the receiver operating characteristic
(ROC) analyses.The sensitivity, specificity, accuracy, and area
under the receiver operating characteristic curve (AUC) were
calculated to evaluate the performance of the MCF-3DCNN
in discriminatingWDHCCs,MDHCCs, and PDHCCs from
other cases using the test data.

3. Results

3.1.MRIAppearance ofHCCs. Our study did not consider the
proliferative properties of cirrhotic nodules, including regen-
erative nodules and dysplastic nodules. The aim of this study
was to differentiate pathologic grades of HCCs.Moreover, the
pathologic reports of the surgically resected HCC specimens
used in our retrospective study rarely mentioned the details
of associated cirrhotic nodules.

Fifty-one pathologically confirmed HCCs from 42
patients were included in this study. Of the 42 patients, three
had two lesions, and three had three lesions. Thirty-five of
51 HCCs presented in the right lobe, and the remaining 16
tumors were located in the left lobe.The average diameters of
the lesions in different groups varied, with lesions of 2.83±1.78
cm, 3.45±1.64 cm, and 2.75±0.99 cm in the WD, MD, and
PD HCC groups, respectively. However, the pathologic
differentiation of HCCs cannot be simply determined based
on tumor size.

More than half of the HCCs (29/51) exhibited the char-
acteristic MRI features of HCC, including a moderate
hyperintense appearance on T2-weighted imaging (T2WI),

a hypointense appearance on T1WI, arterial phase hyper-
enhancement, and washout in the portal vein or delay
phase. Additionally, an enhancing capsule appeared in the
equilibrium phase or delay phase (Figure 3). However, some
uncommon appearances were also observed, such as a hypo-
or isointense appearance on T2WI (7/51 lesions), a hyper- or
isointense appearance on T1WI (10/51 lesions) (Figure 4), the
absence of arterial phase hyperenhancement (3/51 lesions),
and an unclear enhancing capsule (4/51 lesions). In general,
the various imaging features of HCCs were independent of
the lesion size, and the imaging appearances of different PD
HCCs on DCE-MR images varied significantly (Figure 5).

3.2. Computer-Aided Diagnosis of HCCs. To ensure the reli-
ability of the results, we repeated the experiment 10 times
and then calculated the averages and standard deviations
of all parameters obtained from the experiments. The aver-
age accuracy of the gross differentiation of the pathologic
grade of HCC via the MCF-3DCNN in the test data was
0.7396±0.0104, and the average sensitivity and precision were
0.7396±0.0104 and 0.8042±0.0198, respectively.

The diagnostic performance of the MCF-3DCNN in
differentiating a specific, single type of pathologic grade
of HCC from the others in the test data is shown in
Table 4. The MCF-3DCNN achieved the highest diagnostic
performance in discriminating WD HCCs from the others,
with an average AUC, accuracy, sensitivity, and specificity
of 0.96, 91.00%, 96.88%, and 89.62%, respectively (Figure 6).
However, the diagnostic performance of theMCF-3DCNN in
discriminating MD (Figure 7) and PDHCCs (Figure 8) from
the others was relatively low, with average AUCs of 0.71 and
0.64, respectively.

3.3. Time of Processing for Each Step. We calculated the time
consumed by the training and testing processes. The experi-
ments were performed using an Ubuntu16.04 LTS operating
system with a GeForce GTX 1080 (NVIDIA, Santa Clara,
Calif) graphics processing unit, a Core i7-6700K4.00-GHz×8
(Intel, Santa Clara, Calif) central processing unit, and 16
GB of random access memory. Approximately 916 seconds
were required to independently train our model ten times. In
each independent experiment, 0.5082±0.2743 seconds were
required to evaluate all 192 samples.

We integrated the well-trained model into a decision
support system and selected the tumor region from the whole
abdominal MR image manually. The selected tumor area
was extracted from the original DICOM data, and then the
prediction scores of the region were calculated using the
trained model. The entire process required approximately
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Figure 3: Axial MR images and pathologic image of a 70-year-old man with HCC. (a) A fat-suppressed T2-weighted fast spin-echo image
shows an oval-shaped, slightly hyperintense neoplasm in the dorsal part of segmentVI, with amaximumdiameter of 2.6 cm.Axial precontrast
(b), late artery phase (c), portal vein phase (d), equilibrium phase (e), and delay phase (f) T1-weighted 3D GRE images demonstrate a
hypointense appearance of the lesion on precontrast T1-weighted images (b), high enhancement in the late arterial phase, (c) and washout
in the portal vein phase (d) with an enhancing capsule that can clearly be observed in the equilibrium phase (e) and delay phase (f); all of
these MRI features are consistent with typical HCC. The tumor was successfully surgically resected and was pathologically confirmed as a
WDHCC.

3.2131±0.0864 seconds per sample, not including the time
required to manually select the tumor region. Of the total
time spent, only approximately 0.0352±0.0072 seconds were
required for prediction; most of the time was spent on
preprocessing of the DICOM data and extraction of tumor
data from the DCE-MRI data.

4. Discussion

We investigated whether different pathologic grades of HCC
could be differentiated in DCE-MR images using deep
learning with 3DCNN models. Our study indicated that the
MCF-3DCNN showed a high diagnostic accuracy rate of
0.7396±0.0104 in the general evaluation of the pathologic
grades of HCC.

HCC is generally considered a hypervascular tumor from
the perspective of angiography [20]. The number of portal
tracts is significantly reduced in HCC, and the number
of intratumoral arterioles increase as the tumor becomes
increasingly dedifferentiated. The changes in the hemody-
namics of HCC correlate well with its pathologic grade. The

correlation between the enhancement pattern on dynamic
MR images and pathologic grades was validated in a study by
Okamoto D et al. [21], which found that tumors with worse
pathologic grades usually showed an earlier washout pattern.
Therefore, this study selected DCE-MR images with five
phases for the texture-based analysis to directly characterize
the close relationship of structural morphology with the
pathologic grade of HCCs.

In this study, we proposed using modified deep learning
networks with multiple-channel fusing of several 3D CNNs
for noninvasive evaluation of the pathologic grade of HCC.
The proposed MCF-3D CNN model is beneficial for analyz-
ing DCE-MR images and approximates clinical experience
by taking into account the dynamic change in serial phases
and the morphological information in different scanning
slices. To our knowledge, few studies have applied the CNN
method to assess the pathologic grade of HCC. Some studies
[7, 22] have used traditional machine learning to diagnose
liver masses by placing regions of interest on tumors and
extracting features such as quantitative texture parameters.
Wu Z et al. [7] reported a study that used conventional
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Figure 4: Axial MR images and pathologic image of a 52-year-old man with HCC. (a) A fat-suppressed T2-weighted fast spin-echo image
shows an oval-shaped, heterogeneous, slightly hyperintense neoplasm in segment VII with a maximum diameter of 4.6 cm. Axial precontrast
(b), late artery phase (c), portal vein phase (d), equilibrium phase (e), and delay phase (f) T1-weighted 3D GRE images show a hyperintense
appearance of the lesion on precontrast T1-weighted images (b), obvious enhancement in the late arterial phase (c), and washout in the portal
vein phase (d); an enhancing capsule was detectable in the equilibrium phase (e) and was more obvious in the delay phase (f); all of these
MRI features are consistent with typical HCC. The tumor was successfully surgically resected and was pathologically confirmed as an MD
HCC with no vascular invasion.

analysis to characterize the malignancy of HCC based on
arterial phase images. The authors found that compared with
high-grade HCCs, low-grade HCCs showed an increase in
mean intensity and a decrease in gray-level nonuniformity
(GLN) in four directions. In addition, the AUC values
of the average intensity and GLN in four directions were
0.918, 0.846, 0.836, 0.827, and 0.838, respectively. However,
this was only a relevant study that studied the relationship
between pathologic grade and two selected parameters.
More importantly, the method used in this study could not
fully extract and utilize the timing and space characteristics
contained in the multiphase DCE-MR images, because only
two selective parameters (GLN andmean intensity) extracted
from single arterial phase images were employed in the
study.

The deep learning method has been widely applied in
the diagnosis and staging of liver disease. Yasaka K et al.
[23] used the deep learning method of CNNs to characterize
liver tumors based on DCE computed tomography (CT).The
authors reported that deep learning with CNN performed
well diagnostically in the differentiation of liver masses using

dynamic CT, with a median accuracy of 0.84. Yasaka K
et al. [24] also reported that the CNN model exhibited a
high diagnostic performance in the staging of liver fibrosis.
However, unlike our study, their studies used only one single-
section JPEG image that was converted fromDICOM images
of each lesion rather than intact DICOM images of entire
focal lesions; this approach might have caused information
loss and might have resulted in the relatively low sensitivity
and accuracy observed in differentiation. Because the texture
characteristics of HCC were comprehensively captured from
DICOM images of all of the sections, the results of our study
were more accurate.

Moreover, compared to two-dimensional CNN, three-
dimensional CNN has gained more attention with respect to
the action recognition of the video, which takes into account
both spatial and temporal information [25]. Therefore, deep
learning with 3D CNNs enables all of the information
contained in the three-dimensional space to be used, while
only the local deep spatial-temporal features are learned in
conventional machine learning. Therefore, our method has
the potential to evaluate the pathologic grade of HCC based
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Figure 5: Axial late arterial phase DCE-MR images of four pathologically confirmed PD HCCs. The imaging appearances in the arterial
phase of different PD HCCs varied, presenting with homogeneous hyperenhancement (a), heterogeneous hyperenhancement with a small
area of necrosis (b), heterogeneous hyperenhancement with a large area of necrosis (c), and hyperenhancement in some parts of tumor (d).

on DCE-MRI with obvious spatial and temporal character-
istics and does not depend on the radiologist’s experience
level.

The diagnostic performance of this method when dis-
criminating different pathological grades of HCC was vari-
able; specifically, the best diagnostic ability was observed in
WD HCC (AUC=0.96). This finding is superior, to some
extent, to that of published studies that used MRI texture
analysis. Wu M et al. [22] reported that a radiomics analysis
based T1WI and T2WI could potentially distinguish high-
grade and low-grade HCCs. However, the diagnostic per-
formances, which were reflected as the AUCs of radiomics
and a combination of radiomics and clinical factors, were
approximately 0.742 and 0.800, respectively. Based on Gd-
DTPA-enhanced MR images that were similar to our input
data, the maximal AUC in the study by Wu Z et al. [7] using
texture analysis for the characterization of low-grade HCCs
was 0.918. Considering that the low-grade HCCs according
to the Edmondson-Steiner (E-S) system included in prior
studies could be regarded as WD HCCs [26, 27], we found
that our resultswere slightly better.Whilemore investigations
are needed, two possible reasons may contribute to the
difference in diagnostic performance between our study and
previous studies: the priority of DCE-MR images over either
T1WI or T2WI in the characterization of pathologic grades
and the potential advantage of the deep learning method over
the radiomics method in the extraction features.

Our diagnostic model showed poor performances in
discriminating MD (AUC=0.71) and PD (AUC=0.64) HCCs.
Several explanations could exist for this relatively poor
performance. First, PD and MD HCCs exhibit diverse char-
acteristics in terms of cell structure, vascular infiltration,
mesenchymal abundance, necrosis and portal vein thrombo-
sis compared to WD HCC [28], leading to more diversified
appearances onDCE-MR images, as partly shown inFigure 5.
As a result, it was more difficult for the MCF-3DCNNmodel
to clearly learn the intrinsic texture features of PD and MD
HCCs. Moreover, the relatively small size of the samples
hampered the diagnostic performance of the method. Several
studies have investigated the effectiveness of some traditional
MRI techniques in the discrimination of MD or PD HCCs,
and the results varied. Huang X et al. [29] found that a
specific contrast-to-noise ratio in the hepatobiliary phase of
gadobenate dimeglumine-enhanced MRI had the potential
to distinguish MD HCCs from PD HCCs with a sensitivity
and specificity of 84.6% and 60.0%. Ogihara Y et al. [30]
reported that parameters derived from DWI exhibited good
performances for discrimination of PDHCCs, with AUCs in
the range of 0.711 to 0.864. Ichikawa S et al. [31] concluded
that the parameters of intravoxel incoherent motion such as
D, D∗, and f exhibited variable discrimination abilities with
different fitting methods, with AUCs ranging from 0.463 to
0.881. The relatively poor discrimination ability of our model
requires future improvements.
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Figure 6: The average area under the ROC curve for 3DCNN for
discriminating WD HCCs from the others was 0.96.

Receiver operating characteristic curve

False Positive Rate

Luck
Mean ROC (AUC = 0.70±0.03)
±1 std. dev.

1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 7: The average area under the ROC curve for 3DCNN for
discriminating MD HCCs from the others was 0.71.

There are several limitations of our study. First, the sample
size was relatively small, and the distribution of patients
among the three pathologic grades was imbalanced. This
study used methods to reduce the impact of the imbalance
problem and augmented the data to increase the data scale,
but future studies should add many cases reflecting the
intrinsic characteristics of HCC lesions. Second, the accuracy

Receiver operating characteristic curve

False Positive Rate

Luck
Mean ROC (AUC = 0.64±0.04)
±1 std. dev.

1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0

Tr
ue

 P
os

iti
ve

 R
at

e
Figure 8: The average area under the ROC curve for 3DCNN for
discriminating PD HCCs from the others was 0.64.

when differentiating MD or PD HCC was not as good as
that for WD HCC. A solution for extracting discriminative
features from the diverse appearance of HCC should be
proposed in a future study. Third, we have not yet built a
model that can automatically detect HCC. The detection of
HCCs, especially small HCCs, is the first step in the clinical
procedure of diagnosis, staging, and treatment. Because the
CNN model was found to be effective for the differentiation
ofHCC from cirrhotic background, we intend to conduct this
study in the future.

In conclusion, this pilot study indicated that the MCF-
3DCNN model may be valuable for the noninvasive eval-
uation of the pathologic grade of HCCs; however, further
improvement would be necessary to achieve a better diagnos-
tic performance for MD and PD HCCs.
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