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Objective.We previously reported that dexmedetomidine (DEX) offers cardioprotection against ischemia/reperfusion injury in rats.
Here, we evaluated the role of toll-like receptors 4- (TLR4-) myeloid differentiation primary response 88- (MyD88-) nuclear factor-
kappa B (NF-𝜅B) signaling in DEX-mediated protection of cardiomyocytes using in vitromodels of hypoxia/reoxygenation (H/R).
Methods.The experiments were carried out in H9C2 cells and in primary neonatal rat cardiomyocytes. Cells pretreated with vehicle
or DEX were exposed to hypoxia for 1 h followed by reoxygenation for 12 h. We analyzed cell viability and lactate dehydrogenase
(LDH) activity and measured tumor necrosis factor-𝛼 (TNF-𝛼), interleukin-6 (IL-6), and IL-1𝛽mRNA levels, TLR4, MyD88, and
nuclear NF-𝜅B p65 protein expression and NF-𝜅B p65 nuclear localization. TLR4 knock-down by TLR4 siRNA transfection and
overexpression by TLR4 DNA transfection were used to further confirm our findings. Results. DEX protected against H/R-induced
cell damage and inflammation, as evidenced by increased cell survival rates, decreased LDH activity, and decreased TNF-𝛼, IL-6,
and IL-1𝛽mRNA levels, aswell as TLR4 andNF-𝜅Bprotein expression. TLR4knock-downpartially prevented cell damage following
H/R injury, while overexpression of TLR4 abolished the DEX-mediated protective effects. Conclusions. DEX pretreatment protects
rat cardiomyocytes against H/R injury. This effect is partly mediated by TLR4 suppression via TLR4-MyD88-NF-𝜅B signaling.

1. Introduction

Cardiac reperfusion is a critical factor that determines prog-
nosis after myocardial ischemia but also leads to further
tissue damage and can even increase infarct size. Myocardial
ischemia/reperfusion (I/R) injury is a complex pathophysi-
ological process involving a variety of factors and signaling
pathways, including oxygen free radicals, calcium overload,
inflammation, and apoptosis [1]. Of these, the inflammatory
response is a major cause of I/R-induced tissue injury [2].

Toll-like receptor 4 (TLR4), a pattern recognition recep-
tor, is expressed in cells from the myeloid lineage, as well
as in cardiomyocytes and microvascular endothelial cells [3].
A previous study reported that TLR4 promotes cardiac dys-
function followingmyocardial ischemia by activating nuclear

factor-𝜅B- (NF-𝜅B-) dependent apoptosis and increasing
expression of proinflammatory cytokines [4]. Other studies
showed that myocardial injury and inflammation were lim-
ited in TLR4-deficient mice after I/R [5, 6] and in in vitro
TLR4 knock-down in cardiomyocytes [7].

Dexmedetomidine (DEX) is a highly selective 𝛼2-
adrenergic receptor agonist that is commonly used in the
clinic as a sedative and anesthetic. Clinical evidence has sug-
gested that DEX preconditioning could improve outcomes
in patients after cardiac and noncardiac surgeries [8, 9].
Animal studies also showed that DEX preconditioning exerts
cardioprotective effects in both in vivo and ex vivo models
[10, 11]. In addition, DEX was reported to inhibit the inflam-
matory response by suppressing the TLR4-NF-𝜅B pathway
in lung and liver tissues [12, 13]. Consistent with the above
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findings, our recent in vivo and ex vivo experiments showed
that DEX preconditioning alleviated I/R-induced myocardial
injury, which was associated with inhibition of inflammatory
responses and downregulation of high mobility group box 1-
(HMGB1-) TLR4-MyD88-NF-𝜅B signaling [14, 15].

To date, the role of the TLR4 signaling pathway in DEX-
mediated cardioprotection has not been fully explored. To
further understand the involvement of TLR4 signaling in
DEX-mediated cardioprotection against I/R injury, we per-
formed studies in an in vitro hypoxia/reoxygenation (H/R)
model using the H9C2 cardiac cell line as well as primary
cultured rat neonatal cardiomyocytes. We hypothesized that
DEX preconditioning protects cardiomyocytes against H/R
injury through downregulating TLR4-MyD88-NF-𝜅B signal-
ing.

2. Methods

2.1. Animals. Neonatal rats (1-2 days old) were provided
by the Experimental Animal Centre of Soochow University,
Suzhou, China. All animals were treated in accordance with
the National Institutes of Health Guide for the Care and
Use of Laboratory Animals (NIH publications number 80-
23, revised in 1996). The protocol was approved by the
Ethics Committee for Animal Experimentation of Soochow
University.

2.2. Cell Culture. The rat H9C2 cardiomyocyte cell line
was obtained from the Shanghai Cell Bank of the Chinese
Academy of Sciences.The cells were cultured in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM) (H30243.01,
HyClone, USA) containing 10% fetal bovine serum (FBS)
(16000-044, Gibco, USA) in an incubator with 5% CO

2
/95%

air at 37∘C. The culture media were replaced every day and
the cells were subcultured for experimental procedures at
80–90% confluence.

Primary rat neonatal cardiomyocytes were prepared as
previously described [16, 17]. Briefly, hearts were harvested
and placed in ice cold phosphate-buffered saline (PBS). The
ventricles were cut into 1–3mm3 pieces and digested in 0.1%
collagenase type II (V900892, Sigma, USA) at 37∘C for 5min.
The digestion was repeated five times. The supernatants
from all digestions were centrifuged (10min, 1,500x rpm) and
finally resuspended in DMEM-F12 (C11330500ET, Gibco)
containing 15% FBS. The differential wall adhesion method
was used to separate fibroblasts from cardiomyocytes. Resus-
pended cells were cultured in 5% CO

2
at 37∘C for 2 h,

and then the nonadherent cells were extracted and counted
with a hemocytometer. Cells in the culture medium were
transferred to plates at an appropriate density for subsequent
experiments. We added 0.1mM 5-bromodeoxyuridine (5-
BrdU) (B5002, Sigma, St. Louis, USA) to the medium to
inhibit fibroblast growth.

2.3. H/R Injury Model. The in vitro H/R model was estab-
lished by adding sodium hydrosulfite (Na

2
S
2
O
4
, 71699,

Sigma) to the cultured cells. Na
2
S
2
O
4
was previously reported

to induce hypoxia in both H9C2 and primary rat neona-
tal cardiomyocytes [18–21]. Na

2
S
2
O
4
removes oxygen from

the culture medium without causing any damage to cell
membranes, and reoxygenation can be achieved by replacing
the medium. The cells were treated with 4mM Na

2
S
2
O
4
at

37∘C in 5% CO
2
for 1 h, and then the culture media were

replaced with normalmedia for an additional 12 h to generate
a reoxygenated condition.

2.4. Experimental Protocols. The experiments were carried
out in H9C2 and primary neonatal rat cardiomyocytes. For
DEX preconditioning, DEX was added to the culture media
1 h before hypoxia.

(1) To determine the optimal concentration of DEX and
investigate whether DEX preconditioning attenuates H/R
injury, cells were divided into three groups: groupC (control),
groupH/R, and groupD+H/R (DEX pretreatment). In theD
+ H/R group, cells were treated with 0.1, 1, and 10 𝜇M of DEX
for 1 h before hypoxia.

(2) To investigate the effects of TLR4 knock-down by
TLR4 siRNA transfection on cardiomyocytes under H/R
injury, cells were divided into four groups: group C (control),
group H/R, group D + H/R (DEX pretreatment), and group
TLR4siRNA + H/R (TLR4 siRNA transfection). In the D
+ H/R group, cells were incubated with 1 𝜇M DEX for 1 h
before hypoxia. In the TLR4siRNA + H/R group, cells were
transfected with siRNA using Lipofectamine 2000 (siRNA:
Lipofectamine 2000 = 20 nM: 1𝜇L; Genepharma, Shanghai,
China) 24 h before hypoxia.

(3) To investigate whether DEX preconditioning attenu-
ates H/R injury by directly suppressing TLR4 gene expres-
sion, cells were divided into four groups: group H/R, group
D + H/R (DEX pretreatment), group TLR4DNA + D +
H/R (TLR4 DNA transfection), and group CONDNA + D +
H/R (control DNA transfection). Before pretreatment with
1 𝜇M DEX, TLR4 DNA/pEX-2 or control DNA/pEX-2 was
transfected into the cells using Lipofectamine 2000 (DNA:
Lipofectamine 2000 = 1𝜇g: 2𝜇L; Genepharma) 24 h before
hypoxia.

2.5. Cell Viability and Lactate Dehydrogenase (LDH) Assays.
Cell viability wasmeasured using the 3-[4,5-dimethylthiazol-
2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and cell
injury was measured using a lactate dehydrogenase (LDH)
activity assay. Briefly, cells were seeded in 96-well plates
at a density of 1 × 104 cells/well. After inducing H/R, the
MTT solution (1 : 10, 0793, Amresco, USA) was added to
each well and incubated for 4 h at 37∘C. The media were
removed and cells were dissolved in dimethyl sulfoxide
(DMSO) (V900090, Sigma). The absorbance was measured
at 490 nm with a microplate reader (MD, SpectreMax 190). A
reduction in optical density reflects a decrease in cell viability.
LDH activity was measured using a LDH reagent (C0017,
Beyotime, China) at the absorbance of 570 nm according to
the manufacturer’s protocol.

2.6. Western Blot. TLR4, MyD88, and nuclear NF-𝜅B p65
protein expression were detected by Western blot analysis
as previously described [22]. The protein concentration was
determined using a bicinchoninic acid reagent kit (BCA,
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P0010, Beyotime). After electrophoresis, proteins were trans-
ferred to a polyvinyldifluride (PVDF) membrane at 200mA
for 2 h at 4∘C. The blots were probed with the following
antibodies at 4∘C overnight: mouse anti-rat TLR4 (1 : 100;
Santa Cruz Biotechnology; sc-293072), rabbit anti-rat NF-𝜅B
p65 (1 : 1000, Abcam, ab7970), mouse anti-rat glyceraldehyde
phosphate dehydrogenase (GAPDH) (1 : 2000,MultiSciences,
70-Mab5465-040), rabbit anti-rat MyD88 (1 : 200, Abcam,
ab2064), and rabbit anti-rat lamin B (1 : 1000, MultiSciences,
70-ab36361-050). Blots were then incubated with a secondary
antibody, goat anti-mouse HRP (1 : 5000, MultiSciences, 70-
GAM0072) or goat anti-rabbit HRP (1 : 5000, MultiSciences,
lk-gar0072), for 2 h at room temperature. Immunoreactive
bandswere visualized using an enhanced chemiluminescence
kit (ECL, p10100, New Cell Molecular Biotech, China).

2.7. Quantitative RT-PCR. Total RNA from cells was extract-
ed with Trizol reagent (Invitrogen, Carlsbad, USA) according
to the manufacturer’s instructions, and RNA quantity was
measured by OD260/OD280. We used the 5x All-in-One
RT MasterMix (Applied Biological Materials, Richmond,
British Columbia, Canada) for reverse transcription of
1 𝜇g of total RNA as a template. Quantitative real-time
PCR was conducted using EvaGreen qPCR MasterMix
(Applied Biological Materials) in 10 𝜇L reaction volumes
in 96-microwell plates. Relative transcript abundance was
determined using the LightCycler 480 software (Roche,
Switzerland) according to the 2−ΔΔCt method. 𝛽-Actin
amplification signals were employed as internal controls.
Three replicates were performed per sample.

2.8. Immunofluorescence (IF) Staining. The cells were seeded
into 24-well chambers at a density of 1 × 106 cells/well. After
reoxygenation, the cells were washed with PBS, fixed with 4%
paraformaldehyde, permeabilized with 1% Triton X-100, and
blocked in 3%FBS for 1 h.The cellswere then incubatedwith a
primary antibody, rabbit anti-rat NF-𝜅B p65 (1 : 500, Abcam,
ab7970), in 1% FBS at 4∘C overnight, followed by another
incubation with fluorescein isothiocyanate goat anti-rabbit
(1 : 500, Abcam, ab150080) for 2 h.The cells were washed and
stained with 4,6-diamino-2-phenyl indole (DAPI) for 5min
at room temperature. Immunostained sections were visual-
ized with fluorescent microscopy (Olympus, BX60, Japan).

2.9. Statistical Analyses. All data are expressed as mean value
± standard error of the mean (SEM), and one-way analysis of
variance (ANOVA) followed by Tukey’s test was performed
using SPSS 22.0 statistical software (IBM SPSS, Chicago, IL,
USA). 𝑃 < 0.05 was considered statistically significant.

3. Results

3.1. DEX Pretreatment Attenuates Cell Damage and Inflamma-
tion in Cardiomyocytes Exposed to H/R Injury. After reper-
fusion, the survival rate of cardiomyocytes was markedly
decreased in the H/R group compared to the control group.
Cell survival rate was significantly improved by DEX pre-
treatment (Figures 1(a)-1(b)), with 1𝜇M DEX offering the

best protection. Consistent with the above finding, 1𝜇MDEX
pretreatment greatly diminished the H/R-induced increase
in LDH levels (Figures 1(c)-1(d)). These data suggest that
cell injury was reduced in the DEX pretreatment group. In
addition, quantitative RT-PCR showed that TNF-𝛼, IL-6,
and IL-1𝛽 mRNA levels were significantly increased in the
H/R group compared to the control, and DEX pretreatment
partially blocked the increase in these inflammatory factors
(Figures 1(e)–1(j)). Collectively, these findings suggest that
DEX pretreatment substantially reduces I/R-triggered cell
damage and inflammatory responses in cardiomyocytes.

3.2. DEX Pretreatment Suppresses TLR4-NF-𝜅B Signaling in
Cardiomyocytes Exposed to H/R. TLR4 and nuclear NF-𝜅B
p65 expression in H9C2 cells and primary cardiomyocytes
of the control and H/R groups were measured by Western
blot analysis. As shown in Figures 2(a)–2(d), both TLR4 and
nuclear NF-kB p65 protein levels increased significantly in
the H/R group compared to the control group, and this effect
was mitigated by DEX pretreatment.The above findings were
further confirmed by IF assay in H9C2 cells. As shown in
Figure 2(e), NF-𝜅B p65 nuclear translocation was promoted
byH/R but was inhibited by DEX.These findings suggest that
DEX pretreatment suppresses H/R-activation of TLR4-NF-
kB signaling.

3.3. TLR4 Knock-Down by TLR4 siRNA Transfection Protects
Cardiomyocytes against H/R Injury. We next asked if TLR4
is involved in the DEX-mediated protective effect observed
in H9C2 cells and cultured cardiomyocytes exposed to H/R.
The efficiency of TLR4 gene knock-down was evaluated by
Western blot analysis (Figure 3(a)). Compared to the H/R
group, DEX pretreatment and TLR4 knock-down by TLR4
siRNA transfection both significantly increased cell survival
rates and decreased LDH levels (Figures 3(b)–3(e)). TNF-𝛼,
IL-6, and IL-1𝛽 mRNA levels were also suppressed by either
DEX pretreatment or TLR4 knock-down (Figures 4(a)–4(f)).
In addition, TLR4 knock-down significantly reduced TLR4
and nuclear NF-𝜅B p65 protein levels (Figures 4(g)–4(j)).
These findings suggest that TLR4 is involved in mediating
H/R-induced cardiomyocyte injury.

3.4. Overexpression of TLR4 Reverses the Protective Effects
of DEX. Next, we employed a gain-of-function approach
to further examine the role of TLR4 in DEX-mediated
cardioprotection.The efficiency of TLR4 gene overexpression
was evaluated by Western blot analysis (Figure 5(a)). As
shown above, DEX increased cell survival rate and decreased
LDH activity and TNF-𝛼, IL-6, and IL-1𝛽 expression in
cells exposed to H/R. However, these beneficial effects were
reversed by TLR4 overexpression, but not by transfection
of control DNA (Figures 5(b)–5(e) and 6(a)–6(f)). Similarly,
the DEX-mediated decrease in TLR4, MyD88, and nuclear
NF-𝜅B p65 expression in H/R-exposed cells was significantly
reversed by the transfected vector encoding TLR4, but not by
the controlDNA (Figures 6(g)–6(l)). Hence, we conclude that
DEX-mediated cardioprotection against H/R involves TLR4
signaling.
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Figure 1: DEX pretreatment attenuates cell damage and inflammation in cardiomyocytes exposed to H/R. Viability of H9C2 cells and rat
neonatal cardiomyocytes was measured by MTT (a, b) and LDH activity (c, d). Data are expressed as means ± SEM (𝑛 = 5 per group). IL-1𝛽,
TNF-𝛼, and IL-6 expression was evaluated by quantitative RT-PCR (e–j). Data are expressed as means ± SEM (𝑛 = 3 per group). ∗∗𝑃 < 0.01
versus control group; #𝑃 < 0.05, ##𝑃 < 0.01 versus H/R group. D: DEX.

4. Discussion

In the present study, we investigated the underlying mecha-
nisms of DEX-mediated cardioprotection using in vitro H/R
models. We demonstrated that DEX pretreatment protected
cardiomyocytes against H/R injury, at least in part, by
suppressing TLR4 andMyD88 expression and impeding NF-
𝜅B translocation from the cytoplasm to the nucleus. Notably,
we conducted this study using the H9C2 cardiac cell line as
well as primary cultured rat neonatal cardiomyocytes tomake

the current resultsmore reliable, as these two kinds of cells are
used widely in the in vitroH/R model.

Hypoxia was generated using sodium hydrosulfite, a
chemical oxygen scavenger, in the in vitro H/R models
used in our study. Although hydrosulfite-mediated hypoxia
is not equivalent to hypoxia caused by pathophysiologic
vasoconstriction [23], it has still been used to successfully
induce hypoxia in a variety of cells, including rat neonatal
cardiomyocytes and H9C2 cells [18–21]. Most recently, we
applied this model in primary neonatal rat cardiomyocytes
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Figure 2: DEX pretreatment suppresses TLR4-NF-𝜅B signaling in cardiomyocytes exposed to H/R. TLR4 and nuclear NF-𝜅B p65 protein
expression in H9C2 cells and rat neonatal cardiomyocytes was assessed by Western blot analysis (a–d). GAPDH and lamin B were used as
a loading control for total and nuclear protein expression, respectively. Data are expressed as means ± SEM (𝑛 = 3 per group). ∗𝑃 < 0.05,
∗∗
𝑃 < 0.01 versus control group; #𝑃 < 0.05, ##𝑃 < 0.01 versus H/R group. Representative images showing the distributions of NF-𝜅B (red) in

immunoreactive H9C2 cells (e). DAPI was used to stain nuclei. Magnification, 400x; scale bars = 10 𝜇m.
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Figure 3: TLR4 knock-down by TLR4 siRNA transfection protects cardiomyocytes against H/R injury. TLR4 protein expression was detected
in cells transfected with TLR4 siRNA for 24 h byWestern blot analysis (a). GAPDHwas used as a loading control. Data are expressed asmeans
± SEM (𝑛 = 3 per group). ∗∗𝑃 < 0.01 versus Lip2000 group. Viability of H9C2 cells and rat neonatal cardiomyocytes was measured by MTT
(b, c) and LDH activity (d, e). Data are expressed as means ± SEM (𝑛 = 5 per group). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01 versus control group; #𝑃 < 0.05,
##
𝑃 < 0.01 versus H/R group. D, DEX.

and found that both preconditioning and postconditioning
with DEX attenuated H/R injury at the cellular level [24].

Cell survival rate and LDH activity are generally used
as indicators of cell injury. In the present study, we found
that H/R caused severe cardiomyocyte membrane damage,
decreased cell survival rate, and increased LDH activity.

However, these injury-related effects were ameliorated by
DEX pretreatment. Moreover, we showed that 1 𝜇M DEX
offered the best protection. In addition, we found that H/R
increased the levels of proinflammatory cytokines (TNF-
𝛼, IL-1𝛽, and IL-6) in cardiomyocytes, all of which were
previously shown to be directly involved in the progression of
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Figure 4: Continued.
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Figure 4: TLR4 knock-down by TLR4 siRNA transfection reduces TLR4 and nuclear NF-kB p65 levels in cardiomyocytes exposed to H/R.
IL-1𝛽, TNF-𝛼, and IL-6 expression was measured by quantitative RT-PCR (a–f). Data are expressed as means ± SEM (𝑛 = 3 per group).
Western blots were used to measure TLR4 and nuclear NF-𝜅B p65 protein expression in both H9C2 cells and neonatal cardiomyocytes (g–j).
GAPDH and lamin B were used as a loading control for total and nuclear protein expression, respectively. Data are expressed as means ±
SEM (𝑛 = 3 per group). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01 versus control group; #𝑃 < 0.05, ##𝑃 < 0.01 versus H/R group. D, DEX.

myocardial I/R injury, myocardial dysfunction, vascular wall
remodeling, heart failure, and cardiac hypertrophy [25, 26].
In line with our previous results [14, 15], the present study
confirmed that DEX protects cardiomyocytes against H/R
injury via an anti-inflammatory response.

TLRs act as sentinels of tissue damage and mediators of
inflammatory responses following pathogen detection [27].
TLR4 is primarily expressed in myocardial cells [3] and
can be activated by either exogenous or endogenous ligands
to induce downstream signals that lead to cytokine and
chemokine production and inflammatory responses [28–
31]. The TLR4-NF-𝜅B axis is a key signaling pathway in
myocardial I/R injury [32]. NF-𝜅B stays in an inactive state
in the cytoplasm when bound to the inhibitory I𝜅B subunit
[33].However, in response to external stimuli, the I𝜅B subunit
is phosphorylated, resulting in the release and translocation
of NF-𝜅B to the nucleus, where it triggers the transcription
of downstream target genes involved in the inflammatory
response [34, 35]. NF-𝜅B also promotes production of major
inflammatory mediators including TNF-𝛼, IL-1𝛽, and IL-6,
which have been implicated in myocardial apoptosis and
death [4, 36, 37]. In addition, it is well known that TLR4
signaling activated by MyD88 and TIRAP mediates rapid
activation of NF-kB and MAPKs, which in turn induces
MyD88-dependent activation of cytokines, such as TNF-𝛼
and IL-1𝛽 or TRAM and TRIF, to increase IFN-𝛽 production
[38–40]. Therefore, we measured MyD88 levels downstream
of TLR4 receptor activation in this study.

It has been shown that DEX acts as an anti-inflammatory
agent and provides cardioprotection by increasing expression
of cell survival proteins, improving postischemic ventricular
recovery, and reducingmyocardial infarct size and cardiomy-
ocyte apoptosis [11, 41–43]. Mechanistically, it was previously
reported that the antiapoptotic and anti-inflammatory effects

of DEX in I/R injury were related to phosphoinositide 3-
kinase- (PI3K-) AKT and extracellular regulated kinase 1/2
(ERK1/2) signaling pathways [44]. Previously, Ibacache et
al. reported that DEX preconditioning produced cardiopro-
tection against I/R injury by the activation of prosurvival
kinases after cardiac 𝛼2-adrenergic receptor stimulation [11].
In our recent in vivo and ex vivo experiments, we also verified
that the addition of yohimbine, the selective 𝛼2-adrenergic
receptor antagonist, greatly attenuated DEX-induced cardio-
protection [14, 15]. Besides, DEX-induced cardioprotection
may be attributed to the downregulation of the HMGB1-
TLR4-MyD88-NF-QB signaling pathway [14]. In this study,
we used TLR4 knock-down by TLR4 siRNA transfection
and overexpression by TLR4 DNA transfection in vitro
approaches to explore the mechanisms underlying DEX-
mediated cardioprotection. We demonstrated that DEX has
anti-inflammatory activity and that TLR4-MyD88-NF-𝜅B
signaling is involved in the DEX-mediated cardioprotection
against H/R injury.

Some limitations of the present study need to be acknowl-
edged. For example, we used in vitro cardiomyocyte H/R
models to mimic I/R injury in rats to explore the molecular
basis underlying DEX’s cardioprotection. Thus, the differ-
ences between in vitro and in vivo models need to be taken
into consideration when interpreting the data. In addition,
we used the H9C2 cell line and rat neonatal cardiomyocytes
instead of adult cardiomyocytes, so the physiological benefits
offered by DEX will need to be further investigated in adult
rat cardiomyocytes, or even human cardiomyocytes, to more
accurately evaluate the potential clinical benefits of DEX
treatment. Further study of the precisemechanisms responsi-
ble for the cardioprotective effects of DEX is currently under
way.
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Figure 5: Overexpression of TLR4 reduces DEX-mediated protection against H/R-induced cell injury. TLR4 protein expression was detected
in cells transfected with TLR4 DNA/pEX-2 or control DNA/pEX-2 for 24 h by Western blot analysis (a). GAPDH was used as a loading
control. Data are expressed as means ± SEM (𝑛 = 3 per group). ∗∗𝑃 < 0.01 versus Lip2000 or Lip2000 + CONDNA group. Viability of H9C2
cells and rat neonatal cardiomyocytes were measured by MTT (b, c) and LDH activity (d, e). Data are expressed as means ± SEM (𝑛 = 5 per
group). #𝑃 < 0.05, ##𝑃 < 0.01 versus H/R group; $𝑃 < 0.05. D, DEX.
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Figure 6: Continued.
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Figure 6: Overexpression of TLR4 reverses the inhibitory effects of DEX on TLR4, MyD88, and nuclear NF-kB p65 expression. IL-1𝛽, TNF-
𝛼, and IL-6 expression was measured by quantitative RT-PCR (a–f). Data are expressed as means ± SEM (𝑛 = 3 per group). Western blot
analysis was used to measure TLR4, MyD88, and nuclear NF-𝜅B p65 protein expression in both H9C2 cells and neonatal cardiomyocytes
(g–l). GAPDH and lamin B were used as a loading control for total and nuclear protein expression, respectively. Data are expressed as means
± SEM (𝑛 = 3 per group). #𝑃 < 0.05, ##𝑃 < 0.01 versus H/R group; $𝑃 < 0.05, $$𝑃 < 0.01 versus D + H/R group. D, DEX.

5. Conclusions

We demonstrated that DEX preconditioning offers cardio-
protection, at least in part, by TLR4 suppression via TLR4-
MyD88-NF-𝜅B signaling. The perioperative use of DEX may
be a potentially potent therapeutic strategy for high-risk
patients undergoing cardiac surgery.
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