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Skin-inspired hydrogel–elastomer hybrids with
robust interfaces and functional microstructures
Hyunwoo Yuk1, Teng Zhang2, German Alberto Parada1,3, Xinyue Liu1 & Xuanhe Zhao1,4

Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels

have potential applications in diverse areas including stretchable and bio-integrated

electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However,

existing hydrogel–elastomer hybrids have limitations such as weak interfacial bonding,

low robustness and difficulties in patterning microstructures. Here, we report a simple yet

versatile method to assemble hydrogels and elastomers into hybrids with extremely robust

interfaces (interfacial toughness over 1,000 Jm� 2) and functional microstructures such as

microfluidic channels and electrical circuits. The proposed method is generally applicable

to various types of tough hydrogels and diverse commonly used elastomers including

polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further

demonstrate applications enabled by the robust and microstructured hydrogel–elastomer

hybrids including anti-dehydration hydrogel–elastomer hybrids, stretchable and reactive

hydrogel–elastomer microfluidics, and stretchable hydrogel circuit boards patterned on

elastomer.

DOI: 10.1038/ncomms12028 OPEN

1 Department of Mechanical Engineering, Soft Active Materials Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
2 Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, USA. 3 Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 4 Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, USA. Correspondence and requests for materials should be addressed to X.Z.
(email: zhaox@mit.edu).

NATURE COMMUNICATIONS | 7:12028 | DOI: 10.1038/ncomms12028 | www.nature.com/naturecommunications 1

mailto:zhaox@mit.edu
http://www.nature.com/naturecommunications


S
oft materials including elastomers and hydrogels have
enabled diverse modern technologies including tissue
engineering1,2, drug delivery3, biomedical devices4,5,

microfluidics6,7, optics8–10, stretchable and bio-integrated
electronics11–14, and soft robotics15,16. Whereas elastomers have
unique characters such as stable in various environments,
mechanically robust and easy for micro-/nano-scale fabrications
(for example, soft lithography); hydrogels’ distinctive attributes
include high water contents, permeable to various chemical and
biological molecules, biocompatible and/or biodegradable. Since
the merits of elastomers and hydrogels are complementary
to each other, it is naturally desirable to integrate them
into hybrid structures that can potentially transform their
existing applications and enable new functions17–21. In nature,
mammalian skins laminate elastomer-like epidermis and
hydrogel-like dermis into hybrids with robust interfaces (for
example, interfacial toughness over 100 Jm� 2) (ref. 22) and
functional microstructures (for example, blood and lymphatic
vessels). However, elastomers and hydrogels in most
technological applications are used separately2–16, and few
existing hydrogel–elastomer hybrids suffer from limitations
such as weak interfacial bonding, low robustness and difficulties
in patterning microstructures17–19.

Tough bonding of hydrogels to rigid solids (for example, glass,
ceramics and metals) have been recently achieved by covalently
crosslinking the stretchy polymer networks of tough hydrogels on
surfaces of the solids23. However, this method is generally
inapplicable in forming hydrogel–elastomer hybrids with robust
interfaces and functional microstructures, mainly due to three
challenges: First, elastomers are highly permeable to oxygen that
leads to the oxygen inhibition effect by which the free-radical
polymerization or surface covalent crosslinking of hydrogel
polymers are seriously hampered24. Second, aging or
hydrophobic recovery of functionalized elastomer surfaces also
significantly lower the effectiveness of hydrogel bonding on
elastomers25. Third, most elastomers and hydrogels are fabricated
by curing pre-elastomer resins and pre-gel solutions, and the
pre-gel solutions (or pre-elastomer resins) can infiltrate into
microstructures patterned on cured elastomers (or hydrogels) to
diminish microstructures such as micro-channels26. A general
method capable of fabricating hydrogel–elastomer hybrids with
robust interfaces and functional microstructures is still a critical
demand and central challenge in the field.

Inspired by the structures and functions of mammalian skins,
here we report a simple yet general method capable of assembling
pre-shaped elastomers and hydrogels into hybrid structures with
extremely robust interfaces (for example, interfacial toughness
over 1,000 Jm� 2) and functional microstructures (for example,
micro-channels and circuit patterns). The new method addresses
the abovementioned challenges by integrating three innovations
in fabrication of soft materials and soft hybrids. First, physical
crosslinking of dissipative polymer networks in tough hydrogels
to set their shapes and microstructures. Second, modification of
cured elastomer surfaces with benzophenone to alleviate oxygen
inhibition effect and activate elastomer surfaces for hydrogel
polymer grafting. Third, covalent crosslinking of stretchy polymer
networks in pre-shaped hydrogels on elastomers to give extremely
robust and microstructured interfaces. The method is generally
applicable to various types of commonly used elastomers
including polydimethylsiloxane Sylgard 184, polyurethane, latex,
VHB and Ecoflex, and diverse tough hydrogels including PAAm-
algiante, PAAm-hyaluronan, PAAm-chitosan, PEGDA-alginate
and PEGDA-hyaluronan (note: PAAm stands for polyacrylamide
and PEGDA stands for polyethylene glycol diacrylate)20.
We further explore a number of applications taking advantage
of the robust and microstructured hydrogel–elastomer hybrids

including anti-dehydration tough hydrogel with elastomeric
coating, stretchable diffusive and reactive hydrogel–elastomer
microfluidics, and stretchable hydrogel circuit board patterned on
elastomer. The current study not only addresses the long-lasting
challenge of developing robust hydrogel–elastomer hybrids,
but also makes new applications in various fields possible by
introducing a new way to harness distinctive yet complementary
advantages of hydrogels and elastomers.

Results
Fabrication of hydrogel–elastomer hybrids. Although hydrogels
and elastomers have been widely used in diverse technologies1–21,
they still cannot be integrated into hybrid structures with robust
interfaces and functional microstructures, mainly due to
challenges including elastomer surfaces’ inhibition of polymer
crosslinking and grafting, and fluidic characters of pre-gel
solutions and/or pre-elastomer resins that diminish interfacial
microstructures during the formation of hybrids. To address
these challenges, we propose a simple yet versatile method to
assemble pre-shaped elastomers and hydrogels into hybrids with
robust interfaces and functional microstructures (Fig. 1a–c).

The essential ideas of the method are briefly described as
follows (see the ‘Methods’ section for detailed procedures).
Robust hydrogel–elastomer interfaces first require high toughness
of the constituent hydrogels23. As tough hydrogels generally
consist of stretchy polymer networks and other components that
dissipate mechanical energy under deformation27–29, we
interpenetrate covalently crosslinked stretchy polymer networks
and physically crosslinked dissipative polymer networks to form
tough hydrogels used in the current study28–31. We first
physically crosslink the dissipative network to form a hydrogel
infiltrated with monomer/macromonomer solution of the
stretchy network, which can be crosslinked in future steps
(Fig. 1a). The physical crosslinking allows the hydrogel to
maintain its pre-designed shapes and microstructures during
assembly with elastomers. Similarly, the elastomer can also be
cured with predetermined shapes and microstructures before
bonding with hydrogels. To address elastomers’ oxygen inhibition
effect, we treat elastomer surfaces with 10 wt.% benzophenone in
ethanol solution via swelling-driven surface absorption of
benzophenone solution (Fig. 1b)32,33. The benzophenone also
acts as a ultraviolet-assisted grafting agent for covalently
crosslinking hydrogel polymers on elastomer surfaces32–40

(Supplementary Fig. 1). Thereafter, the pre-shaped hydrogel
and elastomer are assembled into a hybrid, and the stretchy
polymer network in the hydrogel is then crosslinked and
grafted on the surface of elastomer—leading to robust and
microstructured interfaces capable of large deformation
(Fig. 1c,d). Furthermore, since the proposed method does not
rely on specific types of polymers, it is widely applicable to
various commonly used elastomers including polydimethyl-
siloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex and
tough hydrogels including PAAm-algiante, PAAm-hyaluronan,
PAAm-chitosan, PEGDA-alginate and PEGDA-hyaluronan20.

Robustness of hydrogel–elastomer hybrids. To quantify the
robustness of hydrogel–elastomer hybrids fabricated with the
proposed method, we first use the standard 90�-peeling test to
measure interfacial toughness of hydrogel sheets (thickness,
3 mm) bonded on elastomer substrates (thickness, 1 mm) as
illustrated Fig. 2a (see the ‘Methods’ section for details). The
bottom surface of elastomer is constrained on a thick rigid plate
during the peeling test; while the top surface of the hydrogel is
attached to a thin stiff backing (polyethylene terephthalate
(PETE) film of B70mm thickness), which prevents the hydrogel’s
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elongation along the peeling direction41. Therefore, the measured
steady-state peeling force per unit width of the hydrogel sheet
gives the interfacial toughness of the hybrid.

As shown in Fig. 2c,e, the proposed method is indeed capable
of achieving consistently high interfacial toughness for PAAm-
alginate tough hydrogels (in as-prepared state) bonded onto
various elastomers including polydimethylsiloxane Sylgard 184
(1,560 Jm� 2), polyurethane (1,610 Jm� 2), latex (1,520 Jm� 2),
VHB (1,630 Jm� 2) and Ecoflex(1,580 Jm� 2). Notably, the
measured interfacial toughness for PAAm-alginate hydrogel on

different elastomers are very similar to one other (Fig. 2c,e). This
similarity can be explained by the images of the hydrogel–
elastomer interface during peeling test (Fig. 2b). It can be seen
that the tough hydrogel, instead of the hydrogel–elastomer
interface, undergoes a cohesive failure near the interface during
the peeling test—leaving a residual layer of hydrogel (B0.2 mm
thickness) on the elastomer substrates. To better understand the
adhesion between tough hydrogels and elastomers, we further
vary the grafting density of PAAm in PAAm-alginate tough
hydrogels on surfaces of polydimethylsiloxane Sylgard 184 by
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Figure 1 | Schematic illustration of the fabrication of robust microstructured hydrogel–elastomer hybrids. (a) The hybrids are formed by bonding tough

hydrogels of interpenetrating polymer networks with elastomers. One polymer network of the hydrogel is first physically crosslinked, while infiltrated

with monomer/macromonomer solution of the other polymer network. The physical crosslinking sets the shape and microstructures of the hydrogel.

(b) The surface of a cured elastomer with patterned microstructures is treated with benzophenone. (c) The pre-shaped hydrogel and elastomer are

assembled together followed by ultraviolet irradiation to chemically crosslink the other polymer network in the hydrogel. (d) After ultraviolet irradiation, the

resultant hydrogel–elastomer hybrid forms extremely robust interfaces due to the covalently anchored polymer network in the hydrogel on elastomer

surface. The pre-patterned microstructures in elastomers and hydrogels are also preserved in the hybrid. The hybrids can be highly stretched without

interfacial failure.
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changing the concentration of benzophenone in the surface
treatment solution while maintaining the same treatment time.
As the benzophenone concentration in the surface treatment
solution increases from 2 wt.% to 8 wt.%, the measured interfacial
toughness increases from 200 to 900 Jm� 2 (Supplementary
Fig. 2b,c). This trend is consistent with previous observations
on the increase of interfacial toughness between elastomers with
area density of polymer chains that connect the elastomers42.
In addition, when the benzophenone concentration is in the

range of 2B8 wt.%, the samples undergo adhesive failure without
leaving an obvious residual hydrogel layer during the peeling test
as shown in Supplementary Fig. 2a. On the other hand, when the
benzophenone concentration in the surface treatment solution
rises above 9 wt.%, the measured interfacial toughness remains
approximately the same (B1,500 Jm� 2), and cohesive failures of
the hydrogels occur consistently. These results indicate that the
grafting density of hydrogel polymers on the surface of elastomer
can strongly influence both the mode of failure (that is,

Displacement (mm)
0 10 20 30 40 50 60 70 80 90

F
or

ce
 / 

w
id

th
 (

N
/m

)

10–1

100

101

102

103

104

Rigid substrate
Elastomer

Hydrogel

Stiff backing

Dissipation zone

Peeling force

Interfacial cohesive failure

PDMS -  tough hydrogel
Latex - tough hydrogelPolyurethane - tough hydrogel
VHB - tough hydrogel Ecoflex - tough hydrogel

PDMS - common hydrogel

Residual hydrogel on elastomer

Cohesive failure
near interface Residual hydrogel layer

Fully swollenAs-prepared

Displacement (mm)
0 10 20 30 40

With mullins effect

Without mullins effect

0

200 kJ/m2

Residual
hydrogel

F
or

ce
 / 

w
id

th
 (

N
/m

)

10–1

100

101

102

103

104

PDMS -
tough hydrogel

Polyurethane -
tough hydrogel

In
te

rf
ac

ia
l t

ou
gh

ne
ss

 (
J/

m
2 )

2,000

1,750

1,500

1,250

1,000

750

500

250

0
Latex -

tough hydrogel
VHB -

tough hydrogel
Ecoflex -

tough hydrogel
PDMS -

common hydrogel

a b

c d

e

Figure 2 | Experimental and simulation results of 90�-peeling tests on hydrogel–elastomer hybrids. (a) Schematic illustration of the 90�-peeling test

(ASTM D 2861) on various hydrogel–elastomer hybrids. A stiff backing is introduced to prevent elongation of hydrogel sheet along the peeling direction.

(b) Photos of the hydrogel–elastomer interface during peeling test. The tough hydrogel undergoes a cohesive failure during the peeling test, leaving a thin

residual layer of hydrogel B0.2 mm on the elastomer substrates. (c) The measured peeling forces per width of the hydrogel sheets for various hydrogel–

elastomer hybrids (in as-prepared state). (d) The calculated peeling forces per width of the hydrogel sheets for various hydrogel–elastomer hybrids in

finite-element simulation. The simulated interfacial toughness is significantly decreased as dissipative properties is eliminated in the hydrogel (that is,

without Mullins effect) while maintaining other parameters the same. Note that inset pictures are snapshots of the 90�-peeling simulation. The contours

indicate the energy dissipation per unit area in the material. (e) Summary of measured interfacial toughness of various hydrogel–elastomer hybrids using

the proposed method at both as-prepared and fully swollen states. Values in e represent mean and the error bars represent the s.d. of measured interfacial

toughness for each elastomer materials (n¼ 3–5).
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adhesive or cohesive failure) and the measured interfacial
toughness.

In addition, as shown in Supplementary Fig. 3b, the proposed
method can also enable robust bonding between various other
tough hydrogels including PAAm-hyaluronan (821 Jm� 2),
PAAm-chitosan (436 Jm� 2), PEGDA-alginate (427 Jm� 2) and
PEGDA-hyaluronan (262 Jm� 2) and elastomers (for example,
polydimethylsiloxane Sylgard 184), demonstrating the versatility
of the proposed method. Since 10 wt.% benzophenone solution is
used to treat the elastomer surfaces in these samples, the tough
hydrogels also fail cohesively during the peeling tests. Therefore,
the interfacial toughness of these hydrogel–elastomer hybrids
measured with the peeling test is strongly correlated with the
fracture toughness of the hydrogels measured with the pure-shear
test23,43 (Supplementary Fig. 3c). These results indicate that the
measured interfacial toughness of the hydrogel–elastomer hybrid
is limited by the toughness of the hydrogel if the cohesive failure
of the hydrogel occurs during the test.

As hydrogel–elastomer hybrids can be used in wet environ-
ments, we further carry out the 90�-peeling test on fully swollen
hydrogel–elastomer hybrids by immersing them in deionized
water for over 24 h until they reach equilibrium swollen state.
As shown in Fig. 2e and Supplementary Fig. 4, The measured
interfacial toughness of the fully swollen samples are still
consistently high and similar to one another, that is,
polydimethylsiloxane Sylgard 184 (1,131 Jm� 2), polyurethane
(1,087 Jm� 2), latex (1,092 Jm� 2), VHB (1,191 Jm� 2) and
Ecoflex(1,044 Jm� 2), owing to cohesive failures of the hydrogels
during the peeling tests. These results demonstrate that the
interfaces of hydrogel–elastomer hybrids prepared with the
proposed method are robust in both as-prepared and fully
swollen states.

To validate that high toughness of the hydrogel is critical for
achieving robust hydrogel–elastomer interface, we bond a
common PAAm hydrogel with similar shear moduli as the
PAAm-alginate hydrogel (B30 kPa) on elastomer substrate using

a similar method (see the ‘Methods’ section for details).
While cohesive failure also occurs in the PAAm hydrogels
during peeling test, the measured interfacial toughness is 24
and 21 Jm� 2 for as-prepared and fully swollen samples,
respectively—much lower than the values for PAAm-alginate
tough hydrogels due to the low fracture toughness of PAAm
hydrogels (Fig. 2e)23. These results validate that the dissipative
properties and high toughness of the hydrogels is critical to
achieving robust hydrogel–elastomer hybrids.

To study the effects of benzophenone treatment of elastomer
surfaces on hydrogel–elastomer interfaces, we bond common
PAAm hydrogel and tough PAAm-alginate hydrogel on
elastomer substrates untreated by benzophenone. From
Supplementary Fig. 5a, it can be seen that the failure occurs at
the hydrogel–elastomer interfaces and the measured interfacial
toughness is very low, 2.6 and 3.5 Jm� 2 for PAAm and
PAAm-alginate hydrogels, respectively (Supplementary Fig. 5b,c).
These results indicate that the untreated elastomer surfaces
indeed hamper the grafting and crosslinking of acrylamide to the
surface, leading to very weak hydrogel–elastomer interfaces.

To quantitatively understand the measured interfacial tough-
ness of hydrogel–elastomer hybrids using the proposed method,
we use a finite-element model to simulate the 90�-peeling
experiment on hydrogel–elastomer hybrids23,43 (see the
‘Methods’ section and Supplementary Fig. 6 for details of the
model; Fig. 2d and Supplementary Movie 1). Following
experimental observations, we assume that the hydrogel
undergoes cohesive failure in the simulation of peeling tests,
leaving a residual layer of hydrogel with thickness of 0.2 mm on
the elastomer substrate. The interface between the residual layer
and the other part of the hydrogel is characterized as a layer of
cohesive elements that prescribe the intrinsic fracture energy of
the tough PAAm-alginate hydrogel to be 300 Jm� 2 (ref. 43). The
mechanical properties of the tough hydrogel are prescribed by the
Ogden model with parameters obtained from mechanical tests
on the PAAm-alginate hydrogel (Supplementary Fig. 7)30,44.
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Figure 3 | Hydrogel–elastomer hybrids under uniaxial stretches. (a) PAAm-alginate hydrogel bonded on Ecoflex elastomer using the proposed method

can withstand large deformation (stretch B7) without debonding. The robust hydrogel–elastomer bonding is intact even after fracture of the hybrid.

(b) PAAm-alginate hydrogel bonded on Ecoflex elastomer untreated by benzophenone detaches from the elastomer under small deformation (that is,

stretch B1.1) due to weak adhesion. (c) PAAm hydrogel bonded on Ecoflex elastomer using the proposed method fails under large deformation (stretch

B4) due to crack propagation in the brittle bulk PAAm hydrogel. Note that red food dyes are added into the hydrogels to enhance the contrast between

hydrogels and elastomers.
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The dissipative properties of the hydrogels are characterized by
Mullins effect23,43. From Fig. 2d, it can be seen that different
elastomer substrates indeed have negligible effect on the
calculated interfacial toughness of the hybrids (that is,
B900 Jm� 2), due to cohesive failure of the hydrogels. On the
other hand, the simulated interfacial toughness is significantly
decreased to the prescribed intrinsic fracture energy of the tough
hydrogel (that is, 300 Jm� 2), if we eliminate dissipative
properties (that is, eliminate Mullins effect) in the hydrogel
while maintaining other parameters the same. It should be noted
that the intrinsic fracture energy of the tough PAAm-alginate
hydrogel (that is, B300 Jm� 2) is still much higher than the
fracture toughness of common PAAm hydrogel with similar
modulus (that is, B24 Jm� 2). These results validate the
importance of high fracture toughness and dissipative
properties of the hydrogels in achieving robust interfaces.

In addition to the peeling test, the high robustness of hydrogel–
elastomer hybrids fabricated with the proposed method can also
be demonstrated in other modes of deformation. For example,
a laminate of PAAm-alginate hydrogel bonded on Ecoflex sheet
can be stretched up to seven times of its original length without
delamination (Fig. 3a and Supplementary Movie 2). The laminate
is fractured under higher stretch (that is, stretch B7.1), but the
hydrogel–elastomer interface remains intact without debonding
(Fig. 3a). In contrast, the PAAm-alginate hydrogel adhered on
Ecoflex elastomer untreated by benzophenone detaches from the
elastomer under very small deformation (that is, stretch B1.1;
Fig. 3b and Supplementary Movie 3)–demonstrating the critical
role of benzophenone in achieving robust hydrogel–elastomer
interfaces. Interestingly, common PAAm hydrogel bonded on
elastomers treated by benzophenone using a similar method

(Supplementary Fig. 8) can also sustain a relatively high stretch
up to four times until crack propagation within the brittle bulk
hydrogel (Fig. 3c and Supplementary Movie 4).

Applications of robust hydrogel–elastomer hybrids. The robust
hydrogel–elastomer hybrids enable us to explore various
applications otherwise unachievable with hydrogel or elastomer
systems alone. For instance, with recent developments of
hydrogel-based devices and machines, the dehydration of
hydrogels in dry environments becomes a critical challenge in the
field45. On the other hand, the elastomer-like epidermis in
mammalian skin can effectively prevent the hydrogel-like body it
covers from dehydration. Inspired by the function of epidermis,
we propose to use thin elastomer films robustly bonded on
hydrogels to form anti-dehydration hydrogel–elastomer hybrids
(Fig. 4). To test the hypothesis, we apply very thin (B100 mm)
Ecoflex coatings on a PAAm-alginate hydrogel disk (25 mm
diameter and 6 mm of thickness) using the proposed fabrication
method (Fig. 4a). For Ecoflex with thickness in the range of
100–300 mm, the trans-membrane water loss has been reported
to be independent of its thickness and as low as 1.5 gh� 1 m� 2

(refs 46,47). Thereafter, we carry out dehydration tests on the
hydrogel–elastomer hybrid and an uncoated PAAm-alginate
hydrogel with the same dimensions under the ambient
conditions (24 �C and 50% humidity) for 48 h (Fig. 4c). We
find that the hydrogel–Ecoflex hybrid does not exhibit noticeable
change in its weight over 48 h, while the uncoated hydrogel
loses its weight close to its original water contents (B85 wt.%)
after 48 h, demonstrating the effective anti-dehydration of the
hydrogel–elastomer hybrids (Fig. 4b,c and Supplementary
Movie 5). In addition, we find that the Ecoflex coating does not
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Figure 4 | Anti-dehydration hydrogel–elastomer hybrid. (a) Schematic illustration of the anti-dehydration elastomeric coating for hydrogels. A very thin

layer of Ecoflex elastomer robustly bonded to the hydrogel can effectively prevent evaporation of water from the hydrogel. (b) The hydrogel–elastomer

hybrid does not show noticeable change in its weight under the ambient testing conditions (24 �C and 50% humidity) for 48 h; whereas hydrogel without

elastomeric coating loses most of its water content after 48 h. (c) Snapshots of the hydrogel–elastomer hybrid and hydrogel during the dehydration

experiments. Scale bar, 10 mm (c).
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significantly affect the overall mechanical properties of the bulk
hydrogel, owing to the much lower thickness (100 mm) than the
hydrogel, low modulus (B30 kPa) and high stretchability
(B7 times) of the Ecoflex coating (Supplementary Fig. 9).

In mammalian skin, the blood and lymphatic vessels in the
hydrogel-like dermis provide functions of nourishment and waste
removal through a combination of convention and diffusion.
Inspired by the functions of micro-vessels in skin, we propose to
develop robust yet flexible hydrogel–elastomer hybrids with
micro-channels patterned on interfaces to enable simultaneous
convection, diffusion and reaction of different species in the
hybrids under large deformation (Fig. 5). Following the proposed
method, we assemble diffusive PAAm-alginate hydrogel sheet and
flexible Ecoflex elastomer with microfluidic channels into robust
integrated hybrids (Fig. 5a). The resultant robust and highly
stretchable hybrid works as a functional microfluidic assembly
with unique features such as convection of solvents in the
microfluidic channels plus diffusion through the hydrogel part
(Fig. 5b and Supplementary Movie 6). Notably, the robust
interfacial bonding achieved by the proposed method enables
large deformation of the hydrogel–elastomer hybrid without
failure or debonding-driven leakage of solvents (Fig. 5c and
Supplementary Movie 6). In addition, we carry out diffusion-
reaction test through wavy microfluidic channels on Ecoflex
assembled with PAAm-alginate hydrogel that contains
pH-indicating molecules (see the ‘Methods’ section for details
on fabrication) (Fig. 5d). Acid (pH B3) and base (pH B10)
solutions from two microfluidic channels can diffuse in the

pH-sensitive hydrogel and form regions of different colours (light
red indicating acid and dark violet indicating base). The reaction
of acid and base solutions further forms a neutral region in the
hydrogel (pH B7, light green colour; Fig. 5d and Supplementary
Movie 7).

As another example, we demonstrate a robust and conductive
hydrogel circuit on flexible elastomer substrate (Fig. 6).
Conductive hydrogels have been used in transparent electroactive
speaker17, sensors18 and electrical signal transmission19, but
unreliable integration of conductive hydrogels to elastomers
greatly limits their applications and reliability. To address the
challenge, we utilize the proposed fabrication method to form a
robust ionically conductive hydrogel circuit patterned on top of
thin Ecoflex substrate that mimics printed circuit board for
standard electronics (Fig. 6a). Figure 6b and Supplementary
Movie 8 show that the hydrogel circuit fabricated by the proposed
method can sustain large deformation and high stretch without
noticeable failure. In Fig. 6c and Supplementary Movie 8, we
demonstrate the functionality of the fabricated hydrogel circuit
board by lighting up LED with an a.c. power source connected
to the hydrogel circuit. The conductive hydrogel circuit can
indeed maintain its electrical functionality even under severe
deformation (Fig. 6c and Supplementary Movie 8). The electrical
resistance of the conductive hydrogel patterned on Ecoflex
substrate remains almost the same after 100 cycles of stretch to
3.5 times. In addition, the relation between electrical resistance
and stretch follows R/R0¼l2, where R0 is the resistance before
deformation and R is the resistance after stretch of l from the
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Figure 5 | Stretchable diffusive and reactive microfluidic chips based on hydrogel–elastomer hybrids. (a) Schematic illustration of the fabrication

procedure for hydrogel–elastomer microfluidic chip. (b) The resultant hydrogel–elastomer microfluidic hybrid supports convection of chemicals

(represented by food dye in different colours) in the microfluidic channels and diffusion of chemicals in the hydrogel. (c) The hydrogel–elastomer

microfluidic hybrid can maintain functionality under large deformation (for example, stretch B2) without debonding failure or leakage thanks to the robust

interfacial bonding. (d) The hydrogel–elastomer microfluidic hybrid can be used as a platform for diffusion-reaction study. Acid (pH B3) and base

(pH B10) solutions from two microfluidic channels diffuse in the pH-sensitive hydrogel and form regions of different colours (light red for acid and dark

violet for base). The reaction of acid and base solutions in the hydrogel further form a neutral region (pH B7, light green colour). Scale bars, 10 mm (b–d).
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initial state17,19 (Supplementary Fig. 10b). To validate the
importance of robust hydrogel–elastomer interfaces for such
hydrogel circuit, we further perform a control test by deforming
the same ionically conductive hydrogel circuit patterned on
elastomer substrate without benzophenone treatment (that is,
weak interfaces; Fig. 6d). The hydrogel pattern without robust
interface easily debonds from the elastomer substrate and fails
under deformation, indicating the importance of robust bonding
of hydrogel on elastomer substrates for the stretchable hydrogel
circuits (Fig. 6d).

Discussion
Natural hybrids of hydrogel-like dermis and elastomer-like
epidermis in mammalian skins possess robust interfaces and
functional microstructures that have not been achieved in
synthetic hydrogel–elastomer systems. Here, we report a simple
yet versatile method to create synthetic hydrogel–elastomer
hybrids with interfacial bonding tougher than epidermis–dermis
interfaces and functional micro-channels and micro-patterns
inspired by blood and lymphatic vessels in mammalian skins. The
method integrates three innovations in fabrication of soft hybrids.
First, pre-shaping both elastomers and hydrogels before bonding
to conserve their microstructures. Second, modification of cured
elastomer surfaces with benzophenone for chemical bonding
with hydrogels. Third, harnessing dissipative properties of tough
hydrogels to achieve robust interfaces. The method is widely
applicable to various commonly used elastomers including
polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB
and Ecoflex and tough hydrogels including PAAm-alginate,
PAAm-hyaluronan, PAAm-chitosan, PEGDA-alginate and

PEGDA-hyaluronan. The robust hydrogel–elastomer hybrids
allow us to harness distinctive but complementary advantages
of both elastomers and hydrogels and explore diverse applications
including anti-dehydration hydrogels, stretchable diffusive and
reactive microfluidic chips, and stretchable hydrogel circuit board.

In the current study, we demonstrate the fabrication of
hydrogel–elastomer hybrids with dimensions up to a few
centimeters. The facileness and versatility of the proposed
method makes it suitable for large-scale manufacturing and
potential incorporation into advanced fabrication techniques
such as additive manufacturing for both elastomers and
hydrogels31,48,49. In addition, the ability to fabricate extremely
robust and microstructured hydrogel–elastomer hybrids makes a
number of future research directions and applications possible.
For example, elastomer-based flexible electronic devices
integrated with hydrogels may lead to development of a new
class of flexible bio-electronic devices for seamless interfacing
between human body and engineering devices20. Biocompatible
and/or biodegradable hydrogels containing living organisms
(for example, bacteria and cells) integrated with existing
elastomer-based devices may be a promising route toward
more creative utilization of living organisms for engineering
applications31,48,50–52. Microfluidic systems based on hydrogel–
elastomer hybrids may provide more efficient platforms for
diverse biomedical studies owing to its unique integration of
convection, diffusion, reaction and deformation6.

Methods
Materials. Unless otherwise specified, the chemicals used in the current work were
purchased from Sigma-Aldrich and used without further purification. For the

Treated elastomer
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Glass cover

UV irradiation Conductive hydrogel
pattern on elastomer

Hydrogel circuit pattern on
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Debonding failure

Hydrogel circuit pattern on
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Robust under
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Figure 6 | Stretchable hydrogel circuit board patterned on elastomer. (a) Schematic illustration of fabrication procedure for conductive hydrogel circuit

patterned on flexible elastomer substrate. (b) Ionically conductive PAAm-alginate hydrogel circuit bonded on an Ecoflex elastomer substrate using the

proposed method is robust under large deformation without visible failure. (c) The hydrogel circuit board connected with an AC power source can light up

LED, and it can maintain its electrical functionality even under severe deformation. (d) A hydrogel circuit bonded on Ecoflex elastomer without

benzophenone treatment delaminates and fails under deformation, due to the weak hydrogel–elastomer bonding. Scale bars, 10 mm (b–d).
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covalently crosslinked stretchy polymer networks in the tough hydrogels, acrylamide
(AAm; Sigma-Aldrich A8887) was the monomer used for the PAAm networks,
and 20 kDa PEGDA (Sigma-Aldrich 767549) was the macromonomer used for
the PEGDA networks. For the PAAm hydrogel, N,N-methylenebisacrylamide
(MBAA; Sigma-Aldrich 146072) was used as crosslinker and 2-Hydroxy-40-
(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959; Sigma-Aldrich
410896) was used as photoinitiator. For the PEGDA hydrogel, Irgacure 2959 was
used as photoinitiator. For the physically crosslinked dissipative polymer networks
in the tough hydrogels, a number of ionically crosslinkable biopolymers were used
including sodium alginate (Sigma-Aldrich A2033) ionically crosslinked with
calcium sulfate (Sigma-Alginate C3771), chitosan (Sigma-Aldrich 448869) ionically
crosslinked with sodium tripolyphosphate (Sigma-Aldrich 238503) and sodium
hyaluronan (Sigma-Aldrich H5542) ionically crosslinked with iron chloride
(Sigma-Aldrich 157740). For elastomer surface treatment, benzophenone
(Sigma-Aldrich B9300) was used. To visualize pH change within the hydrogel–
elastomer microfluidic chip, universal pH indicator solution (Sigma-Aldrich
36828), hydrogen chloride (Sigma-Aldrich 38280) and sodium hydroxide
(Sigma-Aldrich 795429) were used. Glucose (Sigma-Aldrich G8270) and glucose
oxidase (Sigma-Aldrich G7141) were used as an oxygen scavenger in hydrogels in
the tests for the effect of elastomer surface treatments.

For elastomers, Sylgard 184 (polydimethylsiloxane; Dow Corning), Ecoflex
(Smooth-On), polyurethane (Smooth-On), latex (McMaster Carr) and VHB (3 M)
were used. In the 90�-peeling experiments, borosilicate glass (McMaster Carr) was
used as a rigid substrate bonded on the bottom surface of the elastomer. As a stiff
backing for the hydrogel sheet, PETE film (70 mm; ePlastics) were used together
with cyanoacrylate (Loctite, Henkel). In the conductive hydrogel circuit
experiments, sodium chloride (Sigma-Aldrich 746398) solution was used as an
electrolyte. For hydrophobic coating of glass moulds and covers, Rain-X (ITW Inc.)
solution was used.

Bonding hydrogels on elastomers. The surfaces of elastomers were treated by
absorbing benzophenone. The elastomer surfaces were thoroughly cleaned with
methanol and deionized water, and completely dried with nitrogen gas before the
benzophenone treatment. Thereafter, benzophenone solution (10 wt.% in ethanol)
was applied onto the elastomer to evenly cover the entire elastomer surface for
2 min at room temperature. Then, the elastomer was washed with methanol three
times and completely dried with nitrogen gas33.

Physically crosslinked hydrogel was prepared by mixing 10 ml of a carefully
degassed aqueous pre-gel solution (12.05 wt.% AAm, 1.95 wt.% sodium alginate
and 0.017 wt.% MBAA for the PAAm-alginate hydrogel; 18 wt. % AAm, 2 wt. %
sodium hyaluronan and 0.026 wt.% MBAA for the PAAm-hyaluronan hydrogel;
24 wt.% AAm, 2 wt.% chitosan and 0.034 wt.% MBAA for the PAAm-chitosan
hydrogel; 20 wt.% PEGDA and 2.5 wt.% sodium alginate for the PEGDA-alginate
hydrogel; 20 wt.% PEGDA and 2 wt.% sodium hyaluronan for the PEGDA-
hyaluronan hydrogel) with ionic crosslinkers (20� 10� 3 M concentration of
calcium sulfate in the PAAm-alginate hydrogel; 3� 10� 3 M concentration of iron
chloride in the PAAm-hyaluronan hydrogel; 3� 10� 3 M concentration of sodium
tripolyphosphate in the PAAm-chitosan hydrogel; 20� 10� 3 M concentration of
calcium sulfate in the PEGDA-alginate hydrogel; 3� 10� 3 M concentration of iron
chloride in the PEGDA-hyaluronan hydrogel) and Irgacure 2959 (0.2 wt.%). The
mixture was mixed quickly, poured onto glass mould, and then covered by glass
plate with hydrophobic coating. The hydrogel was kept in nitrogen chamber for 1 h
to allow the formation of physically crosslinked network. Thereafter, the physically
crosslinked hydrogel was gently removed from the mould and assembled with
freshly treated elastomer followed by ultraviolet irradiation in a ultraviolet chamber
(365 nm ultraviolet; UVP CL-1000) for an hour, during which the PAAm network
was covalently crosslinked and bonded onto elastomer surface.

PAAm common hydrogel was prepared by directly curing the degassed pre-gel
solution (23 wt.% AAm, 0.051 wt.% MBAA and 0.2 wt.% Irgacure 2959) onto
freshly treated elastomer surface inside ultraviolet crosslinker. The crosslinking
condition was identical to the PAAm-alginate hydrogel. Note that the shear moduli
of the PAAm hydrogel was tuned to match the PAAm-alginate hydrogel’s modulus
(30 kPa) based on the previously reported data30.

Mechanical testing. All tests were performed in ambient air at room temperature.
The hydrogels and hydrogel–elastomer interfaces maintained consistent properties
over the time of the tests (that is, approximately a few minutes), during which the
effect of dehydration is not significant. The interfacial toughness of various
hydrogel–elastomer hybrids was measured using the standard 90�-peeling test
(ASTM D 2861) with mechanical testing machine (2 kN or 20 N load cells;
Zwick/Roell Z2.5) and 90�-peeling fixture (Test Resources, G50). All elastomer
substrates were prepared with 2.5 cm in width, 7.5 cm in length and 1 mm in
thickness. polydimethylsiloxane and Ecoflex were adhered on borosilicate glass
plate using oxygen plasma treatment (Harrick Plasma PDC-001). Latex and
polyurethane were adhered on glass plate by with epoxy adhesives. VHB was
simply adhered onto glass plate as it was provided in two-sided tape form.
Hydrogels were bonded onto elastomer surfaces following the abovementioned
procedure with the size of 100� 15� 3 mm (length�width� thickness). As a
stiff backing for the hydrogel, PETE film was bonded onto the hydrogel with
cyanoacrylate adhesive. The resultant samples were tested with the standard

90�-peeling test with a constant peeling speed of 50 mm min� 1. The measured
peeling force reached a plateau (with slight oscillations), as the peeling process
entered steady state. The interfacial toughness G was determined by dividing the
plateau force F by the width of the hydrogel sheet W.

To investigate the effect of elastomer surface treatment on interfacial toughness
and failure modes of hydrogel bonded on elastomers, the same 90�-peeling test was
performed using PAAm-alginate tough hydrogel and polydimethylsiloxane
substrate with the same sample size and testing conditions. The surface treatment
time for polydimethylsiloxane substrate was fixed to 2 min, while the concentration
of benzophenone in the surface treatment solutions was varied from 2 wt.% to
10 wt.%. As PAAm-alginate tough hydrogel cannot be successfully cured on top of
polydimethylsiloxane with the surface treatment solution containing o5 wt.% of
benzophenone due to the effect of oxygen inhibition, 2 wt.% of glucose and
0.02 wt.% of glucose oxidase were added as an oxygen scavenger into the prescribed
PAAm-alginate pre-gel solution.

For uniaxial-tensile tests of hydrogel–elastomer hybrids, PAAm-alginate tough
hydrogel and PAAm common hydrogel with size of 50� 20� 3 mm
(length�width� thickness) were bonded onto Ecoflex substrate following the
abovementioned procedure. For physically attached samples, the same size of
PAAm-alginate tough hydrogel was simply put onto the Ecoflex substrate without
any other treatment. The stretching of hybrids was carried out using the
mechanical testing machine (2 kN; Zwick/Roell Z2.5) with grip-to-grip separation
speed of 100 mm min� 1.

Numerical modelling and simulation of 90�-peeling of hydrogel. We developed
a two-dimensional finite-element model to simulate the 90�-peeling test of
hydrogels bonded on diverse elastomer substrates (that is, Sylgard 184
polydimethylsiloxane, polyurethane, latex, VHB and Ecoflex). A hydrogel strip
with length 80 mm and thickness 3 mm was adhered on an elastomer sheet, where
we assume the 0.2 mm thin residual hydrogel layer on the elastomer substrate
which is connected to the bulk hydrogel via cohesive element (Supplementary
Fig. 6). The deformation of the hydrogel strip was assumed to be under
plane-strain condition. The elastic properties and energy dissipation of the
hydrogel were modelled as the Ogden hyperelastic material and Mullins effect44,
respectively. The parameters of the model were obtained from the previous studies
on the PAAm-alginate hydrogel23,30. For the elastic properties, the one-term
Ogden model can be expressed as

Uela ¼ 2m=a2ðla1 þ la2 þ la3 � 3Þ ð1Þ
where, Uela is the strain energy density, li the ith principal stretch, m the shear
modulus (fitted to be 36.57 kPa), and a the Ogden parameter (fitted to be 1.473).
The theoretical model for the Mullins effect can be expressed as

U ¼ Z~Uela þfðZÞ ð2Þ

f Zð Þ ¼
ZZ

1

½ mþbUm
ela

� �
erf � 1 r 1� Zð Þð Þ�Um

ela�dZ ð3Þ

Z ¼ 1� 1
r

erf ½ðUm
ela� ~UelaÞ=ðmþ bUm

elaÞ� ð4Þ

where, Z is a damage variable (0oZr1), ~Uela is the strain energy density of
perfectly elastic material (that is, the primary loading path is also the unloading
path), Um

ela denotes the maximum strain energy density before unloading, the
function f(Z) is referred to as the damage function, erf is the error function, and
the material parameters r¼ 1.1, m¼ 4.076, and b¼ 0.2818 were obtained by fitting
the model to measured stress–strain hysteresis of the PAAm-alginate hydrogel30

(Supplementary Fig. 7). The elastomer substrates were assumed to be elastic
materials which were modelled as the Neo–Hookean model, corresponding to an
Ogden hyperelastic material with the Ogden parameter of 2 and shear moduli of
0.6 MPa (Sylgard 184 polydimethylsiloxane); 30 kPa (Ecoflex); 1.6 MPa
(polyurethane); 1 MPa (latex); 0.6 MPa (VHB).

The stiff backing was modelled as a linear elastic material with very high
Young’s modulus (that is, 2 GPa) and very low thickness (that is, 100 mm). The
cohesive layer on the interface was characterized by a triangular cohesive law with
maximum strength Smax and maximum separation distance dmax. The damage of
the cohesive layer follows the quadratic nominal stress criterion,

tn

Smax

� �2

þ ts

Smax

� �2

¼ 1 ð5Þ

where ti(n,s) represents the nominal stress, and the subscript n and s indicate
deformation normal to and tangential to the interface respectively.

All the numerical simulations were carried out with ABAQUS/Explicit. The
hydrogel, stiff backing and elastomer were modelled with CPE4R element, and the
cohesive layer at the interface was modelled with COH2D element. The Poisson’s
ratios of the hydrogel and elastomer were set to be 0.499 to approximate
incompressibility. The adhesive interface was uniformly discretized with very fine
mesh size (0.1 mm). Mass scaling technique was adopted to maintain a quasi-static
process during the peeling simulations. To simulate the peeling test described in
the material and experiment section, the left edge of the strip was first rotated 90�
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and then moved vertically at a constant velocity, with the reaction force on the left
edge of the strip recorded. During the simulations, the bottom surface of the
elastomer is fixed to mimic the constraint of the rigid glass substrate used in
experiments. The interfacial toughness was then calculated as the steady-state
reaction force divided by the width of the strip, which is set to be unity in the
current model. The parameters for cohesive element between the bulk hydrogel
and the residual layer are chosen as Smax as 200 kPa and dmax as 3.0 mm which give
the intrinsic fracture energy G0 of 300 Jm� 2 for cohesive failure of the hydrogel
during peeling test.

Preparation and testing of anti-dehydration coating. Thin Ecoflex layer was
prepared by spin-coating uncured Ecoflex resin on acrylic plate (1,200 rpm for 30 s)
with final thickness around 100mm. The resultant Ecoflex film was placed on inner
surfaces of glass mould with the dimension of 25 mm diameter and 6 mm of
thickness, and then treated with benzophenone solution following the previously
described procedure. Thereafter, the hydrogel–Ecoflex hybrid was prepared by
pouring PAAm-alginate hydrogel pre-gel solution into the Ecoflex-covered mould
followed by ultraviolet irradiation. Hydrogel without anti-dehydration coating was
prepared by crosslinking PAAm-alginate pre-gel solution using the same glass
mould without Ecoflex film. The dehydration tests were carried out at room
temperature with low humidity (24 �C and 50 % humidity) for 48 h. Weight change
of the samples during dehydration tests was recorded every 2 h for comparison.

To test the effect of anti-dehydration elastomeric coating on mechanical
property of bulk hydrogel, we prepared a batch of dog-bone-shaped samples of
PAAm-alginate hydrogel with 15 mm in width, 35 mm in length and 6.35 mm in
thickness. For comparison, another batch of otherwise the same samples were
prepared with Ecoflex film (100 mm thickness) robustly bonded on both sides
of hydrogels. The tension tests were performed using the mechanical testing
machine (2 kN; Zwick/Roell Z2.5) with grip-to-grip separation speed of
50 mm min� 1.

Preparation and testing of hydrogel–elastomer microfluidic assembly. Ecoflex
microfluidic channel was prepared by curing Ecoflex resin onto silicon wafer
mould with predetermined positive SU-8 patterns following conventional soft-
lithography techniques26. Physically crosslinked PAAm-alginate hydrogel was
prepared by the previously described procedure. Physically crosslinked PAAm-
algiante hydrogel was gently assembled on top of the Ecoflex microfluidic channel.
The assembly was then exposed to ultraviolet irradiation for an hour. To verify
microfluidic function and diffusion through hydrogel matrix, 2% aqueous solution
of red, blue and green food dyes (McCormick) were supplied through three inlets
of microfluidic channels.

The hydrogel–elastomer microfluidic chip for the diffusion-reaction test was
prepared following the abovementioned procedures except that 0.1 wt.% of pH
indicator solution was added into the PAAm-alginate pre-gel solution. To test the
diffusion-reaction of waterborne chemicals, acid solution (0.1 M aqueous hydrogen
chloride solution) and base solution (0.1 M aqueous sodium hydroxide solution)
were supplied in two microfluidic channels. Note that all hydrogel–elastomer
microfluidic chips were kept in humid chamber during tests to avoid
dehydration.

Preparation and testing of conductive hydrogel pattern on elastomer. To form
conductive hydrogel circuit board pattern on Ecoflex substrate, thin PETE film
(70 mm thickness) with predetermined circuit board pattern was prepared using
laser-cutting machine (Epilog Mini/Helix). As a template for hydrogel pattern on
elastomer, the film with circuit board pattern was assembled with thin Ecoflex
substrate (1 mm thickness) treated with benzophenone solution as previously
described. Thereafter, PAAm-alginate pre-gel solution was poured onto the
assembly and covered with a glass slide, followed by ultraviolet irradiation for an
hour. After ultraviolet irradiation, the glass cover and the PETE film were removed
from the Ecoflex substrate leaving robustly bonded PAAm-alginate hydrogel
pattern. The hydrogel pattern was made to be ionically conductive by submerging
the hybrid in concentrated sodium chloride solution (3 M) for 6 h. To light up a
LED on the conductive hydrogel circuit pattern, each ends of pattern were
connected to a functional generator (5 V peak-to-peak voltage at 1 kHz).

The electrical property of the conductive hydrogel–elastomer hybrid under
deformation was measured using the four-point method19. The ionically
conductive hydrogel pattern with 50 mm in length, 1 mm in width and 200 mm in
thickness was bonded on thin Ecoflex substrate (1 mm thickness) following the
abovementioned method. The two ends of the hydrogel pattern were connected in
series with a function generator and a galvanometer, and the voltage between two
ends were measured with a voltmeter connected in parallel (Supplementary
Fig. 10a). The ratio of the measured voltage to the measured current gave the
electric resistance of ionically conductive hydrogel pattern. The rate of stretch was
kept constant at 100 mm min using a mechanical testing machine. Cyclic extension
of the conductive hydrogel–elastomer hybrid was done by mechanical testing
machine based on predetermined numbers of cycles.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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