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Abstract. The N-myc proto-oncogene is expressed 
during embryogenesis, suggesting that it plays a role in 
normal development. Since the myc-family oncogenes 
have been implicated in the control of cell growth, the 
embryonic expression may reflect rapid proliferation 
known to occur in development. Alternatively, N-myc 
expression may be involved in specific differentiation 
stages. In many embryonic tissues, early and late 
differentiation events occur in different locations. By in 
situ hybridization of tissue sections, we now demon- 
strate a restricted expression of N-myc mRNA to a few 
tissues and to areas where the first differentiation 
stages occur. N-myc expression was most strongly ex- 
pressed in the developing kidney, hair follicles, and in 
various parts of the central nervous system. In these 

tissues, expression was restricted to a few cell lin- 
eages. In all lineages, expression was confined to early 
differentiation stages, and, at onset of overt differentia- 
tion, the level of expression decreased dramatically. 
Several rapidly proliferating tissues showed very little, 
if any, N-myc expression. In the brain, post-mitotic 
but not yet differentiated cells expressed high levels of 
N-myc mRNA. Therefore, N-myc expression is not a 
simple marker for proliferation in the embryo. Rather, 
N-myc expression seems to be a feature of early 
differentiation stages of some cell lineages in kidney, 
brain, and hair follicles, regardless of the proliferative 
status of the cell. The results raise the possibility that 
N-myc may participate in the control of these early 
differentiation events. 

p ROTO-ONCOGENES have been shown to be expressed 
during embryonic development (MOiler et al., 1982) 
suggesting that a physiological role of oncogenes is to 

control normal development (for reviews see Bishop, 1983; 
Weinberg, 1985; MOiler, 1986; Adamson, 1987). It is not yet 
clear whether the expression of oncogenes in embryonic 
cells is related to proliferation, to differentiation processes, 
or to both. Although several lines of evidence point to a role 
of oncogenes in cell cycle control, they may have additional 
roles, unrelated to proliferation, during development. 

The members of the myc-oncogene family encode nuclear 
proteins believed to be important for regulation of cell growth. 
Three well-defined members of the myc-family are known to 
date, c-myc (Sheiness and Bishop, 1979; Sheiness et al., 
1980; Alt et al., 1986), N-myc (Kohl et al., 1983; Schwab 
et al., 1983), and L-myc (Nau et al., 1985; Legouy et al., 
1987). They are found in many species and the mRNA se- 
quences have been deduced from cDNAs of both human and 
mouse. The known myc oncogenes are all expressed at high 
levels in the embryo (Jacobovits et al., 1985; Zimmerman 
et al., 1986; Sejersen et al., 1986). Cells expressing c-myc 
during embryogenesis have been identified in human em- 
bryos and mouse embryonic cerebellum by in situ hybridiza- 
tion techniques (Pfeifer-Ohlsson et al., 1985; Ruppert et al., 
1986). There is recent evidence, however, that N-myc and 
c-myc expression are separately regulated (Zimmerman et 

al., 1986; Sejersen et al., 1987), and it has been clearly 
documented that the expression of N-myc and L-myc is very 
restricted with respect to tissue and stage in the newborn 
mouse, while that of c-myc is more generalized. Northern 
blotting of total RNA revealed particularly high levels of 
N-myc expression in developing brain and kidney in newborn 
mice (Zimmerman et al., 1986). 

For the developing brain, the areas of proliferation have 
been characterized previously (Miale and Sidman, 1961; 
Hinds, 1968) and there are also data on proliferation of some 
cell types in the developing kidney (Ekblom et al., 1983). 
In the developing kidney, proliferation and differentiation oc- 
cur in the same anatomical compartments, and cells seem to 
proliferate both during early and late differentiation. In some 
areas of the developing brain, however, post-mitotic but not 
yet differentiated cells can be found in defined locations. In 
such cases, the differentiation process occurs after cessation 
of cell proliferation and migration to the target locations (Mi- 
ale and Sidman, 1961; Angevine and Sidman, 1961). Thus, 
these embryonic tissues can be used to study the relationship 
between cell proliferation, cell differentiation, and expres- 
sion of the N-myc oncogene. We have therefore performed 
in situ hybridization of sections of mouse embryos with an 
N-myc probe. 

Since Northern hybridization of total RNA showed strong 
signals in developing brain and kidney in newborn mice and 
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embryos (Zimmerman et al., 1986; this work), we expected 
to see expression in many cell lineages in these tissues. In 
situ hybridization revealed, however, that N-myc mRNA was 
remarkably restricted to a few cell lineages in the developing 
kidney and brain. Furthermore, expression occurred only 
during the earliest stages of differentiation of the cells and 
it was shut off when overt differentiation started. An unex- 
pected strong signal was seen in developing hair, but also 
here, the expression was confined to the early differentiation 
stages. 

Materials and Methods 

Embryos and 1Issues 
Hybrid mouse embryos 129x NMRI were used. The day of the vaginal plug 
was designated as day 0. To minimize RNA degradation, tissues collected 
for Northern blotting of total RNA were immediately frozen on dry ice after 
microsurgery, and care was taken to perform the microsurgery immediately 
after decapitation. Frozen sections from embryonic kidneys and newborn 
mice were prepared as described by Holland et al. (1987) except that em- 
bryonic kidneys were fixed in 4% paraformaldehyde for 1 h only. 

Isolation of RNA 
For preparation of total RNA, 0.5 g of frozen tissue were homogenized in 
5 ml of 4 M guanidinium thiocyanate (Fluka AG, Buchs, Switzerland; pu- 
rum p.a.) using a Dounce tissue homogenizer and a tight fitting S-pistill. 
In the presence of high amounts of chromosomal DNA, the homogenate was 
squeezed through a 20-gauge needle to shear the high molecular weight 
DNA. The RNA was then purified by ultracentrifugation (SW41 Ti rotor; 
35,000 rpm, 20°C, 16 h) through a 2.1-ml cushion of 5.7 M cesium chloride 
(Chirgwin et al., 1979). The supernatant was removed by suction and the 
RNA pellet was dissolved in sterile double-distilled H20. Total RNA was 
harvested by ethanol precipitation. The concentration of the RNA was deter- 
mined by reading the absorbance at 260 nm. The purity of the RNA was 
tested by determining the A26o/A2s0 ratio and by agarose gel electropho- 
resis. 

Preparation of Labeled Probes 
For nick translation, the 2.3 kb Bgl II/Eco RI fragment of the murine 
genomic clone p277.3 carrying parts of the second intron and the whole third 
exon of the N-myc gene (DePinho et al., 1986) was purified from a 1% 
agarose gel and labeled with 30--40 [tCi [a-32p]dCTP (6,000 Ci/mmol; 
Amersham-Buchler, Braunschweig, FRG) using a nick translation kit 
(Bethesda Research Laboratories, Bethesda, MD). The reaction was carried 
out in a final volume of 50 ~tl according to the supplier's instructions. The 
reaction was stopped by addition of 40 ~tl TNE (10 mM Tris-Cl, 10 mM 
NaC1, 2 mM EDTA, pH 8.0). The labeled DNA was collected by 
isopropanol precipitation for 15 min at room temperature (RT) ~ in the 
presence of 1 lag/gl carrier tRNA. After washing with 70% ethanol the pel- 
let was redissolved in 10 mM Tris-Cl, 1 mM EDTA, pH 8.0, and heat dena- 
tured by boiling for 5 min. The probe was chilled on ice and added to the 
hybridization mixture. Probes were labeled to a specific activity of 3.5 × 
108-1.5 × 109 cpm/p,g DNA. 

To prepare single-stranded RNA probes, the same N-myc probe used for 
nick translation was subcloned into pSP65 (Promega Biotec, Madison, WI) 
and Bluescript vectors (Stratagene, La Jolla, CA). 35S-labeled single- 
stranded RNA probes (8.5 × 10 a dpm/l~g sp act) were synthesized by a 
modification of the method of Melton et al. (1984). Briefly, the transcription 
reaction was performed at 40°C for 60 min in a final volume of 20 gl con- 
taining 40 mM Tris-Cl, pH 7.5, 6 mM MgCI2, 2 mM sperrnidine, 10 mM 
NaC1, 10 mM DTT, 2.5 mM each of ATP, CTP, GTP, 30 U RNase inhibitor 
(Amersham-Buchler), 1 lag template DNA, 100 I.tCi [ct-3sS]UTP (>1,000 
Ci/mmol; Amersham-Buchler), and 16 U SP6 RNA polymerase (Amersham- 
Buchler). The salt conditions for T3 RNA polymerase (Genofit, Heidel- 
berg, FRG) reaction were 40 mM Tris-Cl, pH 8.0, 8 mM MgC12, 6 mM 
spermidine, and 50 mM NaCI. After in vitro transcription, 7.5 U DNase I 
(FPLC pure, Pharmacia Fine Chemicals, Freiburg, FRG) together with 30 U 
RNase inhibitor and 20 I.tg Escherichia coli tRNA (Boehringer, Mannheim, 

1. Abbreviation used in this paper: RT, room temperature. 

FRG) were added to remove the template DNA. After incubation for 15 min 
at 37°C, the RNA was extracted once with phenol/chloroform (1:1) and once 
with chloroform. Unincorporated nucleotides were removed by ethanol pre- 
cipitation of the labeled RNA (2 M ammonium acetate, 2 vol ethanol) for 
10 min on dry ice. The RNA was then redissolved in 10 mM D'rT. The anti- 
sense ( - )  strand (i.e., complementary to N-myc mRNA) was synthesized 
using SP6 RNA polymerase after linearizing the template DNA with Hind 
III. The sense (+) strand was synthesized using T3 RNA polymerase after 
linearizing with Eco RI, and was used for control hybridization. Probe 
length was reduced to an average size of 100-200 nucleotides by limited 
alkaline hydrolysis (Cox et al., 1984) and was checked by formaldehyde- 
agarose gel electrophoresis (Lehrach et al., 1977). Probes were stored in 
50% formarnide and 10 mM DTT at -20°C. 

Northern Blotting 
Equal amounts of total RNA were subjected to electrophoresis on 1% 
agarose gels after denaturation with glyoxal (McMaster and Carmichael, 
1977). After etectrophoresis, the lane with the molecular weight marker 
(Hind III/Eco RI-cut Z,-DNA) was cut from the gel and stained with 
ethidium bromide (5 ~tg/ml). Transfer to Hybond N (Amersham-Buchler) 
was carried out as described by the manufacturer using 20x SSC. The RNA 
was crosslinked to the nylon membrane by ultraviolet irridation. Glyoxala- 
tion was reversed by baking the filters under vacuum at 80°C for 2 h. Blots 
were prehybridized in 50% deionized formamide, 5x SET (0.75 M NaCI, 
0.15 M Tris, 10 mM EDTA, pH 8.0), 2.5x Denhardt's solution, 0.5% SDS, 
and 0.1 mg/ml herring sperm DNA for 1-2 h at 42°C. The beat-denatured, 
nick translated N-myc probe (2.4 x 106 cpm/ml) was added to the pre- 
hybridization mixture and hybridization was performed at 42°C for 15- 
20 h. Filters were washed twice in 2× SSC/0.1% SDS at 42°C for 15 min, 
then twice in 0.1× SSC/0.1% SDS for 15 min at 420C. Control hybridizations 
with the same filters were performed under the same conditions using the 
nick translated 1.2-kb Pst I fragment (2.7 x 10 e cpm/ml) of the murine [3- 
actin cDNA clone pAL41 (Minty et al., 1983). For removal of the probe 
before subsequent rehybridization, blots were washed in boiling water for 
"~10 min. Northern blots were exposed to Kodak X-OMAT AR x-ray films 
for various lengths of time at -70°C using intensifier screens. In the liver, 
however, the [3-actin expression decreased with advancing development, 
and actin expression could therefore not be used to monitor the amount of 
RNA in this tissue. For the different stages of liver development, we there- 
fore stained the filter for 28 and 18 S rRNA with 0.04% methylene blue 
(Maniatis et al., 1982). 

In Situ Hybridization of ltssue Sections with 
Single-stranded RNA Probes 
In situ hybridization was performed according to P. Holland's protocol as 
described in Hogan et al. (1986). Sections (8-10 gm) were cut on a cryostat 
(Reichert and Jung, Nussloch, FRG) at -15°C, collected on polylysine- 
coated slides, rapidly dried on a hot plate at 50°C for 3 min, and air-dried 
for 1-2 h at RT. Sections were postfixed in 4% paraformaldehyde in PBS 
(20 min, RT), rinsed in PBS (three times for 5 rain at RT), and dehydrated 
by decreasing alcohol series. After air-drying, slides were stored desiccated 
at -20°C. Pretreatment of sections was performed as described by Hogan 
et al. (1986) except that the incubation step in 2X SSC at 70°C was omitted. 
After incubation in 0.2 M HCI (20 rain, RT) to remove basic proteins, sec- 
tions were treated with self-digested pronase (0.125 mg/ml) for 10 rain at 
RT. The pronase reaction was subsequently blocked with 0.2% glycine in 
PBS (30 s, RT). The slides were then rinsed in PBS, fixed in 4% parafor- 
maldehyde, acetylated, dehydrated, and air dried. Hybridization conditions 
were as described by Ingham et al. (1985). Probes were used at a final con- 
centration of 'x,0.24 ng/l~l. Fosthybridization washes including RNase A 
digestion were performed as described (Hogan et al., 1986). For autoradi- 
ography, the slides were dipped in emulsion (K2, Ilford Ltd., Basildon, Es- 
sex, UK), diluted 1:1 with 1% glycerol in water. After air drying, slides were 
exposed at 4°C for 7-11 d, developed in Kodak D19 developer (2 min at 
20°C), stopped in 1% acetic acid (1 rain at 20"C), fixed in 30% sodium 
thiosulphate (5 min at 20°C), and rinsed in distilled water. Sections were 
stained in toluidine blue (0.02 % for 30 s), dehydrated, and mounted. Photo- 
graphs were taken under bright-field and dark-field illumination. 

Results 

Previously performed hybridization of total RNA had shown 
that N-myc mRNA was present in the mouse embryo during 
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preimplantation development, in certain teratocarcinoma 
cell lines, and during late organogenesis of brain and kidney 
(Jacobovits et al., 1985; Zimmerman et al., 1986; Sejersen 
et al., 1986). Only a limited amount of information was, 
however, available for early and late prenatal organogenesis. 
Differentiation is asynchronous in organs, and many rather 
undifferentiated cells, intermixed with terminally differen- 
tiated cells, are present during late organogenesis. It was 
therefore unclear whether N-myc expression during late or- 
gan development in newborn mice reflected N-myc expres- 
sion by cells in early or late differentiation stages. To study 
this issue in more detail for the solid organs, we performed 
Northern blotting experiments of earlier developmental 
stages, and in situ hybridization of tissue sections. Em- 
bryonic day 12 was selected as a starting point since one pri- 
mary interest was to study kidney development. Kidneys 
from 12-d embryos are composed predominantly of cells in 
their earliest differentiation steps. Heart, lung, and liver or- 
ganogensis, however, already starts somewhat earlier in em- 
bryonic development. Brain development also starts earlier 
but continues postnatally (for details of mouse development, 
see Theiler, 1972; Jacobson, 1978; Hogan et al., 1986). 

RNA Blot Analysis of  N-myc Expression 

We assayed total RNA of several major organs (brain, kid- 
ney, heart, lung, liver) using electrophoresis and subsequent 
hybridization to the N-myc probe. In tissues from the youn- 
gest embryos studied (12-d old), abundant expression of 
N-myc mRNA was seen in the brain and kidney. A somewhat 
weaker expression was seen in the lung and heart (Fig. 1), 
and a very weak signal could be detected in the liver from 
the youngest embryos (Fig. 2). In the kidney, lung, heart, and 

liver, expression gradually decreased with advancing em- 
bryonic development, and adult tissues showed no expres- 
sion. Expression seemed to remain more constant during 
embryonic brain development (Fig. 1), but as also shown 
previously (Zimmerman et al., 1986), we found that it 
declined during postnatal life. In adult brain, no N-myc 
mRNA was detected with the methods used. These data sug- 
gested that N-myc expression indeed could be characteristic 
for the early stages of organogenesis, but with this method 
it was not possible to judge whether all cells or only a few 
cell types in the organs expressed N-myc mRNA. 

In Situ Localization of  N-myc mRNA in Sections 

In tissues which by Northern blotting showed strong N-myc 
expression, the developing brain and kidney, it was possible 
by in situ hybridization of sections to identify the cells ex- 
pressing N-myc. A remarkable, stage- and cell-lineage spe- 
cific expression was noted. In addition, we found a strong ex- 
pression in developing hair follicles of newborn mice. In the 
other tissues from newborn mice, the hybridization signal 
was considerably weaker, and in most tissues from newborn 
mice, no clear signal was obtained. The expression of N-myc 
in the mouse embryo was found to be very different from that 
of c-myc in the human embryo (see Pfeifer-Ohlsson et al., 
1985). 

In Situ Hybridization of  N-myc in Embryonic Kidneys 

In the developing kidney, at least four different cell lineages 
are present: the ureter epithelium, the endothelium, and two 
different mesenchymes. The differentiation of the ureter epi- 
thelium and the endothelium is largely an ingrowth and 
branching process, whereas the two mesenchymal cell popu- 

Figure 1. N-myc RNA expression in different tissues during murine development. Total cellular RNA (20 ~tg per lane) from various tissue 
samples isolated from days 12-18 p.c. (12-18 d), newborn (nb), and adult (a) mice was hybridized to the N-myc probe. To show the quality 
of RNA, the same filter was also hybridized to an I~-actin probe. Autoradiographic exposure time was 22 h for N-myc (top) and 1.75 h 
for [I-actin (bottom). Note that hybridization for actin mRNA reveals the expected shift from [I-actin to a-actin during embryonic heart 
development. 
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Figure 2. Northern blot analysis of N-myc expression in total RNA 
extracted from embryonic and adult mouse liver. The amount of to- 
tal RNA loaded per lane was 20 ~tg. Total RNA was isolated from 
12-18-d old embryos (12-18 d), newborn (nb), and adult (a) mice. 
(a) Hybridization with the N-myc probe. Autoradiography was for 
6 d. (b) Control hybridization with the 13-actin probe. Autoradiogra- 
phy was for 1.75 h. (c) The same filter as in a and b stained with 
methylene blue to visualize the 28 and 18 S rRNAs. 

lations undergo dramatic morphological conversions. One 
part of the mesenchyme will become stroma (Aufderheide et 
al., 1987), and another part will convert into a new epithe- 
lium as a response to an inductive stimulus from the ureter 
epithelium. The early stages of differentiation of all these cell 
lineages occur in the cortical parts of the embryonic kidney, 
regardless of the age. N-myc expression seemed to be 
confined to the areas where the early differentiation steps oc- 
cur, but only in one cell lineage, in the mesenchyme that con- 
verts into a new epithelium (Figs. 3 and 5). The differentia- 
tion of these mesenchymal cells in the kidney starts in the 
periphery of the tissues in cell clusters around the tips of the 
ureter epithelium (Huber, 1905; Osathanondh and Potter, 
1963; Ekblom, 1981). In situ hybridization revealed that 
these mesenchymal cell clusters expressed N-myc mRNA; 
the N-myc expressing cells were located around the tips of 
the ureter and exclusively in the cortical parts of the tissue, 

regardless of the age and size of the tissue. The relative 
proportion of N-myc-positive areas was bigger in kidneys 
from 13-d old embryos (Fig. 3, a and b) than in those from 
16-d old embryos (Fig. 3, c and d), as can be expected when 
expression is confined to early differentiation stages which 
occur only in the periphery. 

The development of those mesenchymal cells which are 
located around the tips of the ureter is known to involve a true 
conversion of the mesenchyme into an epithelium. Morpho- 
logically, several stages can be distinguished during this dif- 
ferentiation process: condensation, comma-shape, S-shape, 
tubule elongation, and folding of the podocytes of the glo- 
meruli (Fig. 4). Larger magnification of the cortical areas 
showed that N-myc mRNA was expressed exclusively during 
early tubule differentiation, namely in the condensates (Fig. 
5, a and b) the comma- and S-shape stages (Fig. 5, c and d), 
but not in the subsequent stages (Fig. 5, c-f). Due to the con- 
tinuous branching of the ureter and a proliferation of mesen- 
chymal cells in the periphery, previously induced mesen- 
chymal cells will be gradually displaced towards the inner 
parts of the kidney as development proceeds (Osathanondh 
and Potter, 1963). Because of this, the later differentiation 
events (tubule elongation and podocyte folding in the 
glomerulus) occur in the inner part of the developing kid- 
neys. As can be seen both in low magnification (Fig. 3) and 
high magnification (Fig. 5) of 16-d-old kidneys, the inner 
parts, which contain the still proliferating elongating tubules 
and maturing glomeruli, were not expressing N-myc (Fig. 3, 
c and d; Fig. 5, c-d), whereas the areas which contain mes- 
enchymal cells in their early differentiation stages around the 
ureter tips in the cortex were strongly positive for N-myc 
mRNA (Fig. 5, a-d). Hence, N-myc expression seems to be 
restricted to the precursors of one cell lineage, the mesen- 
chymal cells which will differentiate into kidney tubules. 

In Situ Hybridization of N-myc in Developing Skin 
In the skin of newborn mice, N-myc expression could be de- 
tected in the hair follicles but it was restricted to the hair 
bulbs. The epidermis and the dermis were both negative for 
N-myc mRNA (Fig. 6, a-d). The hair bulb, the germinative 
zone of the hair follicle, consists of a bell-shaped mass of 
proliferating epithelial cells enclosing the mesenchymal der- 
mal papilla. As soon as the cells leave this compartment, 
they undergo terminal differentiation. Concomitantly, the 
proliferation rate drastically decreases (Epstein and Mai- 
bach, 1969; Sengel, 1976). As it is known that the great 
majority of the hair follicles are built up during embryonic 
and early postnatal development (Sengel, 1976), it is not sur- 
prising that, in newborn mice, N-myc mRNA was present in 
all hair follicles. The bell-shaped mass of N-myc mRNA- 
positive ceils is readily distinguishable from both the N-myc- 
negative dermal papilla and the hair shaft in sagittal sections 
of the developing hair (Fig. 5, c and d). Thus, in the develop- 
ing skin, N-myc expression seems to be confined to one cell 
lineage, and to its earliest developmental stages. 

In Situ Hybridization of N-myc in Developing Brain 
Within the developing brain of newborn mice, several distinct 
areas with high levels of N-myc expression were discernible. 
In the cerebellum, the external granular layer showed strong 
N-myc expression (Fig. 7, a and b). This layer, the second 
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Figure 3. Expression of the proto-onco- 
gene N-myc in tissue sections of the em- 
bryonic mouse kidney. Cryostat sections 
from frozen mouse kidneys were hybrid- 
ized with antisense ( - )  and sense (+) 
single-stranded N-myc RNA probes. Whole 
13-d mouse kidney, antisense ( - )  probe, 
bright field (a) and dark field (b) pho- 
tographs. Bright field (c) and dark field 
(d) photography of a parasagittal section 
through a 16-d mouse kidney processed 
with the antisense ( - )  strand probe. Note 
higher density of silver grains over the 
nephrogenic zone compared to the inner 
part of the kidney. (e) Schematic drawing 
of a 16-d embryonic mouse kidney illus- 
trating the different zones of tubule differ- 
entiation. The innermost zone also contains 
loose mesenchyme and the cell density is 
therefore lower in this region. ( f  and g) 
Autoradiograph of a midsagittal section 
through the same kidney as in c and d 
processed for in situ hybridization with 
the sense (+) strand probe. Bright field (f) 
and dark field (g) illumination. Autora- 
diography was for 9 d. Bars: (a and b) 
100 ~tm; (c-g) 250 ~m. 

germinal layer in the cerebellum, is known to be an extreme- 
ly mitotically active zone during later fetal life and the first 
2 wk of postnatal murine development (Miale and Sidman, 
1961). Undifferentiated neuroblasts originating from this 
germinal layer migrate deeper into the cerebellar cortex to 
their respective target layers where they terminally differ- 
entiate. One of these cortical layers, the inner granular layer, 
was also positive for N-myc although the signal intensity was 
much weaker. In contrast to the growth in the cerebellum, 
the increase in size of  the neocortex and the bulbus olfac- 
torius is due to accretion of post-mitotic neuroblasts that are 
generated in the respective germinal zones around the ventri- 
cles. After migration to their target layers, the neuroblasts 
finally differentiate into mature neurons (Miale and Sidman, 
1961; Hinds, 1968; Jacobson, 1978). We found that the post- 
mitotic but not yet differentiated cells in the neocortex (Fig. 
7, c and d) and the bulbus olfactorius (Fig. 7, e and f )  were 

expressing N-myc. In the bulbus olfactorius, N-myc expres- 
sion was restricted to two of the six layers, namely to the 
mitral cell and the internal granular layer, which are com- 
posed of postmitotic but not terminally differentiated cells. 
In contrast, the three more externally located layers with 
differentiated cells were negative for N-myc (Fig. 7, e and f ) .  

Discussion 

In the embryo, overt cell differentiation is in most organs 
preceded by one or more distinct cell determination stages. 
During these stages, stem cells become progressively more 
determined towards certain differentiation pathways. The 
early determination stages can also be viewed as the first 
differentiation stages as opposed to terminal differentiation. 
In general, the determined state of  a cell would not be appar- 
ent by direct inspection of any means now available but is 
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Figure 4. Scheme of kidney differentiation in vivo showing the 
branching of the ureter, the ingrowth of the vessels, and the conver- 
sion of the induced mesenchyme to epithelium, redrawn according 
to Kazimierzak (1971) and Ekblom (1984). The four different cell 
lineages, the ureter (1), the blood vessels (2), the uninduced mesen- 
chyme (3), and the induced mesench~me (4) are first seen clearly 
in the condensation stage. After this stage, the induced mesenchyme 
first condenses, develops into a comma-shaped and S-shaped struc- 
ture, the tubules elongate, and simultaneously the podocytes in the 
glomeruli fold. 

only deduced from its later behavior (Dawid and Wahli, 
1979). The location of the ceils which are still in these early 
differentiation stages has been well-defined morphologically 
for many organs, although very few molecular markers are 
available. In the present study, we show by in situ hybridiza- 
tion that N-myc expression is a feature of the earliest differ- 
entiation stages of some cell lineages in the developing brain, 
kidney, and hair follicles. It remains to be seen whether 
c-myc and L-myc expression shows a similar pattern, but 
Northern blotting (Zimmerman et al., 1986) suggest that 
each member of the myc-oncogene family could have a unique 
tissue distribution. 

When sufficiently young embryonic tissues were analyzed, 
some N-myc mRNA could be detected in several other tis- 
sues as well (lung, heart, liver) and expression was, in all 
cases studied, strongest in the tissues from the youngest em- 
bryos. Thus, it is possible that some expression of N-myc 
could be a more general feature of early differentiation stages 
in the embryo. However, the cells expressing it could be as- 
sessed with certainty only in the tissues which showed excep- 
tionally strong expression, namely in the brain, kidney, and 
hair follicles. 

For several cell lineages, the first differentiation stages are 
coupled with cell proliferation, and it has been argued that 
the mitotic process itself is a crucial part of the differentiation 

of stem cells (Holzer et al., 1975; Lathja, 1979). Prolifer- 
ation is a feature of early differentiation of those cells in 
the developing kidney, hair follicles, and cerebellum which 
showed a strong expression of N-myc. It could therefore not 
be distinguished whether N-myc expression was due to the 
rapid proliferation or whether it marked the early differentia- 
tion stages. In certain regions of the developing brain, how- 
ever, cells stop proliferating before differentiation begins. 
Because of subsequent migration of the post-mitotic cells, 
differentiation and proliferation will occur in different loca- 
tions. We could show that post-mitotic cells which were still 
in the early differentiation stages expressed N-myc. Similar 
findings were recently reported for human embryonic brain 
(Grady et al., 1987). The N-myc transcripts have a half-life 
of about 130 min (Sejersen et al., 1987), and the cells which 
expressed N-myc in the brain had been post-mitotic for more 
than 24 h (Hinds, 1968). Therefore, it is extremely unlikely 
that the N-myc mRNA in post-mitotic but not yet differen- 
tiated cells represents mRNA synthesized during the earlier, 
mitotic stages. 

Many of the tissues known to continue to proliferate through- 
out organogenesis showed no expression of N-myc during 
late organogenesis (liver, lung). Furthermore, within those 
tissues showing strong expression, some rapidly proliferat- 
ing cells expressed very little, if any, N-myc. In the develop- 
ing kidney, for example, the ureter cells are known to grow 
rapidly, but expression was seen only in the nearby mesen- 
chymal cells. Thus, neither N-myc as shown here, nor c-myc 
as previously shown (Pfeifer-Ohlsson et al., 1985; Godeau 
et al., 1986; Taylor et al., 1986), can be considered as a sim- 
ple marker for proliferative activity during embryogenesis. 
The most compelling evidence that N-myc is associated with 
early cell differentiation steps rather than with cell prolifera- 
tion is the fact that the post-mitotic, not yet differentiated 
brain cells are strongly N-myc-positive. In vitro cell culture 
experiments have also demonstrated that undifferentiated 
neuroblasts from neuroblastomas and pre-B cells express 
N-myc, and that decreased expression correlates with initia- 
tion of differentiation (Thiele et al., 1985; Zimmerman et 
al., 1986). 

Taken together, current evidence suggest that N-myc ex- 
pression in the embryo is a feature of certain stem ceils which 
are still in the earliest differentiation stages regardless of the 
proliferative state of the cells. Therefore, the proto-oncogene 
N-myc can be considered as a marker for such early differ- 
entiation stages. Northern blotting experiments show that 
N-myc expression occurs also in late organogenesis (Zim- 
merman et al., 1986) but the in situ hybridization results es- 
tablish that this is due to not yet differentiated cells which re- 
main present in the tissues also at late organogenesis. 

The identification of the cell types that express oncogenes 
during normal development should help us to clarify the 
physiological role of oncogenes. It has recently been shown 
for some other proto-oncogenes that they, like N-myc, show 
a remarkable tissue-specific and stage-specific expression 
during embryogenesis (Wilkinson et al., 1987; Shakleford 
and Varmus, 1987; Dony and Gruss, 1987). The expression 
of N-myc mRNA seems to be particularly interesting since 
it occurs during early differentiation steps and is turned off 
at onset of terminal differentiation. In the developing tissues 
which express c-fos mRNA, another nuclear oncogene im- 
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Figure 5. Analysis of N-myc 
expression with an antisense 
RNA-probe during the conden- 
sation of the induced mesen- 
chyme, formation of S-shaped 
bodies, tubule elongation, and 
glomerular development in 
cryostat sections from mouse 
kidneys. Compare with scheme 
in Fig. 4. (a and b) Autoradio- 
graph of the nephrogenic zone 
of the 13-d mouse kidney re- 
vealing the label surrounding 
the ureter tips. Note label only 
in the induced mesenchyme 
whereas neither the surround- 
ing loose mesenchyme nor the 
ureter buds (u) show N-myc 
expression. Antisense ( - )  
probe, bright field (a) and 
dark field (b) illumination. (c 
and d) Autoradiograph of a 
section from the cortical area 
reveals high density of silver 
grain in two S-shaped bodies 
found around the ureter (u) 
epithelium which shows very 
few grains. Note that both the 
renal capsule above the S- 
shaped tubules, and the glo- 
merulus (arrows) found in the 
lower part of the figure show 
very few grains. Bright field 
(c) and dark field (d) illumi- 
nation. (e and f )  Autoradio- 
graph of a section from the 
area with elongating and 
proliferating tubules. The den- 
sity of the silver grains is low 
and does not differ from back- 
ground levels found outside 
the sections. Bright field (e) 
and dark field (f) illumina- 
tion. Autoradiography was for 
11 d. For stages of nephron 
development, see Fig. 4. Bars, 
50 txm. 

plicated in growth control, the oncogene products were ex- 
pressed rather late in development, and only during develop- 
ment of a few bones (Dony and Gruss, 1987). Myc andfos 
gene products have been suggested to have a direct or indirect 
role in regulating the expression of other genes, a proposal 
consistent with the fact that these oncogenes encode nuclear 
proteins (Slamon et al., 1984; Renz et al., 1985; Sambucetti 
and Curran, 1986). If  the proteins were to serve as control 

genes in the embryo, they should be expressed during early 
differentiation steps rather than during late differentiation. 
We have here shown such a remarkable pattern for N-myc. 
The data raise the possibility that N-myc functions as a con- 
trol gene during several early differentiation events in the de- 
veloping embryo. Such functions have been directly demon- 
strated previously for homeobox and segmentation genes and 
other developmentally important control genes, which code 
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Figure 6. Localization of the N-myc-specific mRNA by in situ hybridization on cryostat sections of the skin region of a newborn mouse. 
(a and b) Autoradiograph of a section through the skin. Most of the hair follicles are cross-cut. Bright field (a) and dark field (b) illumination. 
(c and d) Autoradiograph of a sagittal section of a hair follicle revealing high density of silver grains in the epithelial cells of the hair 
bulb, but not in the hair shaft or the surrounding mesenchyme. The hair shaft is indicated by arrows. Bright field (c) and dark field (d) 
illumination. Autoradiography was for 9 d. Bars, 50 ~tm. 

for nuclear proteins with DNA-binding capacity (White and 
Wilcox, 1984; Miller et al., 1985; Rosenberg et al., 1986). 
Another equally intriguing possibility is that expression of 
myc oncogenes is required to retain the cells in an undifferen- 
tiated state. It has been shown for several cell types that ex- 
perimentally induced constitutive expression of c-myc can 
inhibit differentiation (Coppola and Cole, 1986; Denis et al., 
1987; Lom~ et al., 1987). Such an effect could be physiologi- 
cally important in the embryo because it could ensure the ex- 
istence of a sufficient amount of stem cells. 

Because some pediatric tumors derived from nerve cells 
and kidney cells express high amounts of N-myc (Schwab et 
al., 1983, 1984; Nisen et al., 1986), it was important to iden- 
tify the cell types that express N-myc during normal develop- 
ment. Our data may shed some light to the histogenesis of 
these tumors. In the Wilms' tumor, the childhood kidney can- 
cer derived from developing kidney cells, high levels of 
N-myc expression have been reported. It is interesting that 
there is no amplification of the gene in Wilms' tumor as in 
other tumors with an elevated N-myc expression (Nisen et 
al., 1986). This could be due to a large number of deter- 
mined but yet undifferentiated mesenchymal cells in Wilms' 
tumor. Differences in the extent of N-myc expression be- 

tween different Wilms' tumor samples (Nisen et al., 1986) 
may simply be due to the varying amounts of the mesen- 
chymal ceils which fail to differentiate further. In situ hybrid- 
ization studies on the expression of the N-myc oncogene in 
these tumors, brain, and skin tumors, should help to clarify 
these issues. We anticipate that analysis of N-myc mRNA in 
tissue sections with single-stranded antisense probes in com- 
bination with Northern blotting experiments will be useful 
in diagnostic histopathology. 
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