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Abstract: Pacific abalone (Haliotis discus hannai) is a highly commercial seafood in Southeast Asia.
The aim of the present study was to improve the sperm cryopreservation technique for this valuable
species using an antifreeze protein III (AFPIII). Post-thaw sperm quality parameters including motility,
acrosome integrity (AI), plasma membrane integrity (PMI), mitochondrial membrane potential
(MMP), DNA integrity, fertility, hatchability, and mRNA abundance level of heat shock protein 90
(HSP90) were determined to ensure improvement of the cryopreservation technique. Post-thaw
motility of sperm cryopreserved with AFPIII at 10 µg/mL combined with 8% dimethyl sulfoxide
(DMSO) (61.3± 2.7%), 8% ethylene glycol (EG) (54.3± 3.3%), 6% propylene glycol (PG) (36.6± 2.6%),
or 2% glycerol (GLY) (51.7 ± 3.0%) was significantly improved than that of sperm cryopreserved
without AFPIII. Post-thaw motility of sperm cryopreserved with 2% MeOH and 1 µg/mL of AFPIII
was also improved than that of sperm cryopreserved without AFPIII. A combination of 10 µg/mL
AFPIII with 8% DMSO resulted in the highest post-thaw motility, showing AI of 60.1 ± 3.9%, PMI
of 67.2 ± 4.0%, and MMP of 59.1 ± 4.3%. DNA integrity of sperm cryopreserved using 10 µg/mL
AFPIII combined with 8% DMSO was not significantly (p > 0.05) different from that of fresh sperm.
Cryopreservation using a combination of AFPIII with 8% DMSO improved fertilization and hatching
rates of sperm compared to that of cryopreservation without supplementation of 10 µg/mL AFPIII.
Sperm cryopreserved using AFPIII showed higher mRNA abundance levels of HSP90 than those
cryopreserved without AFPIII. Results of the present study suggest that 10 µg/mL AFPIII combined
with 8% DMSO can be used for large scale cryopreservation of Pacific abalone sperm and for
hatchery production.

Keywords: AFPIII; cryopreservation; post-thaw sperm quality; fertilization and hatching; mRNA
expression of HSP90

1. Introduction

The Pacific abalone, Haliotis discus hannai, is a seafood with a high commercial value
in Korea, Japan, China, and Taiwan because it contains bioactive molecules that are bene-
ficial to human health [1]. This species has been commercially cultured in Korea for the
last three decades. In vitro reproduction of abalone offspring requires large amounts of
sperm [2]. Progenitors of genetic high quality are obligatory for producing improved proge-
nies [3]. Sperm cryopreservation methods are vital tools for obtaining high quality abalone
progeny [4]. To date, sperm cryopreservation of H. discus hannai has been performed using
penetrating cryoprotectants [2]. Although penetrating cryoprotectants can increase cell
membrane fluidity through protein and lipid reorganization [5], they can also hamper intra-
cellular ice crystal formation by decreasing the freezing point temperature, which is known
to be an undesirable mechanism of sperm death [6,7]. The sperm cryopreservation process
involves changes of extreme temperature that can lead to cryoinjuries (decreases of plasma
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membrane integrity, acrosomal integrity, mitochondrial membrane potential, motility, and
viability) of morphological structures and physiology [8–10]. These cryoinjuries can alter
the functional status of sperm proteins in the plasma membrane, midpiece, nucleus, and
flagella, thus affecting the motility and fertilization capacity of sperm [11–15]. Nucleus
DNA alteration of sperm may occur due to the freeze–thaw process of cryopreservation [16].
Sperm DNA integrity acts as one of the indicators of fertility potential. It can be assessed by
comet assay [17], sperm chromatin structure assay (SCSA) [18], sperm chromatin dispersion
(SCD) test [19], and TUNEL assay (terminal deoxynucleotidyl transferase-mediated dUDP
nick end labelling) [20]. DNA fragmentation is known to reduce the fertilization capacity
of sperm. It may lead to abnormal embryonic development [21].

The freeze–thaw process can also alter mRNA stability, epigenetic content, protein
abundance levels, and mRNA transcript abundance levels of sperm [22]. Cryopreservation
was shown to decrease mRNA abundance levels of heat shock protein 90 (HSP90) in
oyster sperm [23] and bull sperm [24]. Kasimanickam et al. [25] reported that reduced
mRNA abundance levels of sperm were associated with lower fertility of Holstein bulls.
Reduced mRNA transcripts of cryopreserved sperm could affect molecular elements with
an important role in fertilization success and correct early embryonic development [26].

Considering the above facts, the sperm cryopreservation protocol for this commercially
valuable species needs to be improved. Sperm cryopreservation using antifreeze proteins
(AFPs) can improve post-thaw sperm quality of different species of fish, including sea
bream [27–29], sterlet [9,15], common carp [30], and Persian sturgeon [31]. AFPs are specific
proteins that can protect cells by reducing the freezing point, interacting with the plasma
membrane, adjusting ice crystallization, and protecting recrystallization [9,32–34]. A sperm
cryopreservation method using AFP has not yet been reported for Pacific abalone sperm
or aquatic invertebrates. Thus, the aim of the present study was to improve the sperm
cryopreservation method for Pacific abalone using antifreeze protein. The specific aim of
the present study was to improve post-thaw sperm motility, plasma membrane integrity
(PMI), acrosome integrity (AI), mitochondrial membrane potential (MMP), DNA integrity,
fertilization ability, and hatching capacity of Pacific abalone.

2. Results
2.1. Effects of AFPIII on Sperm Cryopreservation
2.1.1. Combined Effects of AFPIII and DMSO on Post-Thaw Sperm Motility

Sperm cryopreserved with 10 µg/mL AFPIII combined with 8% dimethyl sulfoxide
(DMSO) showed the highest post-thaw motility (61.3 ± 2.7%) (Figure 1A). Their post-thaw
motility was significantly (p < 0.05) improved than that of the control (8% DMSO).

2.1.2. Combined Effects of AFPIII and EG on Post-Thaw Sperm Motility

AFPIII at 10 µg/mL combined with 8% ethylene glycol (EG) showed the highest
post-thaw motility (54.3 ± 3.3%) (Figure 1B). This post-thaw motility was significantly
(p < 0.05) higher than that of sperm cryopreserved with 8% EG alone (44.9 ± 2.9%).

2.1.3. Combined Effects of AFPIII and PG on Post-Thaw Sperm Motility

Sperm cryopreserved using 10 µg/mL AFPIII combined with 6% propylene glycol
(PG) showed the highest post-thaw motility (36.6 ± 2.6%) (Figure 1C). This post-thaw
motility was significantly (p < 0.05) lower than the post-thaw motility of fresh sperm, but
significantly higher than that of sperm cryopreserved with 6% PG alone without AFPIII.

2.1.4. Combined Effects of AFPIII and GLY on Post-Thaw Sperm Motility

Sperm cryopreserved with AFPIII at 10 µg/mL combined with 2% glycerol (GLY)
had the highest post-thaw motility (51.7 ± 3.0%) (Figure 1D). This post-thaw motility was
significantly (p < 0.05) higher than that of sperm cryopreserved with 2% GLY without
10 µg/mL AFPIII (43.4 ± 2.9%). However, fresh sperm exhibited significantly (p < 0.05)
higher motility (95.3 ± 2.7%) than that of all cryopreserved sperm.
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2.1.5. Combined Effects of AFPIII and MeOH on Post-Thaw Sperm Motility

Sperm cryopreserved with AFPIII at 1 µg/mL combined with 2% MeOH showed
significantly (p < 0.05) higher post-thaw motility (30.7 ± 2.6%) than that of other cryopre-
served sperm (Figure 1E). However, such post-thaw motility was significantly (p < 0.05)
lower than the motility of fresh sperm.

Figure 1. Post-thaw motility of sperm cryopreserved with antifreeze protein III (AFPIII) at different concentrations (0.1, 1,
10, and 100 µg/mL). Significantly different levels (p < 0.05) are denoted by different letters. (A) Combined effects of AFPIII
with 8% dimethyl sulfoxide (DMSO) at different concentrations. (B) Combined effects of AFPIII with 8% ethylene glycol
(EG) at different concentrations. (C) Combined effects of AFPIII with 6% propylene glycol (PG) at different concentrations.
(D) Combined effects of AFPIII with 2% glycerol (GLY) at different concentrations. (E) Combined effects of AFPIII with 2%
MeOH at different concentrations.

2.2. Fluorescent Technique for Assessing PMI, AI, and MMP of Cryopreserved Sperm
2.2.1. Plasma Membrane Integrity (PMI)

Sperm cryopreserved using 10 µg/mL AFPIII combined with 8% DMSO showed the
highest plasma membrane integrity (67.2 ± 4.0%) (Figures 2 and 3). AFPIII at 10 µg/mL
combined with 8% EG (57.1 ± 3.7%) or 2% GLY (56.7 ± 2.6%) did not show significant
(p > 0.05) differences in the integrity of the plasma membrane.



Int. J. Mol. Sci. 2021, 22, 3917 4 of 16

Figure 2. Plasma membrane integrity (PMI) (%) of post-thaw sperm of H. discus hannai. Significantly
different levels (p < 0.05) are denoted by different letters.

Figure 3. Fluorescent stained photographs for detecting plasma membrane integrity of sperm cryopreserved with AFPIII
(1000×magnification).



Int. J. Mol. Sci. 2021, 22, 3917 5 of 16

2.2.2. Acrosome Integrity (AI)

The highest AI value (60.1± 3.9%) was found for cryopreserved sperm using 10 µg/mL
AFPIII combined with 8% DMSO (Figure 4 and Figure S1). However, this AI value was
significantly (p < 0.05) lower than the AI of fresh sperm.

Figure 4. Acrosome integrity (AI) (%) of Pacific abalone sperm cryopreserved with antifreeze protein
III (AFPIII). Significantly different levels (p < 0.05) are denoted by different letters.

2.2.3. Mitochondrial Membrane Potential (MMP)

Mitochondrial membrane potentials of fresh and cryopreserved sperm are presented
in Figure 5 and Figure S2. Sperm cryopreserved with 10 µg/mL AFPIII combined with 8%
DMSO had the highest MMP (59.1 ± 4.3%) and sperm with 1 µg/mL AFPIII suspended
with 2% MeOH had the lowest MMP (27.63 ± 2.4%). MMP of sperm cryopreserved using
10 µg/mL AFPIII combined with 8% EG or 2% GLY did not show any significant difference
(p > 0.05). However, fresh sperm showed a significantly (p < 0.05) higher MMP value
(92.7 ± 2.8%) than all that of all cryopreserved sperm.

Figure 5. Mitochondrial membrane potential (MMP) (%) of Pacific abalone sperm cryopreserved with
antifreeze protein III (AFPIII). Significantly different levels (p < 0.05) are denoted by different letters.

2.3. DNA Integrity of Fresh and Cryopreserved Sperm

Comet assay parameters of fresh and cryopreserved sperm using AFPIII are sum-
marized in Table 1. The comet assay did not reveal any significant (p > 0.05) difference
(Figure 6A,B) between fresh sperm (3.4 ± 2.8% of tail DNA) and sperm cryopreserved
using 10 µg/mL AFPIII combined with 8% DMSO (3.6 ± 2.9% of tail DNA). The highest
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DNA fragmentation (7.6 ± 5.4%) was recorded for sperm cryopreserved using 1 µg/mL
AFPIII combined with 2% MeOH (Figure 6F).

Table 1. Comet assay parameters (mean ± standard deviation) for fresh and cryopreserved sperm of H. discus hannai.

Parameters Fresh
Sperm

8% DMSO +
AFPIII

8% EG +
AFPIII

6% PG +
AFPIII

2% GLY +
AFPIII

2% MeOH +
AFPIII

Head length (µ) 50.2 ± 4.3 c 59.4 ± 8.1 a 59.6 ± 6.4 a 57.7 ± 5.7 b 58.5 ± 4.8 ab 60.2 ± 6.2 a

% DNA in head 96.6 ± 2.8 a 96.4 ± 2.9 a 94.9 ± 4.2 b 94.0 ± 4.6 b 94.6 ± 4.3 b 92.4 ± 5.4 c

Tail length (µ) 28.0 ± 5.2 c 29.7 ± 9.3 c 32.4 ± 7.0 b 33.8 ± 6.8 ab 32.0 ± 4.9 b 35.5 ± 13.6 a

% DNA in tail 3.4 ± 2.8 c 3.6 ± 2.9 c 5.1 ± 4.2 b 6.0 ± 4.6 b 5.4 ± 4.3 b 7.6 ± 5.4 a

Tail moment (µ) 0.6 ± 0.5 c 0.8 ± 0.6 c 1.1 ± 0.9 b 1.2 ± 0.9 b 1.1 ± 0.9 b 1.5 ± 1.1 a

Olive tail moment (µ) 2.1 ± 1.3 d 2.7 ± 2.0 d 5.6 ± 3.6 c 7.3 ± 4.1 b 5.8 ± 3.8 c 11.2 ± 6.1 a

Extent tail moment (µ) 94.0 ± 2.6 e 107.1 ± 7.4 d 169.4 ± 6.3 c 204.8 ± 6.12 b 171.4 ± 4.1 c 267.2 ± 14.9 a

Superscripts letters (a–e) indicate significant (p < 0.05) differences between fresh and post-thaw sperm.

Figure 6. Comet images of fresh and cryopreserved sperm of Pacific abalone. Each comet indicates damaged or undamaged
sperm DNA (arrow denotes migration of fragmented DNA from the nuclei of sperm). (A) Intact nuclei of fresh sperm. (B)
Intact nuclei of sperm cryopreserved with 8% DMSO combined with 10 µg/mL AFPIII. (C) Intact or slightly damaged
nuclei of sperm cryopreserved with 8% EG combined with 10 µg/mL AFPIII. (D) Intact or slightly damaged nuclei of sperm
cryopreserved with 6% PG combined with 10 µg/mL AFPIII. (E) Intact or slightly damaged nuclei of sperm cryopreserved
with 2% GLY combined with 10 µg/mL AFPIII. (F) Slightly damaged nuclei of sperm cryopreserved with 1 µg/mL 2%
MeOH combined with AFPIII.

2.4. Expression Analysis of HSP90 mRNA Transcript

HSP90 mRNA abundance levels in fresh and cryopreserved sperm samples are shown
in Figure 7. Fresh sperm samples showed significantly (p < 0.05) higher HSP90 mRNA
abundance levels than that of cryopreserved sperm. Sperm cryopreserved using AFPIII
combined with a cryoprotectant (CPA) solution (8% DMSO, 8% EG, or 2% GLY) showed
significantly (p < 0.05) higher HSP90 mRNA abundance levels than those of cryopreserved
sperm with control (8% DMSO, 8% EG, or 2% GLY) groups.
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Figure 7. Abundance levels of heat shock protein 90 (HSP90) mRNA in different cryopreserved
sperm samples (n = 3) of H. discus hannai. Significantly different levels (p < 0.05) are denoted by
different letters.

2.5. Fertility and Hatchability

Sperm cryopreserved using 10 µg/mL AFPIII combined with 8% DMSO showed a
significantly higher fertilization rate (43.0 ± 4.0%) than those preserved with 8% DMSO
without AFPIII (31.4% ± 3.1%). Fresh sperm showed a significantly (p < 0.05) higher
fertilization rate (54.0 ± 3.6%) than that of all cryopreserved sperm (Figure 8). However,
hatching rate did not show any significant difference (p > 0.05) between fresh sperm
(33.0 ± 3.0%) and sperm cryopreserved using 10 µg/mL AFPIII combined with 8% DMSO
(28.6 ± 1.4%).

Figure 8. Fertility and hatchability of Pacific abalone sperm cryopreserved using 8% DMSO alone or
8% DMSO in combination with 10 µg/mL AFPIII. Significantly different levels (p < 0.05) are denoted
by different letters.

2.6. Correlation Among Sperm Quality Parameters

Sperm motility showed strongly positive correlations (Table 2) with fertilization rate
(r = 0.903; p < 0.05), PMI (r = 0.994; p < 0.01), AI (r = 0.990; p < 0.01), and MMP (r = 0.990;
p < 0.01). It also showed a moderately positive correlation with hatching rate (r = 0.848;
p < 0.05). However, sperm DNA fragmentation exhibited moderately negative correlations
with motility (r = −0.858; p < 0.01), fertilization rate (r = −0.870; p < 0.05), hatching rate
(r = −0.792; p < 0.05), PMI (r = −0.894; p < 0.01), AI (r = −0.855; p < 0.01), and MMP
(r = −0.894; p < 0.01).
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Table 2. Correlation coefficients (r) among sperm quality parameters of Pacific abalone, H. discus hannai.

AI (%) PMI (%) MMP (%) DNA
Fragmentation (%)

Fertilization
(%)

Hatching
(%)

Motility (%) 0.990 ** 0.994 ** 0.990 ** −0.858 ** 0.903 * 0.848 *
AI (%) 0.991 ** 0.992 ** −0.855 ** 0.925 ** 0.839 *

PMI (%) 0.994 ** −0.894 ** 0.925 ** 0.854 *
MMP (%) −0.885 ** 0.935 ** 0.853 *

DNA fragmentation (%) −0.870 * −0.792 *
Fertilization (%) 0.957 **

** Correlation is significant at p < 0.01. * Correlation is significant at p < 0.05.

3. Discussion

The goal of this study was to optimize the cryopreservation protocol of Pacific abalone
spermatozoa. We evaluated the effects of different concentrations of AFPIII on post-thaw
sperm quality with special emphasis on HSP90 mRNA abundance levels in cryopreserved
sperm of H. discus hannai. The current study is the first one using AFPIII for sperm
cryopreservation of mollusk species or aquatic invertebrates. AFPIII is a small protein
found seasonally in the blood of polar fish. It shows a spherical fold that covers short
b-stands with a flat-type ice-binding patch on the surface [35]. Improvement of sperm
motility with AFP supplementation is suggested to stem from the possible function of AFP
through ion channel blocking and stabilizing transmembrane electrolyte gradients [36]. In
the present study, sperm cryopreserved using 10 µg/mL of AFPIII exhibited improved
post-thaw sperm motility than that of sperm cryopreserved with only 8% DMSO, 8% EG,
6% PG, or 2% GLY. AFPIII at 1 µg/mL combined with 2% MeOH improved post-thaw
sperm motility than that the control (2% MeOH alone). In the present study, addition of
AFPIII improved post-thaw sperm motility by about 10% than that previously suggested
for CPAs (8% DMSO, 8% EG, 6% PG, 2% GLY, or 2% MeOH) by Kim et al. [2]. Improved
motility of sperm cryopreserved using AFPIII has been previously reported for Persian
sturgeon [32,37], gilthead seabream [27], bovine [32], and buffalo bull [35,38].

The sperm structure has several compartments bounded by the plasma membrane,
the outer acrosomal membrane, and the outer mitochondrial membrane. Furthermore,
acrosome integrity (AI), plasma membrane integrity (PMI), and mitochondrial membrane
potential (MMP) are quality indicators of sperm [2]. AI is a key indicator of fertility
potential. It can be visualized using LYSO-G florescent dye [39]. In the present study, the
highest percentage of intact acrosome was found for sperm cryopreserved using 10 µg/mL
of AFPIII combined with 8% DMSO. The addition of AFPIII to 8% DMSO improved AI by
around 10% over the previously reported findings [2] of cryopreserved sperm using 8%
DMSO alone. Such improvement indicates that AFPIII increases the acrosomal resistance
to temperature stress.

PMI is a quality indicator of a spermatozoon and is frequently used as a physiological
indicator of cryopreserved sperm [14]. Kim et al. [2] have reported PMI values of 54% and
51% for sperm cryopreserved using 8% DMSO and 2% GLY, respectively. The present study
revealed improved PMI values by 15% and 6% for sperm cryopreserve using 10 µg/mL
AFPIII combined with 8% DMSO and 2% GLY, respectively, compared to PMI values
reported by Kim et al. [2]. It has been previously reported that the addition of AFPIII
can robustly improve the PMI of cryopreserved sperm of sterlet [9] and seabream [27,28].
Results of the present study indicate that 10 µg/mL AFPIII has the potential to improve
the plasma membrane stability of cryopreserved sperm of Pacific abalone. The interaction
between AFP and the sperm plasma membrane has been previously reported for different
species [9,28].

MMP is a key indicator of mitochondrial activity. It is directly associated with sperm
motility and fertility [40,41]. The freeze-thaw process can damage mitochondria and the
result is decreased production of ATP [42]. In the present study, sperm cryopreserved using
10 µg/mL AFPIII combined with 8% DMSO resulted in an improved MMP by about 20%
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over those preserved with 8% DMSO alone without the addition of AFPIII [2]. Improved
MMP using AFPIII has also been reported for cryopreserved macaque sperm [41]. The
results suggest that the improved motility is most likely the result of less mitochondrial
damage, measured as MMP. The present study is the first one to report the effects of AFPIII
on MMP of cryopreserved sperm of aquatic animals (fish and shellfish).

Sperm DNA integrity is an indicator of fertilization capacity and the quality of an em-
bryo. High levels of sperm DNA fragmentation can increase abnormalities of embryos [23].
In the present study, DNA integrity of sperm cryopreserved using 10 µg/mL AFPIII com-
bined with 8% DMSO was similar (p > 0.05) to that of fresh sperm. Findings of the present
study suggest that the addition of 10 µg/mL AFPIII for cryopreserved sperm of Pacific
abalone can reduce DNA fragmentation to a nonsignificant level compared to that of fresh
sperm control. Evidence about the use of an antifreeze protein for protecting DNA integrity
of cryopreserved fish and shellfish sperm has not been reported yet. However, Kim [43]
has reported a similar phenomenon using antifreeze protein for the cryopreserved sperm
of pigs.

The present study showed gradually decreased mRNA abundance levels of HSP90
from fresh sperm to sperm cryopreserved with AFPIII or sperm cryopreserved without
AFPIII. Sperm cryopreserved with AFPIII exhibited higher mRNA abundance levels of
HSP90 than those of control groups (without AFPIII). Present findings indicate that cryop-
reservation of Pacific abalone spermatozoa has a detrimental effect on the HSP90 mRNA
transcript, consistent with previously published results for sperm of oyster [23] and yellow
catfish [44]. Reasons for the reduced level of HSP90 mRNA transcript in cryopreserved
sperm are due to the susceptibility of HSP90 mRNA transcript to cold stress. The role of
HSPs mRNA in sperm fertility has previously been reported in humans, where decreased
abundance levels represent decreased fertility [45,46]. Pan et al. [47] reported a lower
level of mRNA abundance from vitrified oocyte and early cleavage embryos, which was
responsible for a lower cleavage rate.

HSP90 is a molecular chaperone responsible for correct protein folding [48]. HSP90
translation occurs during fertilization [45] and plays an important role in the normal
process of myogenesis in embryos [49]. Lower HSP90 function was reported for embryonic
developmental defects in zebrafish [50]. The present study suggests that due to cryodamage
a lower translation of paternal HSP90 mRNA transcripts occurred, which has a negative
impact on correct protein folding. This process may affect the early embryonic development
stage by apoptosis and lower cleavage rate.

Fertility is an important indicator of the reproduction success of cryopreserved sperm.
The freeze–thaw process of cryopreservation is recognized as a detrimental factor for sperm
function and fertility [9]. The goal of the improvement in quality of cryopreserved sperm
is to achieve a higher fertilization rate. Sperm cryopreserved using 10 µg/mL AFPIII com-
bined with 8% DMSO had improved fertilization and hatching rates compared with those
cryopreserved with control (8% DMSO). Information regarding fertilization experiments of
sperm cryopreserved using AFPIII is very limited for fish and shellfish. Xin et al. [9] re-
ported similar fertilization rates of control and AFP used to cryopreserve sperm of Acipenser
ruthenus. That study also reported similar post-thaw sperm motility regardless of whether
AFP was used for cryopreservation. In the present study, improved post-thaw motility
might be responsible for the improvement of fertilization and hatching rates. A similar
phenomenon has been previously reported for finfish and shellfish sperm [51,52].

The present study showed correlations among sperm quality parameters of Pacific
abalone. Sperm DNA fragmentation had negative correlations with all sperm quality
parameters. Present findings were consistent with the results of Alcay et al. [53]. Sperm
motility exhibited positive relationships with all quality indicators except for DNA frag-
mentation of sperm. These results were consistent with a previous report for sperm of
eastern oyster, Crassostrea virginica [54]. The present study focused on how strong the
correlation was between each of the quality indicators. The present findings suggest that
improved fertility and hatching rate of Pacific abalone sperm might be associated with
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their higher motility, PMI, AI, and MMP. The present study successfully optimized the
sperm cryopreservation protocol of Pacific abalone using 10 µg/mL AFPIII combined with
8% DMSO.

4. Materials and Methods
4.1. Ethics Statements

Experimental protocols of this study were approved by the Animal Care and Use
Committee of Chonnam National University (approval number: CNU IACUC-YS-2020-5).
The present study was conducted following Guidelines for the Care and Use of Laboratory
Animals of the National Institutes of Health.

4.2. Experimental Reagents

Dimethyl sulfoxide (DMSO), glycerol (GLY), ethylene glycol (EG), propylene glycol
(PG), and methanol (MeOH) were obtained from Sigma-Aldrich Pty Ltd. (St. Louis, MO,
USA). Antifreeze protein III (AFPIII) was purchased from A/F protein, Inc. (Batch # AFPIII-
2016-01). A LIVE/DEAD® sperm viability kit and LysoTracker™ Green DND-26 were
purchased from Invitrogen Molecular Probes (Eugene, OR, USA). Rhodamine 123 (Rh 123)
and propidium iodide (PI) were purchased from Sigma-Aldrich Pty Ltd. A Comet Assay®

Reagent kit was purchased from Trevigen Inc. (Gaithersburg, MD, USA). Phosphate buffer
saline (PBS) was obtained from Life technologies Ltd. (Paisley, UK).

4.3. Apparatus Arrangement

Styrofoam boxes (Length: 25.0 cm ×Width: 25.0 cm × Height: 21.0 cm) with racks
placed at heights of 5 cm were used. Liquid nitrogen (LN2) up to 5 cm was placed in the
Styrofoam box. Rack heights were maintained from the surface of the LN2. A digital water
bath (J-NBT, JISICO, Seoul, Korea) was used to accomplish the thawing of cryopreserved
sperm.

4.4. Collection of Experimental Animals

Pacific abalone (H. discus hannai) were collected from a commercial abalone hatchery
(Tou-Jong soosan, Yeosu, Korea). Three-year-old adult abalone were chosen in May to June
of 2020 based on swollen and large gonads with the appearance of a whitish color. A total
of 115 abalone were used for conducting the present experiment. Abalone were reared in a
cemented tank with continuous supply of seawater and aeration.

4.5. Sperm Collection and Handling

Abalone were collected from the rearing tank and dried with paper towels. After
drying, abalone were placed in large Petri dishes (150 × 50 mm, SPL Life sciences, Korea)
and kept in sunlight for 1 h with the shell facing down and another 20 min with the muscle
facing down. Abalone were then gently stripped to collect sperm into the Petri dish. These
stripped sperm were then collected in Eppendorf tubes using droppers and immediately
refrigerated (4 ◦C).

4.6. Quality Evaluation of Fresh Sperm

In this study, several parameters including sperm motility, PMI, MMP, and AI were
used for quality assessment of fresh sperm. Experiments were accomplished with samples
having over 90% motile sperm. An aliquot of 10 µL sperm with a concentration of 9.5 (±0.6)
×109 cells/mL was diluted with 100 µL filtered sea water in an Eppendorf tube. Subse-
quently, 2 µL of the diluted sperm was added to 100 µL filtered sea water on a glass slide to
observe the motility of sperm. The motility of each replication was calculated based on the
average value of ten sub-samples. Sperm showing vibrating movement were counted as
active sperm [4,55]. PMI, MMP, and AI of sperm were assessed with SYBR14/PI, Rh123/PI,
and LYSO-G/PI methods, respectively [2].
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4.7. Cryopreservation Protocol

The following basic cryopreservation procedure (Figure 9) was used based on our
previously developed protocol [2]. Briefly, fresh sperm were diluted with filtered seawater
(FSW) at a ratio of 1:10. CPA solutions (8% DMSO, 8% EG, 6% PG, 2% GLY, and 2% MeOH)
were prepared by dilution with an extender (FSW). Different concentrations of AFPIII
were mixed with the cryoprotectant (CPA) solutions. The final solution was prepared by
mixing an equal proportion of diluted sperm and the CPA solution. Diluted sperm were
equilibrated for 10 min with different concentrations of AFPIII. These equilibrated sperm
solutions were then transferred into straws (0.50 mL). Straws (sealed with straw powder)
were placed in 5 cm rack heights for 10 min and then immediately submerged into LN2 for
a minimum of 2 h by tightly closing the Styrofoam box lead. Straws were then collected
with large forceps and transferred to a water bath within 4 s for thawing with seawater.
The thawing temperature was maintained at 60 ◦C in the water bath. Post-thaw quality
was evaluated under a fluorescence microscope (Nikon eclipse E600).

Figure 9. Diagrammatic presentation of the sperm cryopreservation protocol of Pacific abalone, H. discus hannai, using an
antifreeze protein III (AFPIII).

4.8. Effects of AFPIII on Sperm Cryopreservation

AFPIII was separately mixed with 8% DMSO, 8% EG, 6% PG, 2% GLY, or 2% MeOH
at a final concentration of 0.1, 1, 10, or 100 µg/mL, respectively. The types of CPA with
suitable concentrations (8% DMSO, 8% EG, 6% PG, 2% GLY, and 2% MeOH) were selected
based on results of our recently published study [2].

4.9. Fluorescent Technique to Assess PMI, AI, and MMP of Cryopreserved Sperm

The fluorescent technique described by Kim et al. [2] was used in this study with slight
modifications. The PMI of cryopreserved sperm was assessed using a LIVE/DEAD® sperm
viability kit. MMPs of fresh and cryopreserved sperm were evaluated using rhodamine
123 (Rh 123). A LysoTrackerTM Green DND-26 (LYSO-G) (Thermo Fisher Scientific) was
used for AI evaluation. Propidium iodide (PI) was used to detect damaged sperm cells
in each fluorescent evaluation and resulted in a red stain. Sperm samples were diluted
with 1X PBS (phosphate buffered saline) at a final volume of 1 mL. To evaluate PMI, 5 µL
SYBR 14® was mixed with 1 mL of sample and incubated at 36 ◦C for 10 min in the dark.
After adding 10 µL of PI (2.4 mM), the sample was incubated again at 36 ◦C for 10 min in
the dark. For the AI test, 5 µL of LYSO-G (1 mM) and 10 µL of PI (2.4 mM) were properly
mixed with each sample and incubated at 37 ◦C for 30 min in the dark. To detect MMP,
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1 µL of Rh 123 (13 mM) was properly mixed with each sample and incubated at 20 ◦C for
10 min in the dark. Then, 5 µL of PI (2.4 mM) was added to each sample and incubated at
20 ◦C for 10 min.

4.10. Comet Assay to Detect Sperm DNA Integrity of Fresh and Cryopreserved Sperm

Comet assay was performed according to the method described by Kim et al. [56]. A
Comet Assay® kit was used to assess DNA integrity of fresh and cryopreserved sperm.
Briefly, sperm were diluted (1 × 105 cells/mL) with chilled 1X PBS and immobilized
in agarose gel on comet slides. Comet slides were then immersed in a lysis solution
at 4 ◦C for 1 h. These comet slides were subsequently immersed in a newly prepared
unwinding solution for 1 h at 4 ◦C. Slides were then electrophoresed with a chilled alkaline
electrophoresis solution in a comet assay® electrophoresis system for 30 min at 21 V. Vista
green dye was used to stain each sample. Comet was immediately visualized and images
were captured using a fluorescence microscope (excitation filter 450–490 nm; Nikon eclipse
E600). A minimum of 100 sperm cells were analyzed to obtain results of the comet assay.
Comet images were analyzed using comet assay IV image analysis software (version 4.3.2,
Perceptive Instruments Ltd., UK) to obtain tail length, head length, % DNA in the tail, tail
moment, olive tail moment, and extent tail moment.

4.11. RNA Extraction and cDNA Synthesis

Fresh and cryopreserved sperm (8% DMSO, 8% DMSO + AFPIII, 8% EG, 8% EG +
AFPIII, 2% GLY, 2% GLY + AFPIII) were used to extract total RNA (tRNA). An RNeasy mini
kit (Qiagen, Hilden, Germany) was used to isolate tRNA from fresh and cryopreserved
sperm samples. Genomic DNA contamination was eliminated using RNase-free DNase
(Promega, Madison, WI, USA). Concentrations of tRNAs were then measured with a
spectrophotometer (Nanodrop ACTGene ASP-2680, Piscataway, NJ, USA). For cDNA
synthesis, tRNA were reverse transcribed using a Superscript® III First-Strand synthesis
kit (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s protocol.

4.12. Quantitative Real-Time PCR (qRT-PCR) Analysis

A pair of primers (forward: 5′-AACAGTACATCTGGGAGTCG-3′ and reverse: 5′-
CCTCCTTGTCTCTTTCCTTCT -3′) designed from a H. discus hannai heat shock protein
90 (HSP90, GU014545.1) sequence were used for the qRT-PCR assay to determine mRNA
abundance levels of HSP90 in fresh and cryopreserved sperm samples. Ribosomal protein L-
5 (RPL-5, GenBank accession no: JX002679.1) (forward: 5′-TGTCCGTTTCACCAACAAGG-
3′ and reverse: 5′- AGATGGAATCAAGTTTCAATT-3′) as an internal control was used
for normalizing mRNA abundance levels of each of the samples based on its expression
stability [57]. A qRT-PCR analysis was performed using a 2× qPCRBIO SyGreen Mix
Lo-Rox kit (PCR Biosystems, Ltd., London, UK) as described previously [58,59]. qRT-PCR
was performed with the following cycling conditions: a pre-incubation step at 95 ◦C for
2 min followed by 40 cycles of a three-step amplification at 95 ◦C for 5 s, 60 ◦C for 15 s, and
72 ◦C for 20 s. The relative mRNA abundance levels of HSP90 were quantified using the
2−∆∆ct method [60].

4.13. Fertility Test

Good quality and fully matured female abalone (n = 30) were chosen based on the
greenish color of their swollen gonads. Combined methods of heat treatment and UV-
irradiation were used to treat spawning abalone [61–63]. Briefly, abalone were exposed
to sunlight for one hour with the shell facing down and another 30 min with the shell
facing up. Subsequently, they were transferred into inducing buckets and supplied with
seawater and a continuous aeration system until spawning. After spawning, egg quality
was observed under a microscope (Nikon eclipse E200, Japan). A sperm to egg ratio of
10,000:1 was maintained to check fertilities of fresh and cryopreserved sperm. Sperm
cryopreserved using 10 µg/mL AFPIII combined with 8% DMSO or 8% DMSO alone
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were assessed to determine fertility and hatching success compared to fresh sperm. Water
temperature of experimental buckets was maintained between 18 and 20 °C. Fertilized
eggs were washed three times (30 min interval) with FSW (18 to 20 °C). Fertilization rate
(%) and hatching rate (%) were analyzed using the following formulae:

Fertilization rate (%) = Number of fertilized egg/number of eggs counted × 100. (1)

Hatching rate (%) = Number of 14 h hatched larvae/number of fertilized eggs × 100. (2)

4.14. Statistical Analysis

Data were analyzed by nonparametric one-way analysis of variance (ANOVA) to
generate figures using GraphPad Prism 5.1 software (GraphPad Prism version 5.00 for
Windows; GraphPad Software, CA, USA). Duncan’s multiple range test was performed
whenever significance was observed. Differences were considered statistically significant
at p < 0.05. Bivariate correlations were performed following Pearson correlation coefficient
analysis with a two-tailed test of significance to determine relationships between post-thaw
sperm quality indicators.

5. Conclusions

The present study reports an improved sperm cryopreservation technique for Pacific
abalone (H. discus hannai) using antifreeze protein III (AFPIII). This improvement was due
to improved post-thaw motility, AI, PMI, MMP, DNA integrity, fertility, and hatchability.
AFPIII at 10 µg/mL combined with 8% DMSO improved post-thaw sperm quality com-
pared to other combinations of CPAs and AFPIII. The comet assay results revealed that
the DNA integrity of sperm cryopreserved with 8% DMSO combined with AFPIII was not
significantly different from that of fresh sperm. Results of the present study suggest that
10 µg/mL AFPIII combined with 8% DMSO can be used for large scale cryopreservation
and fertilization of Pacific abalone sperm for commercial purposes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22083917/s1, Figure S1: Fluorescent stained photographs for detecting acrosome in-
tegrity of sperm cryopreserved with AFPIII (1000×magnification). Figure S2: Fluorescent stained
photographs for detecting mitochondrial membrane potential of sperm cryopreserved with AFPIII
(1000×magnification).
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