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Osteoarticular diseases (OD), such as rheumatoid arthritis (RA) and osteoarthritis (OA) are
chronic autoimmune/inflammatory and age-related diseases that affect the joints and other
organs for which the current therapies are not effective. Cell therapy using mesenchymal
stem/stromal cells (MSCs) is an alternative treatment due to their immunomodulatory and
tissue differentiation capacity. Several experimental studies in numerous diseases have
demonstrated the MSCs’ therapeutic effects. However, MSCs have shown heterogeneity,
instability of stemness and differentiation capacities, limited homing ability, and various
adverse responses such as abnormal differentiation and tumor formation. Recently,
acellular therapy based on MSC secreted factors has raised the attention of several
studies. It has been shown that molecules embedded in extracellular vesicles (EVs) derived
fromMSCs, particularly those from the small fraction enriched in exosomes (sEVs), effectively
mimic their impact in target cells. Thebiological effectsof sEVscriticallydependon their cargo,
where sEVs-embeddedmicroRNAs (miRNAs) are particularly relevant due to their crucial role
in gene expression regulation. Therefore, in this review, we will focus on the effect of sEVs
derived fromMSCsand theirmiRNAcargoon target cells associatedwith thepathologyofRA
and OA and their potential therapeutic impact.
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INTRODUCTION

An excessively prolonged imbalance of the immune system
response can lead to a vast array of inflammatory and
autoimmune disorders. Moreover, genetic predisposition and
epigenetic regulations, including environmental factors and
age, promote autoimmune, inflammatory, and degenerative
diseases development (1). These illnesses imply a high
economic burden for the healthcare system and those who
suffer from them (2, 3). Osteoarticular diseases (OD), such as
osteoarthritis (OA), and rheumatoid arthritis (RA), have raised
particular concern in the last decades due to the increase of
medical consults. They affect roughly 23% of the population over
40 worldwide for knee OA (the most common articulation
affected by OA) (4, 5), and around 0.5% of the worldwide
population for RA (6). Moreover, both OA and RA cause a
great deal of pain and discomfort to the patients, impacting their
quality of life (7). Without a cure for OD, patients rely mainly on
non-steroidal anti-inflammatory drugs (NSAIDs), analgesics,
and glucocorticoids as the primary options to manage the
symptoms (8, 9). Unfortunately, these treatments lack disease-
and structural-modifying capabilities and even worse, their
prolonged use is associated with severe side effects (9, 10).

Thus, alternative therapies are still needed to treat
autoimmune/inflammatory and degenerative diseases like OA
and RA. Both diseases are mainly defined by the loss of articular
cartilage and are known to affect people of all races, genders, and
ages (11, 12). Numerous therapeutic efforts have been made to
restore the affected joints, including tissue engineering to
promote tissue regeneration. Recently, cell-based therapies
have had a considerable rise, such as the regulatory T cell
therapy. However, their high cost and the technical difficulties in
producing off-the-counter cell therapies remain significant hurdles
for their clinical application (13). Three types of cell treatment are
used in clinical trials for OA or degenerative environments;
articular chondrocytes, meniscal fibrochondrocytes, and
mesenchymal stem/stromal cells (MSCs), where the latter has
shown encouraging results (11, 14–17). MSCs are multipotent
stem cells of mesodermal origin that can be defined as a cell
population with the hallmark self-renewal properties and
differentiation into chondrogenic, osteogenic, and adipogenic
lineages (18). Although therapy using MSCs has achieved
significant progress, stem cell-based therapies have not fulfilled
the initial promise. Some remaining drawbacks include the
inconveniences associated with high costs and potential side
effects, leading to inconsistency among preclinical and clinical
trials (19).

In recent years, the therapeutic benefit of MSCs has been
attributed to their functions through cell–to–cell contact and,
more prominently, paracrine communication. The main
mediators of paracrine communication are small extracellular
vesicles (sEVs), which play an essential role as an alternative
mechanism by which MSCs regulate different biological
processes (20, 21). sEVs are heterogeneous particles that are
delimited by a lipid bilayer membrane, whose primary function
is to act as vehicles of cellular communication, transporting and
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transferring several bioactive molecules, such as proteins,
peptides, lipids, messenger RNA (mRNA), and microRNA
(miRNA) (22). miRNAs are small 20–22-nucleotide-long non-
coding RNAs, which mediate post-transcriptional gene silencing
by binding to the 3’-untranslated region (UTR) or open reading
frame (ORF) region of target mRNAs (23) unpairing protein
translation and causing a rapid tuning of cell fate decisions in
response to environmental cues (24). Although sEVs can carry
different types of cargo, increasing evidence points at miRNAs as
significant mediators for the effects of these vesicles over the
target cells (25, 26). Noteworthy, miRNAs regulate the immune
system and signaling pathways related to extracellular matrix
synthesis, chondrocyte survival, and proliferation (27–29). In
addition, the auspicious use of sEVs as “cell-free cellular
therapies’’ provides substantial advantages in contrast to
whole-cell therapy, such as their easy handling and minimizing
the risks of rejection (30). This review summarizes the current
knowledge of MSC derived sEVs (MSC-sEVs) and their miRNA
cargo as a potential and attractive substitute for treating
autoimmune/inflammatory and degenerative disorders.
MSC-BASED THERAPY FOR
OD TREATMENT

MSCs are multipotent fibroblast-like cells of mesodermal origin
that have been described in several mammals, including humans
and mice (31). According to the International Society of Cell
Therapy (ISCT), three major criteria define MSCs: their capacity
to adhere to plastic surfaces under culture conditions (32), their
ability to self-renew and differentiate toward mesodermal
lineages, such as adipogenic, chondrogenic and osteogenic (33)
lineages, as well as the expression of surface markers CD105,
CD73, and CD90 in the absence of hematopoietic markers
including CD45, CD34, CD14 or CD11b, CD19, and HLA‐DR
(18, 34). These cells are found in various tissues, including bone
marrow, adipose tissue, dental pulp, endometrium, amniotic
fluid, placenta, and umbilical cord, among others (35).
However, bone marrow and adipose tissues represent the most
common sources for MSCs isolation because of their availability
(36–47).

MSCs display a wide variety of biological functions, such as
secretory (48), immunomodulatory (49) and homing (50)
properties, representing a stem cell population with
demonstrable progenitor cell functionality (33, 51) and a
promising candidate for cell-based therapies. Illustrating this,
ClinicalTrial.gov (https://clinicaltrials.gov/) lists 10406 phase I or
II trials using MSCs in skin, bone, cartilage, heart, kidney, lung,
liver, diabetes, immune/autoimmune diseases and even for
COVID-19. Among these trials, 222 registered studies are
using MSCs for OA and 55 for RA. OD are well–documented
candidates for MSC treatment. Recent studies have shown that
OA patients treated with an intra-articular injection of MSCs
display a substantial enhancement in cartilage coverage and
quality, relieving pain, ameliorating disability, and significantly
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improving their quality of life (11, 12, 52, 53). Similarly, a phase
Ia clinical trial in RA demonstrated the reduction of pro-
inflammatory cytokines in patients injected with MSCs and
revealed no short-term safety concerns (54). This data supports
the potential of MSCs as an effective treatment for OA and
RA patients.

Several studies have shown that MSCs can replace several
damaged tissues in vivo. Mirza and collaborators showed that
undifferentiated MSCs seeded on a graft were able to grow and
restore a thick multicellular layer mimicking mature vascular
tissue (55), whereas Sheng and collaborators were able to
successfully transplant MSCs and regenerating sweat glands in
patients in vivo (55, 56). Previous studies have demonstrated that
MSCs can regulate the inflammatory response by suppressing
mononuclear cells and promoting anti-inflammatory subsets
from innate and adaptive immunity, including T-cells (57, 58).
It has been well described that MSCs regulate T-cells activation
and proliferation without the need for the cell to cell contact,
suggesting the involvement of secreted soluble factors as the
mechanism of action (59, 60). Additionally, MSCs negatively
regulate natural killer cells (NK) activity, dendritic cells (DC)
maturation, and B-cells proliferation while promoting Treg
induction [Reviewed in (61, 62)]. It has also been shown that
one of the hallmarks of MSC therapeutic potential is the
regulation of cytokine production, including IFN-g, TNF-a,
and IL-10 (62). By modulating different immune cells involved
in autoimmune diseases’ pathogenesis, MSCs have a promising
therapeutic potential. Although some mechanisms require the
cell to cell contact, MSCs secretome seems to mediate most of
their therapeutic effects in several pathologies, including OD
(63, 64).

In the last few years, several studies suggest that MSC
therapies in clinical applications do not show severe adverse
effects showing promising therapeutic benefits (65). Nonetheless,
the clinical application of MSCs and the fast development of
commercial products show contradicting outcomes in clinical
application and unsatisfactory therapeutic effects, primarily due
to their low survival and homing capacity in vivo (19). Site-
specific injection seems to be better to obtain more efficiency
results [Reviewed in (66, 67)]. Therefore, to use MSCs as a
successful treatment, these difficulties must be overcome. The
most critical challenges are donor heterogeneity, stemness
stability and differentiation capacities, limited expansion
capacities, homing capacity, and rejection risks (68). In this
regard, their derivatives including extracellular vesicles come as
a promising solution as a cell-free based therapy due to their role
as molecule delivery vehicles that mimic the effects of the parent
on the target cell (66).
MSC-DERIVED SMALL EXTRACELLULAR
VESICLES AS THERAPEUTIC TOOLS TO
TREAT OSTEOARTICULAR DISEASES

Extrace l lu lar ves ic les (EVs) are membrane-bound
nanostructures released that act as essential mediators of cell-
Frontiers in Immunology | www.frontiersin.org 3
to-cell communication under physiological and pathological
conditions (69). According to their size, EVs can be classified
as apoptotic bodies (more than 1000nm), microvesicles (between
40-1000nm), and exosomes (50-200nm) (70). EVs can be
generated directly by budding from the plasma membrane
(microvesicles) or after fusion of multivesicular bodies (related
to the endocytic pathway) with the plasma membrane to release
intraluminal vesicles (exosomes). EVs are normally obtained by
differential centrifugation protocols and the exosome enriched
fraction also contains small microvesicles (smVs) commonly
referred to as small extracellular vesicles (sEVs) (71, 72). sEVs
can be further characterized by the expression of exosome-
associated markers such as TSG101, ALIX, and tetraspanin
proteins such as CD9, CD63 or CD81 (70). Released sEVs can
either be readily taken up by neighboring or by distant cells due
to their ability to travel through body fluids and mimic the parent
cell’s effect on the target cell (70). Due to the natural role of sEVs
in cell-to-cell communication, they are readily taken up through
phagocytosis, micropinocytosis, and endocytosis mediated by
lipid raft, caveolin or clathrin (73, 74). Although sEVs can be
delivered to any cell type, they are internalized in a highly cell
type-specific manner that depends on recognizing typical sEV
surface molecules by the cell or tissue, making them ideal
therapeutic delivery systems [Reviewed in (74)].

A substantial advantage of using sEVs as therapeutic carriers
is that they are nearly non-immunogenic and are capable of
homing to distant tissues where the inflammation is located (75,
76) Indeed, mice injected with both wild-type and engineered
sEVs showed no toxicity nor a significant immune response,
further adding to the safety of sEV based therapies (77).
However, the delivery and the frequency of sEVs injection on
patients still needs to be addressed, in order to determine the
most efficient strategy to obtain positive clinical outcomes.

In preclinical models, it has been described that MSCs-sEVs
inhibit TNF-a induced collagenase activity and promote
cartilage regeneration in chondrocytes derived from OA
patients in vitro (75, 76). Moreover, MSCs-sEVs significantly
improve OA progression by inhibiting cartilage degeneration in
the collagenase-induced OA murine model (78). MSCs-sEVs
were also shown to enhance the production of immature DCs
that secrete IL-10, which are involved in suppressing
inflammatory T-cell responses (76, 79, 80). On the other hand,
Zhu and colleagues demonstrated that sEVs could reduce
arthritis index, leukocyte infiltration, and, most importantly,
destruction of the joint in a CIA mice model. These sEVs
lowered Th1 and Th17 cells’ frequencies through miRNA
targeting of STAT3 and T-bet, having a potential role in
treating arthritis (81). Munir and colleagues also proved that
treating CIA in mice with MSCs decreased the severity of the
disease by dampening the pathogenic immune response. Mice
that received this treatment had reduced IL-6 and TNF-a,
increased IL-10 in their joints and increased the frequency of
Tregs in their spleen and lymph nodes, and a lower Th1:Th17
ratio (66). Other studies have demonstrated that sEVs can
decrease the clinical signs of inflammation present in the CIA
model by polarizing B lymphocytes into Breg-like cells (82).
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Therefore, evidence supports the repairing properties of MSCs-
sEVs in joint tissue, especially after intra-articular administration
(83). These and other preclinical studies of MSCs-sEVs show
that these potential treatments are safe and scalable for clinical
application (20).

Since phase III clinical trials have shown inconsistent results
in RA and OA without cartilage regeneration despite the
promising preclinical studies (52, 84), their derived sEVs could
also display conflicting results for RA and OA treatment. Several
techniques to improve MSCs therapy have been recommended
to overcome these issues [Reviewed in (85)]. For example,
hypoxia preconditioning and 3D culture can increase the
production of pro-chondrogenic factors (86). Additionally,
sEVs action can be strengthened by modifying their specific
cargo (87, 88), or by treatment with immunosuppressive
cytokines, such as IL-10 (89), enhancing their anti-
inflammatory and chondroprotective properties. Moreover, it
has been shown that the genetic engineering of MSCs affects their
derived sEVs, improving their immunosuppressive and
chondroprotective abilities (87), where sEVs demonstrated to
enhance chondrogenesis and suppress cartilage degradation (88).

The therapeutic effect of sEVs in the target cell is directly
dependent on their cargo, which can be composed of a wide variety
of molecules, including proteins, peptides, lipids, and several
nucleic acids such as DNA, messenger RNA and microRNAs
[Reviewed in (21)]. Although the effects of other sEV cargos
cannot be excluded, proteins and miRNAs are considered the
main mediators of the effect of sEVs in target cells. Proteomic
analysis in sEVs has identified thousand proteins implicated in key
biological processes such as sEV biogenesis, cellular structure,
tissue repair and regeneration, and inflammatory response
[Reviewed in (90)] Indeed, Chaubey and collaborators, validated
TSG-6 as one of the protein mediators of MSC-sEV for
immunomodulation by inducing a decrease in neutrophil
infiltration in a murine model of hyperoxia-induced lung injury
(91). However, to determine the role of proteins and miRNA in
mediating the therapeutic efficacy of sEVs, a relation between the
concentration of miRNA and proteins in their cargo is needed (92).
Moreover, it is not well defined whether proteins and miRNAs
work independently or synergistically in target cells, indicating that
further studies are needed in this field. On the other hand, miRNAs
encompass an important fraction of the exosome content and arise
as the main regulators of MSC-sEVs function (26, 93). miRNAs are
small non-coding RNA highly conserved among species, which
control gene expression through its binding capacity to the three
prime untranslated region (3’-UTR) of the targeted mRNAs, for
repressing the expression of the corresponding gene at a post-
transcriptional level (94). Compared with transcriptional and
epigenetic regulation, post-transcriptional processes are fast and
therefore can instantly tune cell fate decisions in response to
environmental cues (94). Moreover, miRNAs contained in sEV
are protected from RNAse degradation and through their integrins
and opsonins the delivery of their internal content is efficient (24).
Indeed, Neviani and collaborators demonstrated that sEVs derived
from inactivated natural killer (NK) cells showed an equal cytotoxic
activity when compared to sEVs derived from activated NK cells.
Frontiers in Immunology | www.frontiersin.org 4
Indeed, inactivated NK derived sEVs showed low levels of killer
proteins in their cargo (perforin 1, granzyme A, granzyme B) while
still retaining their cytotoxic activity, showing that the protein
cargo is not the main bioactive mediator (95). In line with these
results, RNA-depleted sEVs lose their immunosuppressive activity
on T-cells, demonstrating their pivotal role on MSC-
sEVs immunoregulation.
RELEVANCE OF miRNA IN THE
PATHOGENESIS OF OD

miRNAs are critical regulators in maintaining a healthy joint as
they participate in chondrocyte homeostasis and in the
regulation of inflammatory mediators (96, 97). Proof of this is
the phenotype observed in Dicer (a key enzyme in the miRNA
biosynthesis pathways) knock-out mice, whose growth plates
exhibited a reduction in proliferating chondrocytes and
accelerated differentiation into a hypertrophic type, resulting in
severe skeletal growth defects and premature death (98).
Accordingly, an imbalance of some miRNAs has been
associated with OD in both human and murine models.
Illustrating this, a study using the serum transfer mouse model
of RA in C57BL/6 mice identified a total of 536 upregulated
genes and 417 downregulated genes that are predicted targets of
miRNAs with reciprocal expression in arthritic mice (99).
Twenty-two miRNAs whose expression was most significantly
changed between nonarthritic and arthritic mice regulated the
expression of proteins involved in bone formation, specifically
Wnt and BMP signaling pathway components.

While activation of canonical Wnt signaling promotes bone
formation (100), Wnt signaling antagonists such as Dkk inhibit
this pathway and have been shown to regulate the erosive process
in RA (101, 102). Among the most upregulated miRNAs found
by Maeda and colleagues was miR-221-3p, which is induced in
the TNF-driven model of arthritis and fibroblast-like
synoviocytes (FLS) from RA patients (103). In bone,
synovium-derived miRNAs, including miR-221-3p, may
control skeletal pathways that inhibit osteoblast differentiation
from augmenting bone erosion in RA by regulating Dkk2.
Similar studies in OA patients have revealed significant
miRNA imbalance in cartilage, synovial fluid, and plasma
(104). Several studies have shown that there is differential
expression of several miRNAs in OA versus a healthy joint. By
evaluating the expression of 365 miRNA in OA patients versus
healthy donors, Iliopoulos and colleagues found 16 altered
miRNA, providing one of the earliest insights on the
osteoarthritic chondrocytes miRNA signature (105). A
subsequent study showed that a set of 17 miRNA that
contribute to cartilage remodeling presented an altered
expression and suggested that these changes were due to
epigenetic regulation (106). Murata and colleagues investigated
whether, in plasma and synovial fluid, miRNA could be used as
possible biomarkers for RA and OA, finding that some miRNAs
can effectively differentiate between both diseases (107).
November 2021 | Volume 12 | Article 768771
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Interestingly, 12 miRNA were overexpressed under the OA
condition, all targeting important genes in chondrocyte
maintenance and differentiation such as SMAD1, IL-1B,
COL3A, VEGFA, and FGFR1 (104). Other reports point out
imbalances in miRNAs associated with the regulation of ECM
degradation enzymes. For example, the increase of miR-146a/
miR-145/miR-22 and the decrease in miR-149/miR-125b/miR-
558 causes ECM degradation. Some miRNAs such as miR-27b,
miR-140, and miR-320 have been reported to target MMP13, a
regulator of tissue repair and remodeling (108–110), while
miR-92a-3p and miR-27b regulate ADAMTS expression, an
enzyme that plays an important function in the degeneration
of cartilage in RA and OA (111). Furthermore, it has been
shown that the down-regulation of miR-140 inhibits IL-1b by
inducing ADAMTS expression and that miR-27b regulates
MMP-13 expression in human chondrocytes. Importantly,
miR-27b, miR-140, and miR-146a are dysregulated in OA
patients, suggesting a role for them in OA pathogenesis (108,
112, 113).

It has been widely reported that TGF-bs and BMPs regulate
postnatal joint cartilage homeostasis and that dysregulated TGF-
b and BMP signaling are often associated with OD [Reviewed in
(114)]. These TGF-b superfamily members bind to the
heteromeric receptor complex, comprised type I and II
receptors at the cell surface, that transduce intracellular signals
by activating Smad complex or mitogen-activated protein kinase
(MAPK) cascade. BMPs have a chondroprotective role in
different animal models of RA (115); specifically, it has been
suggested that endogenous expression of BMPs is required to
maintain chondrocytes phenotype in vitro (116, 117). However,
its dynamic regulation has been observed in the CIA murine
model, supporting a role for this pathway in RA (118). During
CIA, BMP-2 and BMP-7 are upregulated in a TNF-dependent
manner, a phenomenon accompanied by an increase in Smad-5
phosphorylation: thus, there is an increase in BMP signaling
activity. Similarly, in an OA rat model, it was shown that IL1b
upregulated BMP-2 through the MEK/ERK/Sp1 signaling
pathways and that the administration of the BMP antagonist
Noggin prevented cartilage degeneration and OA development
(119). An observational study in OA patients showed that the
levels miR-22, which targets BMP2, are increased in the
progression of the disease (120). Furthermore, the inhibition of
miR-22 has been shown to prevent inflammatory activity (105,
121). On the contrary to miR-22, miR-140 also targets BMP2 but
in a different position of the 3′-UTR region and is associated with
increased BMP2 expression (120). Notably, the levels of synovial
miR-140 were significantly reduced in the patients with OA and
were negatively correlated with OA severity compared to controls
(120, 122). Furthermore, after arthroscopic debridement, the levels
of these miRNAs and BMP2 were restored (120), suggesting miR-
22 andmiR-140 play a role in the development of OA by regulating
BMP-2. It has also been shown that BMP targeting miRNAs’
dysregulation is associated with the pathogenesis of RA. It has been
demonstrated that sEVs derived from fibroblast-like synoviocytes
with elevated levels of miR-486-5p promoted osteoblast
differentiation and proliferation by repressing Tob1, thus
Frontiers in Immunology | www.frontiersin.org 5
activating the BMP/Smad signaling pathway, alleviating the
severity of RA in the CIA model (123).

On the other hand, TGF-b has been implicated in cartilage
ECM production and maintenance, specifically by increasing
COL2A1, perlecan, fibronectin, and hyaluronan (124, 125).
Furthermore, TGF-b also has anti-inflammatory functions,
counteracting IL1b and IL-6 mediated inflammation in the
joint (124, 125). Importantly, several miRNAs target different
proteins of these pathways, which has been reviewed elsewhere
(126). It has been shown that miR-455-3p promotes TGF-b/
Smad signaling in chondrocytes and inhibits cartilage
degeneration by directly suppressing PAK2, a kinase that
inhibits TGF-b signaling. Accordingly, the miR-455-3p levels
were decreased, and both PAK2 and phospho-PAK2 were
increased in OA cartilage compared with control cartilage.
Moreover, miR-455-3p KO mice displayed significant
degeneration of the knee cartilage (127). In OA cartilage, miR-
150-5p is overexpressed. It has been shown that miR-140-5p
directly targets TGF-b3 signaling by altering the expression of
TGF-b3 and Smad-3 in mandibular condylar chondrocytes, thus
having a role in the regulation of mandibular cartilage
homeostasis and development (128). Furthermore, this miRNA
is increased in the cartilage of OA patients compared to control
cartilage from femoral neck fracture patients, where it suppresses
the Smad2/3 pathway, a process that promotes cartilage
destruction and the progression of the disease (129). Using
miR-140-null mice, which showed different changes related to
OA such as fibrillation of articular cartilage, Miyaki and
collaborators demonstrated that miR-140 regulates cartilage
development and homeostasis (113). Interestingly, miR-140
knockout mice presented proteoglycan loss and fibrillation of
articular cartilage emulating age-related OA. On the contrary,
transgenic mice overexpressing miR-140 in cartilage were resistant
to antigen-induced arthritis. Another miRNA involved in TGF-b
signaling modulation is miR-125-5p, which downregulates the
Smad2 expression and leads to the dysfunction of TGF-b
signaling. Noteworthy, the circular ribonucleic acids (circRNAs),
CircCDK14, which is down-regulated in the joint wearing position,
regulates metabolism, inhibits apoptosis, and promotes
chondrocyte proliferation by miR-125a-5p sponging (130).
Taking together, studying miRNA dysregulation in OD and the
underlying mechanisms could provide new insights towards more
effective treatments. At the same time, TGF-b exerts an anabolic
repairing response on articular cartilage. On the other hand,
proinflammatory cytokines such as IL-1b and TNF-a which
exert a strong catabolic effect (131). As follows, the balance
between TGF-b and the IL-1b or TNF-a signaling pathways is a
critical regulator of articular cartilage homeostasis (131), thereby its
disruption contributes to the pathogenesis of OA.

In OA, NF-kB signaling orchestrates chondrocyte catabolism,
survival, and synovial inflammation. Growing evidence suggests
that miRNAs targeting either matrix-degrading enzymes or
components of the NF-kB pathway can suppress chondrocyte
catalytic activity. While some miRNAs such as miR-138 and
miR-9 directly suppress the NF-kB subunits p65 or p105/50
(132, 133), others like miR-210, miR-26a/b, miR-93, miR149,
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and miR-146a act indirectly by targeting upstream regulators of
NF-kB (134) such as death receptor 6 (DR6), KPNA3, Toll-like
receptor 4 (TLR4), TAK1, and TNF-receptor associated factor 6
(TRAF6)/interleukin-1 receptor-associated kinase 1 (IRAK1).
Additionally, synovial inflammation in the context of OA or
osteoblastogenesis is associated with miR-146/miR-155/miR-
218/miR-135, among others (135–137).

In RA, miRNA dysregulation is implicated in the activation of
multiple cytokine-signaling pathways that leads to synovial tissue
lesions and dysregulation of immune cells, thereby contributing
to pathogenesis (139). Many studies have demonstrated that
miR-16, miR-146a, miR-155, and miR-223 present an increased
expression level in synovial fluid of RA patients. Moreover,
inflamed joints of RA patients show an increased expression of
miR-133a, miR-142-3p, miR-142-5p, miR-146a, miR-155, miR-
203, miR-221, miR-222, miR223 (103, 107, 140, 141). On the
other hand, the expression of miR-124a and miR-34a is
decreased in the context of RA (142, 143). Furthermore, miR-
181a, miR-17–92 overexpression enhances the inflammation,
while upregulation of miR-146a and miR-573 suppresses the
autoimmunity (144). Although several miRNAs related to
inflammation are dysregulated in RA, miR-146a appears to be
essential in controlling the inflammation. miR-146a targets TNF-
a/TNF receptor-associated factor 6 (TRAF6) and IL-1 receptor-
associated kinase 1 (IRAK1), elevating TNF-a production
through TRAF6/IRAK1 mediated pathway [Reviewed in (126,
145)]. miR-146a is also able to regulate genes such as FAF1,
IRAK2, FADD, IRF-5, Stat-1, and PTC-1 (146), making it a
possible therapeutic target for the treatment of RA. Besides miR-
146, miR-155 can also stimulate the proinflammatory mediators
TNF-a, TLRs, LPS, and IL-1 [Reviewed in (145)]. Upregulation
of miR-155 has been observed in synovial tissue, FLS, peripheral
and blood mononuclear cells. Supporting a role for targeting
miR-155 in RA, miR-155 knockout mice do not develop
collagen-induced arthritis (146). Therefore, miR-155 may be a
promising therapeutic target for RA.

miRNAs and their levels in plasma and synovial fluids are
associated with the occurrence of OD. Therefore they could serve
as predictive biomarkers and even as therapeutics targets. Owing to
the fact that miRNAs play a crucial role in the maintenance of
healthy joints, restoring their balance could be an effective way to
treat OA and RA. To accomplish an effective therapeutic strategy,
the delivery system is the main barrier that has to be overcome
(147). Given that miRNAs are naturally carried by sEVs, they are
protected from RNAse degradation and the delivery to target cells
is efficient thanks to the integrins and opsonins (147–150).
miRNA SHUTTLED BY sEVs
DERIVED FROM MSCs AND THEIR
THERAPEUTIC FUNCTION ON
OSTEOARTICULAR DISEASES

Since MSC-sEVs are natural carriers of therapeutic miRNA, they
have arisen as an attractive therapeutic tool to treat several
Frontiers in Immunology | www.frontiersin.org 6
diseases including OD. There are copious amounts of studies
reporting the different effects of miRNA transfer via sEVs, and
their relevance in cell to cell communication. Indeed, miRNAs
have gained more attention than proteins or other variety
molecules contained in sEVs, due to their regulatory roles in
gene expression. Goldie and collaborators demonstrated that the
proportion of miRNA is higher in sEVs than in their parent cells
(151). Moreover, a profiling study of miRNAs has demonstrated
that miRNAs are not randomly packaged into sEVs. Guduric-
Fuchs and collaborators have shown that a subset of miRNAs
(miR-150, miR-142-3p, and miR-451) are preferentially
incorporated in sEVs (152). Although the effects of other sEV
cargos cannot be excluded, miRNAs are considered the key
functional elements on recipient cells. Several thousand
miRNAs have been identified in humans, and their studies
have increased in the last decade, moreover miRNAs are
frequently deregulated in multiple human diseases which offers
many opportunities for diagnosis and treatment for various
pathological conditions.

The use of sEVs as a therapeutic treatment for different
immune diseases is still challenging, since safety evaluations
are still pending. Multiple experiments must be done in large
and proper animal models in order to prove their therapeutic
efficacy and safety in this area before applying this approach in
the clinic. Given that it primarily affects the joints, we suggest
that the optimal form of delivery should be intra-
articular injection.

Chen and collaborators, have shown that, both in vitro and in
vivo, BM-MSC-sEV enriched in miR-150-5p suppress the
expression of MMP14 and VEGF, and decrease the expression
levels of IL-b, TNF-a, and TGF-b, resulting in the inhibition of
the proliferation and migration of fibroblast-like synoviocytes
(FLS) and alleviation of inflammation (153). Similarly, BM-MSC
sEV derived miR-320a targets CXCL9 and thereby suppresses
FLS activation, migration and invasion in RA (154).
Additionally, the overexpression of miR-124a in MSC-sEV
significantly increased the expression of apoptosis-related
proteins inducing an inhibition on the proliferation, invasion
and migration of RA-FLS cells (155).

It has been well documented that miRNAs in MSC-sEVs have
a chondroprotective role in OA (156). Illustrating this, MSC-
sEVs shuttled miR-92a-3p increases chondrocyte proliferation
and the levels of COL9a2 and aggrecan, and effect mediated by
targeting noggin3 and Wnt5a while activating the PI3K/AKT/
mTOR pathway, thus increasing the levels of [Reviewed in (21)],
(88). On the other hand, MSC-sEVs-derived miR-135b
stimulates cartilage regeneration by binding to the
transcription factor Sp1 (SP1), which regulates apoptosis and
proliferation (157). Moreover, miR-140-5p upregulates Sox9 and
promotes MSCs chondrogenesis (Figure 1). Additionally, recent
studies show that sEV-mediated transfer of miR-140 from
dendritic cells improves OA in vitro by inhibiting proteases
associated with cartilage degradative processes in the joint and
alleviates the progression of OA in a rat model in vivo (158). In
contrast, another study reported that miR-155 levels are
significantly upregulated in human OA cartilage biopsies and
November 2021 | Volume 12 | Article 768771

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lara-Barba et al. miRNA From MSC-sEVs in OD
primary chondrocytes stimulated by IL-1ß. Moreover, miR-155
overexpression promotes IL-1ß-induced apoptosis and catabolic
activity in chondrocytes in vitro (159). Chen et al. reported that
MSC-sEV-shuttled miR-136-5p promotes chondrocyte
migration in vitro and inhibits cartilage degeneration in vivo
(Figure 1) both in human chondrocytes in vitro and in mice in
vivo (160).

On the other hand, the involvement of MSC-sEVs-derived
miRNAs in the context of immune modulation has been reported
(149). MSC-sEVs are immunologically active, meaning that they
can attenuate the immune system through increasing anti-
inflammatory cytokines, such as IL-10 and TGF-b and the
induction of Tregs, modulating immune activity. Indeed, RNA-
depleted sEVs lose their immunosuppressive activity on T-cells
(161), demonstrating their pivotal role on MSC-sEVs
immunoregulation and therefore their potential use on
autoimmune diseases such as RA (75, 80, 83). Indeed, the
downregulation of miR-192-5p has been reported in RA
patients, and its transfer via sEVs derived from BM-MSCs
reduced the inflammatory response by downregulating the Ras-
related C3 botulinum toxin substrate 2 protein (RAC2) (Figure 1),
attenuating the severity of the disease in rats (162). It has been
reported that sEVs derived from TNFa and IFNg pretreated-
MSCs improve their suppressive activity over T cells (75). This
pretreatment was associated with a higher expression of miR-155
and miR-146, two miRNAs involved in activating and inhibiting T
cells inflammatory reactions (163). Similarly, miR-155-5p loaded
in sEVs derived from LPS-stimulated periodontal ligament stem
cells (PDLSCs) inhibited pro-inflammatory Th17 cells favoring
their conversion into Treg through inhibition of Sirtuin-1 (Sirt1)
(164). Moreover, the therapeutic role of miR-146a-5p contained in
Frontiers in Immunology | www.frontiersin.org 7
MSC-sEVs has been shown in vivo in a model of allergic airway
inflammation (161). In this study, the authors demonstrated that
the miRNA signature of MSC-sEVs was enriched in miR-146a-5p
compared to sEVs derived from less immunosuppressive cells
such as fibroblasts (161). In addition, miR-146a-5p mimic
improves the immunosuppressive capacities of fibroblast sEVs,
while miR-146a-5p inhibition impairs the immunosuppressive
activity of MSC-sEVs on T-cell proliferation (161). In RA, miR-
146a is downregulated, but its upregulation associated with the
administration of MSC-sEVs increased the frequency of Treg cell
population by increasing the expression of some key autoimmune
response genes and their protein products, such as TGFb, IL-10
and FOXP3 (Figure 1), resulting in a beneficial anti-inflammatory
response (165, 166). Rong and collaborators showed that the
hypoxic pre-treatment of rat BM-MSC (a known method for the
improvement of the therapeutic properties of MSCs [Reviewed in
(167)]) promotes the release of miR-216a-5p enriched sEVs that
target JAK2 in chondrocytes, resulting in an increase in
chondrocyte proliferation and migration, while inhibiting their
apoptosis. The miR-216a-5p enriched sEVs also reduced ECM
degradation through the inhibition of MMP expression and
increasing COL-II expression levels (168).

In summary, several miRNAs are known to be associated with
different processes relevant to OD (169), such as inflammation
(miR-22, miR-320) (105, 110), extracellular matrix synthesis
(miR-148a, miR-27, miR-218) (170, 171) and chondrocyte
proliferation. Additionally, several miRNAs have been shown to
be involved in processes associated with MSCs differentiation into
chondrocytes (miR-19a, miR-410) (172, 173), and processes such
as chondrocyte hypertrophy (miR-381, miR-140) (174, 175),
apoptosis and autophagy (miR-30b) (176) (Table 1). The
therapeutic potential of miRNAs both in degenerative diseases
such as OA and autoimmune diseases such as RA is very
promising, and their delivery through sEVs greatly facilitates
escalation to later-stage clinical trials. Still, more work needs to
be done concerning the full effect of miRNAs both in target cells
and other types of cells to assess the safety of the therapeutic
application of miRNAs.
CONCLUDING REMARKS

As mentioned in the previous sections, MSC-sEVs arise as a
potential cell-free based therapy that can reduce the risks
associated with MSC. Strikingly, several reports show that
MSC-sEVs mimic the biological effects of MSCs. Therefore,
MSC-sEVs represent a hopeful alternative to MSC therapy.

The main functional components of MSC-sEVs are miRNAs,
which can regulate the expression of multiple target genes and
participate in various cell signaling processes. The miRNA
profile of MSC-sEVs is associated with their effect. Although
there are tools to identify miRNAs in sEVs, the principal target
genes of sEVs derived miRNAs remain unspecified. However,
this work summarizes some of the miRNAs involved in OD
pathogenesis and some of the miRNAs that mediate the
therapeutic effects of sEVs in OD. These miRNA could be
FIGURE 1 | MSCs release sEVs with a miRNAs cargo that regulate gene
expression by targeting transcription factors associated to different processes
in osteoarticular diseases. These miRNA can be used to develop new and
effective therapies for OA and RA.
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considered as promising candidates to use for effective treatment
of these diseases. Further studies in this field are required to
develop MSC-sEVs therapeutics based on miRNA delivery for
autoimmune/inflammatory and degenerative diseases.
Furthermore, delving into the role of miRNAs in the
pathogenesis of disease, would also improve therapeutic
strategies that can restore their normal levels, because not all
miRNAs have beneficial effects. In this context it is also
important to study the regulation of miRNAs and their
biological functions, and also increase the knowledge of other
non-coding RNAs that can be involved in OD. On the other
hand, studies on the enrichment of sEVs in beneficial miRNAs
and/or other non-coding RNAs that regulate disease-promoting
miRNAs and evaluating strategies for the targeted delivery of
sEVs to particular cell types to increase efficiency remain one of
the following challenges.
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TABLE 1 | Summary of the literature reporting the role of miRNAs in OD.

miRNA Context Target cell Effect on the target cell Mechanism of action Reference

miR-
92a-3p

sEVs from miR-92-
3p-overexpressing
MSCs; OA

Chondrocytes Enhancement of chondrogenesis and
suppression of cartilage degradation

Targeting the PI3K/AKT/mTOR pathway 88

miR-
135b

sEVs from TGF-b1-
stimulated MSCs

Chondrocytes Cartilage regeneration Binding to transcription factor (SP1) 157

miR-22 OA; inflammation Chondrocytes Decrease inflammation and ECM degradation Targeting the PPARa and BMP-7 signaling pathway 105
miR-
140

OA; MSC-sEVs Chondrocytes;
MSCs;

Inhibition of cartilage degradation; suppression
of chondrocytes hypertrophy; Promotion of
chondrogenesis

Suppression of the expression of cartilage degrading
enzymes; controlling the BMPs signaling pathway;
Upregulation of Sox9

158; 175;
177

miR-
320

Cartilage
homeostasis

Chondrocytes Regulation of chondrogenesis Targeting the expression of MMP-13 110

miR-27 OA Chondrocytes Decreasement of inflammation Inhibition of the NF-kB pathway 170
miR-
149

OA inflammation Chondrocytes Suppression of chondrocyte inflammatory
response

Downregulation of the TAK1/NF-kB pathway 135

miR-
19a

OA Chondrocytes Promotion of cell viability and migration Upregulation of Sox9 via the/NF-kB pathway 173

miR-
410

OA MSCs Chondrogenic differentiation Targeting the Wnt signaling pathway 172

miR-
381

OA pathogenesis Chondrocytes Chondrocyte hypertrophy Targeting histone deacetylase 4 (HDAC4) 174

miR-
125b

OA Chondrocytes ECM degradation Targeting of ECM-degrading enzyme ADAMTS-4 178

miR-
558

OA Chondrocytes Cartilage homeostasis Inhibiting COX-2 and IL-1b-induced catabolic effects 178

miR-9 OA Chondrocytes Suppression of apoptosis and promotion of
cell proliferation

Binding to NF-kB1 132

miR-
138

OA Chondrocytes Decrease in the chondrocyte inflammatory
response

Suppressing the protein levels of p65, COX-2 and IL6 133

miR-
136-5p

OA; MSC-sEVs Chondrocytes Increase in chondrocyte migration and
decrease in cartilage degradation

Inhibiting the expression of ELF3 160

miR-
153

OD MSCs Decrease in osteogenic differentiation Interacting with bone morphogenetic protein receptor
type II (BMPR2)

134

miR-
194

Bone homeostasis MSCs Increase in osteogenic differentiation Suppressing STAT1 179

miR-
216a

OD; MSC-sEVs MSCs;
chondrocytes

Increase in osteogenic differentiation; increase
in chondrocyte proliferation and migration

Downregulation of c-Cbl; inhibiting JAK2 180;
168

miR-
126a-
5p

OA Chondrocytes Reduction in ECM degradation Increasing expression of collagen II and decreasing
expression of MMP

168

miR-
146a

RA; MSC-sEVs Tregs Increase in anti-inflammatory response Increasing the expression of FOXP3 83
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