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The coronavirus disease outbreak of 2019 (COVID-19) has been spreading rapidly to all
corners of the word, in a very complex manner. A key research focus is in predicting the
development trend of COVID-19 scientifically through mathematical modelling. We con-
ducted a systematic review of epidemic prediction models of COVID-19 and the public
health intervention strategies by searching the Web of Science database. 55 studies of the
COVID-19 epidemic model were reviewed systematically. It was found that the COVID-19
epidemic models were different in the model type, acquisition method, hypothesis and
distribution of key input parameters. Most studies used the gamma distribution to
describe the key time period of COVID-19 infection, and some studies used the lognormal
distribution, the Erlang distribution, and the Weibull distribution. The setting ranges of the
incubation period, serial interval, infectious period and generation time were 4.9e7 days,
4.41e8.4 days, 2.3e10 days and 4.4e7.5 days, respectively, and more than half of the in-
cubation periods were set to 5.1 or 5.2 days. Most models assumed that the latent period
was consistent with the incubation period. Some models assumed that asymptomatic
infections were infectious or pre-symptomatic transmission was possible, which over-
estimated the value of R0. For the prediction differences under different public health
strategies, the most significant effect was in travel restrictions. There were different studies
on the impact of contact tracking and social isolation, but it was considered that improving
the quarantine rate and reporting rate, and the use of protective face mask were essential
for epidemic prevention and control. The input epidemiological parameters of the pre-
diction models had significant differences in the prediction of the severity of the epidemic
spread. Therefore, prevention and control institutions should be cautious when formu-
lating public health strategies by based on the prediction results of mathematical models.
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1. Introduction

The outbreak of coronavirus disease (COVID-19) caused by the novel coronavirus, SARS-CoV-2, has spread rapidly around
the world since the end of 2019, affecting more than 200 countries and regions by early May. The World Health Organization
(WHO) declared the COVID-19 outbreak as a public health emergency of international concern (PHEIC) on 31 January(WHO,
2020d) and classified it as a pandemic on 11 March (WHO, 2020b). Globally, as of 4 July 2020, there have been 10,922,324
confirmed cases of COVID-19, including 523,011 deaths, with an average of more than 100,000 new confirmed cases per day
(Fig. 1), reported to WHO(WHO, 2020e). More than 2.72 million cases have been confirmed in the United States, with more
than 128000 deaths. Furthermore, Brazil, Russia, India, Britain, Spain, Peru and Chile have diagnosed more than 250,000
people in total, and more than 15 countries have diagnosed more than 100000 people in total.

The COVID-19 has raised intense concern internationally about the spread of the epidemic and its development trend.
Many mathematical studies focused on the modelling of the development of the COVID-19 and the effect of interventions on
the containment of the spread. As recognized byWHO, timelymathematical models play a key role in evidence-basedmaking
decision by health policy-makers. In fact, dealing with infectious diseases from a mathematical perspective can reveal the
internal pattern and potential structure of epidemic control, and themathematical models of disease transmission are helpful
in gaining insights into the transmission dynamics of infectious diseases and the potential role of different public health
intervention strategies(Foppa, 2017; Heesterbeek et al., 2015). Most phenomena observed at the population level are often
very complex and are difficult to decipher simply by observing the characteristics of isolated individuals(R.M. Anderson,
1992). The statistical analysis of epidemiological data is helpful to describe, quantify and summarize the mode of trans-
mission of disease in susceptible populations. At present, it is worth noting that mathematical modelling is also an effective
method to explore and test various epidemiological hypotheses, which is mainly due to ethical and practical limitations for
live human or animal experiments.

It is important to understand the spread of new infectious in time to assess the hazards and the scale of the epidemic. An
epidemic model can also provide important information for generating epidemic prevention and control strategies, such as
recommendations for the needs of the healthcare infrastructure, isolation of infectious individuals, and tracking of contact
activities.With the spread of the epidemic among the general population, public health authorities are interested in obtaining
reliable estimates of the epidemic transmission potential, the associated uncertainties, and the impact of public health in-
terventions. How are the existing COVID-19 epidemicmodels constructed?What are the assumptions based on?What are the
effects of different public health interventions? In this paper, we have systematically reviewed and reported the mathe-
matical models of COVID-19 transmission and the impact of public health interventions in answering these questions.
Fig. 1. Global trend chart of confirmed cases and deaths of COVID-19.
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2. Methods

To identify articles for the current study, an initial search using theWeb of Science databasewas conducted on 3 June 2020,
using the following search terms or combinations of terms: a) “SARS-CoV-2” OR “COVID-19”, b) “model” OR “modelling”, c)
“Interventions” OR “contact tracing” OR “social distancing” OR “quarantine” OR “mask”, d) “Reproduction number” OR “in-
cubation period” OR “latent period” OR “serial interval” OR “Infectious period”. Since the literature on the COVID-19 epidemic
model is generally new, it cannot be retrieved in some databases. We also searched on other websites such as Science and
Nature. We sorted and analyzed the literature according to the modeling methods and research content, further summarized
the setting and evaluation of key input parameters, and studied the impact of different public health interventions on the
transmission of COVID-19.

We used the following selection criteria to include eligible articles: a) Transmission dynamics modelling studies of COVID-
19 in human populations; b) Models of early epidemic prediction (including the possible short-term track of the developing
epidemic), contact tracing, quarantine, isolation, social distancing, protective masks and other public health interventions; c)
Models of transmission in a confined space and those not explicitly discussing epidemiological trends or public health in-
terventions were excluded; d) Reports, letters and comments were excluded; e) Articles not in English were excluded.

Forty-eight articles were identified on the Web of Science database, and seventy-eight articles were expanded. Twenty-
three articles were further excluded after reading the full text, and leaving fifty-five articles to be included in the current
study. Through statistical analysis, we extracted information from each article, including basic ideas, the characteristics of the
study, the parameters contained in the model and the impact of interventions.
3. Results

3.1. Research models

As the compartment model can quantitatively evaluate the impact of interventions, 33 of 55 studies were modeled from
the population perspective and presented as different compartment models, 18 of which were based on the classic SEIR
compartment model and expanded to different degrees (Table 1). In addition, 23 studies were based on the Bayesian method,
agent-based model, generalized growth model, and other methods for modelling (Table 2), and one of them(Kai & Guy-
PhilippeGoldstein, 2020) also used the compartment model. In general, the COVID-19 epidemic models focused on the
following issues: a) the infectivity of SARS-CoV-2, i.e. estimation of the basic reproduction number; b) the estimation of key
time periods of COVID-19 infection; c) the prediction of the COVID-19 spread (include short-term prediction and long-term
prediction); d) the assessment of the impact of public health interventions.
3.2. Key epidemiological parameters

3.2.1. Basic reproductive number (R0)
The basic reproductive number (R0) refers to the average number of secondary infected persons infected by one primary

infected patient during the infectious period. The calculation of R0 is mainly the product of three factors, namely R0 ¼ cdp,
where c is the average contact times of the infectious source in unit time (i.e. contact rate), d is the infectious period, and the
product of c and d is the average contact times of each infectious source in the infectious period, p is the probability of
transmission through contact (Halloran, 2001). The R0 in the COVID-19 epidemic model is usually estimated based on
epidemiological characteristics, confirmed case reports, population movement data and other data, and it also changes with
the study areas and time periods. Thirty studies evaluated R0, and the estimated values of R0 were mainly between 2 and 4
(Fig. 2), but some studies(Tang, Wang, et al., 2020; Zhu & Chen, 2020) estimated the value above 5. As the initial outbreak of
COVID-19 was in Wuhan, China, many researchers conducted modeling analysis based on the daily confirmed case data
published by the China CDC. Fig. 3 shows the comparison of R0 in models based on the data of China (including Hubei and
Wuhan), directly showing the change of R0 during the epidemic process, before and after public health interventions. Wang
et al.(Wang & Liu, 2020) analyzed the number of confirmed cases in Wuhan, and divided the epidemic into four periods:
before January 11, from January 11 to 22, from January 23 to February 1 and from February 2 to 18, and the corresponding
values of R0 gradually decreased from 3.88, 3.86, 1.26 to 0.32. Li et al. (Kucharski et al., 2020; L.; Li, Pei, et al., 2020; R.; Li, Pei,
et al., 2020) also carried out phased evaluation based on key events and interventions, and the value of R0 decreased
significantly with the strengthening of interventions.

3.2.2. Key time periods of COVID-19 infection
The natural history of disease refers to the development from beginning to end without any treatment or intervention. In

fact, given the harmfulness of an epidemic, treatment or intervention measures are inevitable. Therefore, it is difficult for the
natural history of COVID-19 to be unaffected by the various coupling factors. Nevertheless, the development of infectious
diseases has a regularity from one stage to another. The development of each infectious disease roughly goes through four
stages: incubation period, precursor period, obvious symptom period and recovery period. Fig. 4 shows the definitions of the
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Table 1
The 33 selected papers on COVID-19 compartmental models.

Models
abbreviation

Model type Compartments Study area Outcomes References

SEIR/SLIR Stochastic (Chinazzi &
Davis, 2020; Kai & Guy-
PhilippeGoldstein, 2020;
Kucharski et al., 2020;
Sanche et al., 2020; Tian,
Liu, & Li, 2020; Wang &
Liu, 2020; Wu, Leung, &
Leung, 2020; Yang et al.,
2020; Zhao, Stone, &
Gao, 2020),
deterministic (Acuna-
Zegarra, Santana-
Cibrian, & Velasco-
Hernandez, 2020;
Boldog et al., 2020;
Hauser et al., 2020; Hou
et al., 2020; Kuniya,
2020; Mandal,
Bhatnagar, &
Arinaminpathy, 2020;
Ngonghala et al., 2020;
Tang, Bragazzi, et al.,
2020; Tang, Wang, et al.,
2020)

Susceptible(S), exposed/
latent(E/L), infectious(I),
removed(R)

China(Tang, Bragazzi,
et al., 2020; Tian et al.,
2020; Wu et al., 2020),
Wuhan (Chinazzi & Davis,
2020; Hou et al., 2020;
Kucharski et al., 2020;
Sanche et al., 2020; Tang,
Wang, et al., 2020; Wang
& Liu, 2020; Zhao et al.,
2020), Hubei, China and
northern Italy(Hauser
et al., 2020), 38 countries
or provinces in Asia,
Europe and North America
(Kai & Guy-
PhilippeGoldstein, 2020),
New York(Ngonghala
et al., 2020),
Mexico(Acuna-Zegarra
et al., 2020), Zhejiang,
Guangdong, Hubei,
China(Yang et al., 2020),
Japan(Kuniya, 2020), India
(S. Mandal, Bhatnagar, &
Arinaminpathy, 2020),
outside China(Boldog
et al., 2020)

R0(Chinazzi & Davis, 2020;
Kucharski et al., 2020;
Sanche et al., 2020; Tang,
Bragazzi, et al., 2020; Tang,
Wang, et al., 2020; Tian
et al., 2020; Wang & Liu,
2020; Wu et al., 2020; Shi
Zhao, Musa, et al., 2020)
(Acuna-Zegarra et al., 2020;
Boldog et al., 2020; Kuniya,
2020; S.; Mandal,
Bhatnagar, &
Arinaminpathy, 2020),
mortality (Hauser et al.,
2020), infectious
period(Acuna-Zegarra et al.,
2020), doubling time
(Chinazzi & Davis, 2020),
prediction of epidemic
(Ngonghala et al., 2020;
Yang et al., 2020), the
impact of transmission
control measures (Tian
et al., 2020), the impact of
travel restrictions(Chinazzi
& Davis, 2020), the impact
of universal masking (Kai &
Guy-PhilippeGoldstein,
2020), the impact of
behavioral changes (Acuna-
Zegarra et al., 2020), the
impact of interventions
(Ngonghala et al., 2020), the
epidemic risk of imported
cases from outside China
(Boldog et al., 2020), the
impact of quarantine of
Wuhan city (Hou et al.,
2020)

(Acuna-Zegarra et al.,
2020; Boldog et al.,
2020; Chinazzi & Davis,
2020; Hauser et al.,
2020; Hou et al., 2020;
Kai & Guy-
PhilippeGoldstein, 2020;
Kucharski et al., 2020;
Kuniya, 2020; S. Mandal,
Bhatnagar, &
Arinaminpathy, 2020;
Ngonghala et al., 2020;
Sanche et al., 2020;
Tang, Bragazzi, et al.,
2020; Tang, Wang, et al.,
2020; Tian et al., 2020;
Wang & Liu, 2020; Wu
et al., 2020; Yang et al.,
2020; Shi Zhao, Musa,
et al., 2020)

SIRD Deterministic Susceptible (S), infected (I),
recovered (R), dead (D)

China, Italy and
France(Fanelli, Piazza, &
2020),
Hubei(Anastassopoulou,
Russo, Tsakris, & Siettos,
2020)

R0 (Anastassopoulou et al.,
2020), the prediction of the
COVID-19 outbreak (Fanelli
& Piazza, 2020),
mortality(Anastassopoulou
et al., 2020; Fanelli &
Piazza, 2020)

(Anastassopoulou et al.,
2020; Fanelli & Piazza,
2020)

SEIRS Stochastic Susceptible(S), exposed (E),
infectious(I), recovered(R),
susceptible(S)

Temperate regions R0, the transmission
dynamics of SARS-CoV-2
through the post-pandemic
period

Kissler, Tedijanto,
Goldstein, Grad, and
Lipsitch (2020)

SIR-X Deterministic Infected(I), susceptible(S),
removed(R), quarantined(X)

China R0, the impact of
containment policies

Maier and Brockmann
(2020)

SEIHARD Deterministic Susceptible(S), exposed(E),
symptomatic infectious(I),
hospitalized(H),
asymptomatic infectious(A),
recovered(R), deaths(D)

Washington, New York The impact of universal
masking

Eikenberry et al. (2020)

SEIRU Deterministic Susceptible(S), asymptomatic
noninfectious (E),
asymptomatic infectious(I),
reported symptomatic
infectious (R), unreported
symptomatic infectious (U)

China R0, transmission rate, the
role of the exposed or
latency period

Liu, Magal, Seydi, and
Webb (2020a)

SIRU Deterministic Susceptible(S),asymptomatic
infectious (I), reported
symptomatic infectious(R),
unreported symptomatic
infectious (U)

Korea, Italy, France and
Germany (Magal & Webb,
2020), China, Hubei,
Wuhan (Liu, Magal, Seydi,
& Webb, 2020c),

The prediction of
cumulative confirmed cases
(Liu et al., 2020b, 2020c),
the understanding of

(Liu et al, 2020b, 2020c;
Magal & Webb, 2020)

(continued on next page)
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Table 1 (continued )

Models
abbreviation

Model type Compartments Study area Outcomes References

China(Liu, Magal, Seydi, &
Webb, 2020b)

unreported cases(Liu et al.,
2020c)

SEIIN Stochastic Susceptible(S), exposed(E),
documented infected(I),
undocumented
infected(I),total
population(N)

China R0, latent period, infectious
period, the fraction of
undocumented infections
and their contagiousness

(R. Li, Pei, et al., 2020)

SEIQR Deterministic Susceptible(S), exposed(E),
hospitalized infected(I),
quarantine(Q), recovered or
removed(R)

India Short-term prediction of
COVID-19

(M. Mandal, Bhatnagar,
& Arinaminpathy, 2020)

SEIRQ Stochastic Susceptible(S), exposed (E),
infectious (I), removed (R),
quarantine(Q)

Guangdong Short-term prediction of
COVID-19

Hu et al. (2020)

SCIRA Stochastic Susceptible (S), closely
observed (C), infected
patients (I), recovered (R,
cured/dead), asymptomatic
(A).

Jiangsu, Anhui Asymptomatic infection
ratio, the effects of
asymptomatic and
imported patients

Sun and Weng (2020)

SEIHR Deterministic Susceptible (S), exposed (E),
symptomatic infectious (I),
hospitalized (H), recovered or
death (R)

South Korea R0, the impact of
interventions

Choi and Ki (2020)

SEIPAHRF Deterministic Susceptible (S), exposed (E),
symptomatic (I), super-
spreaders class (P),
asymptomatic infectious (A),
hospitalized (H), recovery (R),
fatality(F).

Wuhan R0(focus on the
transmissibility of super-
spreaders individuals)

Ndaïrou, Area, Nieto,
and Torres (2020)
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key time periods in different COVID-19 epidemicmodels. The incubation period is the time between infection and the onset of
symptoms. The latent period is the time between infection and the start of infectiousness. The infectious period is the time
interval during which the infected individuals can transmit the disease to any susceptible contact. The serial interval is the
time from the onset of the symptoms in the primary case to the onset of the symptoms in the secondary case. The generation
time (generation interval) is the time from the onset of infectiousness in the primary case to the onset of infectiousness in the
secondary case.

In the COVID-19 epidemicmodels, there are highly abstracted phenomenological models, compartmental models allowing
for behavior changes or clustered transmission, and more complex and highly detailed agent-based models. Nomatter which
model is chosen, their purpose is to describe epidemic parameters (such as basic reproduction number, serial interval, in-
fectious period, etc.) based on limited/early disease monitoring data, and to further understand how the epidemic spread in
the early stage of the outbreak. The setting of the key time periods in different models has a direct impact on the prediction of
the epidemic and the risk assessment. Therefore, it is very important to understand the value and distribution of the key time
periods of COVID-19 infection. Fig. 5 shows a comparison of the value of the time periods in different models. The value of the
incubation period was found to vary from 4.9 to 7 days, of which more than half were 5.1 or 5.2 days. Eleven studies (Chinazzi
& Davis, 2020; Choi & Ki, 2020; Kissler et al., 2020; Kucharski et al., 2020; R.; Li, Pei, et al., 2020; Sanche et al., 2020; Tang,
Bragazzi, et al., 2020; Wang & Liu, 2020; Wu et al., 2020; Zhu & Chen, 2020) made assumptions that the latent period was
from 2.2 to 6 days, most of which were consistent with the incubation period. The setting range of the infectious period was
large, ranging from 2.3 days (Wang& Liu, 2020; Shi Zhao, Musa, et al., 2020) to 10 days(Kuniya, 2020; Ngonghala et al., 2020).
The setting of the serial interval fluctuated between 4.41 and 8.4 days, and only four studies (Chinazzi & Davis, 2020; Ferretti
et al., 2020; Shim et al., 2020; Tang,Wang, et al., 2020) evaluated or set the generation time, ranging from 4.4 to 7.5 days. In all
the reviewed studies, only one study (Ganyani et al., 2020) reported a negative serial interval (i.e., pre-symptomatic trans-
mission existed, and the time of the symptom onset of the secondary case was earlier than the primary case) in evaluation,
and the proportion of pre-symptomatic transmission increased from 48% (95% CrI: 32e67) in the baseline scenario to 66%
(95% CrI: 45e84) when allowing for negative serial intervals for the Singapore data, and from 62% (95% CrI: 50e76) to 77%
(95% CrI: 65e87) for the Tianjin data.

The differences in the setting and evaluation of several key time periods of COVID-19 infection in different models are not
only reflected in the numerical values, but also in the acquisition method and hypothetical distribution (Table 3). For the
acquisition method of the key time periods in the models, most studies directly assumed that it was based on other research
results and reports or on previous knowledge of coronavirus outbreaks such as SARS and MERS. Some studies also made
quantitative evaluations based on current epidemic data. There is a considerable variation in the choice of distributions used
for the key time periods. The nature of memory-less free characteristics of the gamma distribution ensures the biology in the
transmission process to be more realistic (Kwok et al., 2019). Most studies used the gamma distribution to describe the key
328



Table 2
The 23 selected papers on other (not compartmental) COVID-19 models.

Models Model
type

Study area Outcomes References

Agent based model Stochastic 38 countries or provinces in Asia, Europe and
North America (Kai & Guy-
PhilippeGoldstein, 2020), Singapore (Koo,
Cook, Park, & Sun, 2020)

The impact of universal Masking (Kai & Guy-
PhilippeGoldstein, 2020), the likelihood of
human-to-human transmission of SARS-
CoV-2 (Koo et al., 2020)

(Kai & Guy-
PhilippeGoldstein, 2020;
Koo et al., 2020)

Branching process
model

Stochastic Wuhan The impact of contact tracing and isolation Hellewell et al. (2020)

Bayesian method Stochastic Outside Hubei in Chinese mainland(J. Zhang,
Litvinova, et al., 2020), China(Verity, Okell,
Dorigatti, & Winskill, 2020), Singapore,
Tianjin(Ganyani et al., 2020)

R0, Incubation period, serial interval (J.
Zhang, Litvinova, et al., 2020), age-stratified
estimates of CFR and IFR (Verity et al., 2020),
generation interval (Ganyani et al., 2020)

(Ganyani et al., 2020;
Verity et al., 2020; J.;
Zhang, Litvinova, et al.,
2020)

Generalized Linear
Models

Stochastic China Incubation period, the effect of human
mobility and control measures

Kraemer et al. (2020)

Generalized
growth model

Stochastic Lima (Munayco et al., 2020), Iran (Muniz-
Rodriguez et al., 2020), South Korea (Shim,
Tariq, Choi, Lee, & Chowell, 2020)

R0(Munayco et al., 2020; Muniz-Rodriguez
et al., 2020; Shim et al., 2020), the impact of
social distancing (Munayco et al., 2020;
Muniz-Rodriguez et al., 2020),doubling time
(Shim et al., 2020)

(Munayco et al., 2020;
Muniz-Rodriguez et al.,
2020; Shim et al., 2020)

Linear growth &
exponential
growth model

Stochastic Italy, Japan The effect of the changes in testing rates on
epidemic growth rate

Omori, Mizumoto, and
Chowell (2020)

Exponential
growth

Stochastic China R0 (Thompson, 2020; S. Zhao, Q. Li, Pei, et al.,
2020; S. Zhao, S. S. Musa et al., 2020), the
estimates of the unreported number of
COVID-19 (S. Zhao, S. S. Musa et al., 2020),
the risk of sustained transmission
(Thompson, 2020), the impact of reporting
rate (S. Zhao, Q. Li, Pei, et al., 2020)

(Thompson, 2020; S. Zhao,
Q. Li, Pei, et al., 2020; S.
Zhao, S. S. Musa et al., 2020)

Second derivative
model

Stochastic China The assessment the detection rate Chen and Yu (2020)

Poisson
Transmission
Model

Stochastic China R0 Zhu and Chen (2020)

Segmented Poisson
model

Stochastic Canada, France, Germany, Italy, UK and USA Turning point, duration and attack rate Zhang, Ma, and Wang
(2020)

Analytically
solvable model

Stochastic China The estimates of the contribution of different
transmission routes, generation time

Ferretti et al. (2020)

Gaussian
distribution
theory

Stochastic China, South Korea, Italy, Iran R0, incubation period (L. Li, Pei, et al., 2020)

Phenomenological
models

Stochastic China, Hubei(Roosa et al., 2020a),
Guangdong, Zhejiang(Roosa et al., 2020b)

Short-term prediction of cumulative
confirmed cases

(Roosa et al., 2020a, 2020b)

Transmission
model with
zoonotic
infections

Stochastic Wuhan R0, doubling time, incubation period, serial
interval

(Q. Li, Pei, et al., 2020)

Data-driven and
model-free
estimations

e Canada The prediction of epidemic trends with
different public health interventions,
mortality

Scarabel, Pellis, Bragazzi,
and Wu (2020)
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time periods. Some studies also assumed a log-normal distribution, Weibull distribution and other distributions. Hellewell
et al. (Hellewell et al., 2020) assumed aWeibull-distributed incubation period, and skewed normal-distributed serial interval.
Kucharski et al.(Kucharski et al., 2020) used the Erlang distributionwhen evaluating the incubation period and the infectious
period. Ferretti et al.(Ferretti et al., 2020) considered the Weibull distribution as the best fit when evaluating the generation
time.

At present, the disease natural history of COVID-19 is not clear. Infection may occur before or after symptoms appear.
Whether to consider the difference of pre-symptomatic transmission in the model mainly depends on whether to consider
the difference between the incubation period and latent period. In this review, ten studies (Ferretti et al., 2020; Ganyani et al.,
2020; Kucharski et al., 2020; Liu et al., 2020a; Tang, Wang, et al., 2020; Thompson, 2020; Wang & Liu, 2020; J.; Zhang,
Litvinova, et al., 2020) considered pre-symptomatic transmission in their models. Wu (Wu et al., 2020), Kucharski(Kuchar-
ski et al., 2020) and other researchers (Chinazzi & Davis, 2020; Thompson, 2020; Wang & Liu, 2020; Zhu & Chen, 2020)
assumed that the latent period was as same as the incubation period, and such cases could only infect other people after the
onset of the symptoms. Analyzing the key parameters of epidemic transmission by the Bayesianmethod, Ferretti et al.(Ferretti
et al., 2020) estimated the contribution of different transmission routes, indicating that the contribution of pre-symptomatic
transmission to R0was 0.9 (0.2e1.1), accounting for 47% of the total R0, which was almost sufficient to sustain an epidemic on
329



Fig. 2. Comparison of R0 in models based on data of different areas.

Fig. 3. Comparison of R0 in models based on data of China (including Hubei and Wuhan).

Y. Xiang, Y. Jia, L. Chen et al. Infectious Disease Modelling 6 (2021) 324e342
its own, and the fraction of pre-symptomatic transmission events out of the pre-symptomatic plus symptomatic transmission
events was 37% (95% CI: 27.5%e45%). However, the contribution of asymptomatic transmission to R0 was only 0.1 (0.0e1.2),
which suggests that the transmission from asymptomatic, rather than pre-symptomatic, individuals is not a major driver of
330



Fig. 4. Definition of key time periods in different COVID-19 epidemic models.

Fig. 5. Comparison of the value of time period (VTP) in different models.

Y. Xiang, Y. Jia, L. Chen et al. Infectious Disease Modelling 6 (2021) 324e342
disease spreading. Ganyani et al. (Ganyani et al., 2020) estimated the generation interval of COVID-19 using the Bayesian
method, where the prevalence of pre-symptomatic infection was relatively high, about 48%e77%, but the transmission of
asymptomatic infections was not considered. Zhang et al. (Wang & Liu, 2020) estimated the diagnosis rate in Wuhan was
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Table 3
Key time periods setting of COVID-19 infection in the models.

Key
parameters

Definition Acquisition method Distribution hypothesis

Incubation
period

the time between infection and the
onset of symptoms

Based on other research’s result and reports
(Acuna-Zegarra et al., 2020; Boldog et al., 2020;
Eikenberry et al., 2020; Ferretti et al., 2020;
Ganyani et al., 2020; Hauser et al., 2020; Hellewell
et al., 2020; Hou et al., 2020; Kuniya, 2020;
Ngonghala et al., 2020; Tang, Wang, et al., 2020;
Tian et al., 2020; Yang et al., 2020; Shi; Zhao,
Musa, et al., 2020; Zhu & Chen, 2020)
Based on the knowledge of SARS and MERS
(Chinazzi & Davis, 2020; Wu et al., 2020; S. Zhao,
Q. Li, Pei, et al., 2020)
Based on the knowledge of SARS (Koo et al., 2020)
Based on current epidemic data (Kraemer et al.,
2020; Kucharski et al., 2020; L.; Li, Pei, et al., 2020;
Q.; Li, Pei, et al., 2020; J.; Zhang, Litvinova, et al.,
2020)

log-normal distribution(Ferretti et al., 2020; Q.; Li,
Pei, et al., 2020; J.; Zhang, Litvinova, et al., 2020)
gamma distribution(Acuna-Zegarra et al., 2020;
Boldog et al., 2020; Ganyani et al., 2020)
Erlang distribution(Kucharski et al., 2020)
truncated gamma distribution (Kraemer et al.,
2020)
Weibull distribution(Hellewell et al., 2020) beta-
distribution(Zhu & Chen, 2020)

latent
period

the time between infection and
start of infectiousness

Based on other research’s result and reports
(Sanche et al., 2020)
Equal to incubation period (Chinazzi & Davis,
2020; Kucharski et al., 2020; Wang & Liu, 2020;
Zhu & Chen, 2020)
Based on current epidemic data (R. Li, Pei, et al.,
2020)

gamma distributions(Sanche et al., 2020)

infectious
period

the time interval during which the
infected individuals could transmit
the disease to any susceptible
contacts

Based on other research’s result and reports
(Boldog et al., 2020; Kuniya, 2020; L. Li, Pei, et al.,
2020; Maier & Brockmann, 2020; Ngonghala
et al., 2020; Sanche et al., 2020; Tian et al., 2020;
Wang & Liu, 2020; Wu et al., 2020; Shi Zhao,
Musa, et al., 2020)
Based on the knowledge of another beta-
coronavirus (Kissler et al., 2020)
Based on current epidemic data (Acuna-Zegarra
et al., 2020; Kucharski et al., 2020; R.; Li, Pei, et al.,
2020)

Erlang distribution(Kucharski et al., 2020) gamma
distribution(Boldog et al., 2020; Sanche et al.,
2020)

serial
interval

the time from the onset of
symptoms in the primary case to
the onset of symptoms in the
secondary case

Based on other research’s result and reports
(Acuna-Zegarra et al., 2020; Hellewell et al., 2020;
Munayco et al., 2020; Muniz-Rodriguez et al.,
2020; Sanche et al., 2020; Tang, Wang, et al.,
2020)
Based on the knowledge of SARS and MERS (S.
Zhao, Q. Li, Pei, et al., 2020; S. Zhao, S. S. Musa
et al., 2020)
Based on the knowledge of SARS (Kissler et al.,
2020; Wu et al., 2020)
Based on current epidemic data (Q. Li, Pei, et al.,
2020; J. Zhang, Litvinova, et al., 2020)

gamma distribution(Tang, Wang, et al., 2020)
(Acuna-Zegarra et al., 2020; Q. Li, Pei, et al., 2020;
Muniz-Rodriguez et al., 2020; J. Zhang, Litvinova,
et al., 2020; S. Zhao, Q. Li, Pei, et al., 2020; S. Zhao,
S. S. Musa et al., 2020)
Weibull distribution(Kissler et al., 2020) skewed
normal distribution(Hellewell et al., 2020)

generation
time

the time the onset of infectiousness
in the primary case to the onset of
infectiousness in the secondary case

Based on other research’s result and reports (Shim
et al., 2020)
Based on the knowledge of SARS and MERS
(Chinazzi & Davis, 2020)
Based on current epidemic data (Ferretti et al.,
2020; Ganyani et al., 2020; Tang, Wang, et al.,
2020)

Weibull distribution(Ferretti et al., 2020)
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14%e41%, which also suggested the possibility of pre-symptomatic and asymptomatic transmission. Choi et al. (Choi & Ki,
2020) considered asymptomatic and pre-symptomatic infections in a model, but the infectivity of the asymptomatic and
pre-symptomatic infections was not considered.

3.2.3. Asymptomatic infection ratio and mortality
Asymptomatic infections include two groups: the first group is recessive infection with no or mild symptoms throughout

the infection, and the other group refers to the incubation period after infection that may show symptoms in the future. The
number and proportion of asymptomatic patients may be directly related to the strategies of disease control and prevention.
In this review, more than 30 studies considered asymptomatic infection, which were consistent with the related epidemic
reports of COVID-19, but there were differences in the hypothesis of the infectivity for asymptomatic infection. Hauser
et al.(Hauser et al., 2020) assumed that, after an average incubation period of 5.9 days, 82.1% (95%CrI:79.8e84.5) of infected
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people developed symptoms of any severity and became infectious, while the remainder were asymptomatic and did not
transmit the infection. Some mild cases did not show obvious symptoms that would affect medical treatment or isolation
measures. In view of this, Kissler et al.(Kissler et al., 2020; Ngonghala et al., 2020; Verity et al., 2020) included mild or
asymptomatic infection in their model. Sanche (Sanche et al., 2020), Ngonghala(Ngonghala et al., 2020) and other researchers
(Acuna-Zegarra et al., 2020; S.; Mandal, Bhatnagar,& Arinaminpathy, 2020; Ndaïrou et al., 2020; Shim et al., 2020; Yang et al.,
2020) considered asymptomatic infection in their models, and assumed that asymptomatic infection was infectious. Yang
et al.(Yang et al., 2020) assumed that the latent [E] populations could remain asymptomatic or become symptomatic in the
later stage. Mandal et al. (S. Mandal, Bhatnagar, & Arinaminpathy, 2020) assumed that the infectivity of asymptomatic in-
fections constituted half of the symptomatic infections, and Hou et al. (Hou et al., 2020) assumed that 50% of asymptomatic
infections were infectious.

The asymptomatic infection ratio is defined as the proportion of asymptomatic infections among all the infections of the
disease. It is an important parameter in measuring the real burden of disease and evaluating the transmission potential, as
these directly affect the evaluation of the infection mode, transmission ability, isolation strength, strategies for public in-
terventions and monitoring strength of epidemic. There were also differences in the assessment and hypothesis of the
asymptomatic proportion among different models, but none of themwas higher than 50% (Fig. 6). Six studies(Acuna-Zegarra
et al., 2020; Eikenberry et al., 2020; Ferretti et al., 2020; Koo et al., 2020; Ngonghala et al., 2020; Shi Zhao, Musa, et al., 2020)
hypothesized the proportion of asymptomatic or symptomatic infections. Koo et al. (Koo et al., 2020) assumed that the
asymptomatic infection ratio was 7.5%, and considered value of 22.7%, 30.0%, 40.0%, 50.0% in sensitivity analysis. They also
indicated that the impact of public health intervention might be greatly reduced under a higher asymptomatic rate. In this
case, effective case management and treatment, vaccine and other preventive measures are needed. Four studies (Hauser
et al., 2020; Sun & Weng, 2020; Tang, Bragazzi, et al., 2020; Tang, Wang, et al., 2020) evaluated the proportion of asymp-
tomatic infections. Tang et al. (Hauser et al., 2020; Tang, Bragazzi, et al., 2020; Tang, Wang, et al., 2020) estimated that the
asymptomatic infection ratio was less than 20%, while Sun et al.(Sun & Weng, 2020) estimated a median proportion was
approximately 44.46% (interquartile range: [37.31%e53.72%]).

In order to evaluate the severity of COVID-19, it is crucial to judge the prevalence, hospitalization rate andmortality rate. It
is a great challenge to evaluate the mortality rate of an infectious disease during a pandemic. There are two main ways to
express the mortality rate: a) the case fatality rate (CFR), which is the number of deaths divided by the number of known
confirmed infections; b) the infection fatality rate (IFS), which is the number of deaths divided by all infections (known cases
plus unknown cases). In addition, some scholars also used a crude case fatality rate, that was, the number of reported deaths
Fig. 6. Assumed and estimated values of asymptomatic infection ratio in different models.
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divided by the number of reported cases at a specific time point. However, the crude case fatality rate is not a reliable indicator
of the overall mortality rate, which might be misleading. Tang et al.(Tang, Bragazzi, et al., 2020; Tang, Wang, et al., 2020) used
the SEIR model to evaluate the disease-induced death rate as 1.7825�10^-5, while Verity et al.(Verity et al., 2020) obtained a
best estimate of the crude case fatality rate in China of 1.38% (95% CrI: 1.23%e1.53%) with substantially higher values for the
elderly, and an overall estimate of the infection fatality ratio of 0.66% (95% CrI: 0.39%e1.33%), again with an increasing profile
with age. Anastassopoulou et al.(Anastassopoulou et al., 2020) estimated the case fatality ratio was about 0.15% in the total
population. Chen et al.(Chen& Yu, 2020) estimated the population-basedmortality rate of COVID-19was 0.6/1000, or 1/9th of
themortality rate ofWuhan residents. Acu~na-Zegarra et al.(Acuna-Zegarra et al., 2020) calculated two case fatality rates using
confirmed data from Mexico, one was 0.018 before the Sanitary Emergency Measures (before March 23rd, 2020), and the
other was 0.12 after this date. Fanelli et al.(Fanelli & Piazza, 2020) estimated that the apparent mortality rate of COVID-19
seemed to be between 4% and 8% in Italy, higher than that for seasonal flu. Hauser et al.(Hauser et al., 2020) estimated an
adjusted mortality rate of 3.3% (95%CrI: 2.0e4.7) among all people infected with SARS-CoV-2 in northern Italy and of 3.0%
(95%CrI: 2.6e3.4) in China. The model estimates showed a strong age trend in the mortality rate, with a sharp increase from
50 years old, reaching very high values in people aged 80 and older: 39.0% (95%CrI: 31.1e48.9) in Hubei province and 89.5%
(95%CrI: 62.0e99.6) in northern Italy. Scarabel et al.(Scarabel et al., 2020) estimated the case fatality rate in China and Italy to
be 2.3% and 7.8% respectively, and pointed out that 80% of deaths occurred among individuals aged 65 years and older. Since
the proportion of individuals aged 65 years and older was almost double in proportion in Italy compared to China, an almost
doubled case fatality rate could be expected. Shim et al.(Shim et al., 2020) estimated that the crude case fatality rate was
higher among males (1.1%) compared to females (0.4%), and increased in older age groups.
3.3. The impact of public health interventions

3.3.1. Overview of public health interventions
Public health interventions are the control measures for public health emergencies (problems), and the ultimate goal is to

prevent the spread of the epidemic and reduce the scale of the outbreak. In the absence of safe and effective vaccines or
antivirals, strategies to control and reduce the pandemic pressure focus on public health interventions, such as temperature
screening, social isolation, contact tracking, increased quarantine and reporting rates, protectivemasks, and travel restrictions
(Fig. 7). At the same time, people’s awareness of the virus and personal protectivemeasures (such as respirator protection and
self-isolation) has been improved. Based on these measures, it leads to the changes in medical seeking behavior and
epidemiological characteristics. In order to quantify these differences, many scholars have re-simulated the epidemiological
characteristics after taking intervention measures by establishing models and using timely updated data. Fig. 7 shows the
distribution of different studies on the impact of public health interventions.

3.3.2. Differences in the impact of different public health interventions
There are some differences in the impacts of different public health interventions based on the existing studies.
As for contact tracking, Ferretti et al. (Ferretti et al., 2020) showed that when the success rate of contact tracking was

increasing, the exponential growth rate of the disease tended to be negative, indicating that the situation was under control.
Tang et al. (Tang, Wang, et al., 2020) and Munayco et al. (Munayco et al., 2020) believed that strengthening isolation and
reducing the contact rates after contact tracking could significantly reduce the peak value, thus reducing the cumulative
number of predicted cases. More specifically, Hellewell (Hellewell et al., 2020) showed that when R0 was 1.5, even if the
number of contacts successfully tracked was less than 50%, the epidemic development could be controlled, but when R0 was
2.5, more than 70% of contacts needed to be tracked, andwhen the severity of the epidemic rose to R0 to 3.5, more than 90% of
contacts needed to be tracked to effectively control the epidemic. Maier et al. (Maier & Brockmann, 2020) believed that
contact tracking had an inhibitory effect on both susceptible and asymptomatic infections. It could not only protect sus-
ceptible persons from infection, but also removed a large part of the entire susceptible population from the transmission
process. However, a few scholars pointed out that the preventive measure of contact tracking only had little effect on
epidemic prevention, and was not enough to suppress the spread of the epidemic (Choi & Ki, 2020) (Ngonghala et al., 2020).

In the early stage of COVID-19, due to the lack of an authoritative specific diagnostic program, the diagnostic ability was
limited, resulting in a low quarantine rate, which could only reach 14%e41% (Wang & Liu, 2020). There was a deviation in the
estimation of mortality rate in early research investigations because of the different degrees of quarantine delay (Hauser et al.,
2020; Omori et al., 2020; Verity et al., 2020). The research showed that the lower the quarantine rate, the more the imported
cases infected people, and the higher the cumulative number of confirmed cases (Chen & Yu, 2020; Hu et al., 2020). Tang
et al.(Tang, Wang, et al., 2020) used the early data of the Beijing epidemic to evaluate the impact of the quarantine rate on the
local epidemic. When the detection rate increased 10 times or 20 times, the peak of the infectionwould be 6.5 days or 9 days
earlier, and the peak of infection would be reduced by 87% or 93%. This showed that increasing the quarantine rate could
significantly reduce the peak value and the number of cumulative reported cases. In addition, the longer the quarantine time
delay, the longer it would take to control the epidemic (Hellewell et al., 2020). Ferretti et al. (Ferretti et al., 2020) quantified
the impact of the interventions by simulating the success rate of the interventions at different levels of epidemic develop-
ment. The study pointed out that when R0 was 2, the quarantine delay was within 72 h, the daily growth rate was still
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Fig. 7. Distribution of different studies on the impact of public health interventions a) Increase quarantine rate (Chen & Yu, 2020; Ferretti et al., 2020; Hauser
et al., 2020; Hellewell et al., 2020; Hu et al., 2020; Kissler et al., 2020; Omori et al., 2020; Tang, Wang, et al., 2020; Verity et al., 2020; Wang & Liu, 2020); b)
Improve reporting rate (Anastassopoulou et al., 2020; Kucharski et al., 2020; Li, Pei, et al., 2020; Liu et al., 2020b, 2020c; Zhao, Lin, et al., 2020); c)e) Quarantine
(Chinazzi & Davis, 2020; Ferretti et al., 2020; Hauser et al., 2020; Hellewell et al., 2020; Hou et al., 2020; Hu et al., 2020; Kissler et al., 2020; Koo et al., 2020;
Kuniya, 2020; Liu et al., 2020c; Maier & Brockmann, 2020; S. Mandal et al., 2020; Munayco et al., 2020; Muniz-Rodriguez et al., 2020; Ngonghala et al., 2020;
Sanche et al., 2020; Tian et al., 2020); d) Contact tracing (Choi & Ki, 2020; Ferretti et al., 2020; Hellewell et al., 2020; Maier & Brockmann, 2020; Munayco et al.,
2020; Ngonghala et al., 2020; Tang, Wang, et al., 2020); f) Travel restrictions (Boldog et al., 2020; Chinazzi & Davis, 2020; Kraemer et al., 2020; Kucharski et al.,
2020; Tang, Bragazzi, et al., 2020; Tang, Wang, et al., 2020; Tian et al., 2020; Yang et al., 2020; Zhu & Chen, 2020); g) Mask protection (Eikenberry et al., 2020; Kai
& Guy-PhilippeGoldstein, 2020; Ngonghala et al., 2020); h) Other/integrated interventions (Acuna-Zegarra et al., 2020; Choi & Ki, 2020; Eikenberry et al., 2020;
Fanelli et al., 2020; Hauser et al., 2020; Hellewell et al., 2020; Hou et al., 2020; Hu et al., 2020; Koo et al., 2020; Kuniya, 2020; Liu et al., 2020a; Maier &
Brockmann, 2020; S. Mandal et al., 2020; Ngonghala et al., 2020; Sanche et al., 2020; Wang & Liu, 2020; Yang et al., 2020; Zhang , Ma, et al., 2020; Zhao,
Stone et al., 2020).
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negative, and the epidemic situation could be controlled. When R0 was 2.5, the quarantine delay was within 48 h. When R0
was 3, the quarantine delay was less than 24 h. When R0 was 3.5, there was almost no delay. In plain language, increasing the
quarantine rate is essential for epidemic prevention and control.

The reporting rate is another important factor influencing epidemic trends and simulation results. The reporting rate is
very low when there is a lack of early supervision and general attention to the epidemic. Li et al.(R. Li, Pei, et al., 2020) found
that during the period January 10e23, only 14% (95% CI: 9e26%) of the total infections in Chinawere reported, revealing a very
high rate of undocumented infections: 86%. The study (R. Li, Pei, et al., 2020) also found that without transmission from
undocumented cases, reported infections during January 10e23 were reduced 66.4% across all of China and 64.0% in Wuhan.
In viewof the impact of different reporting rates on themodel estimates, some researchers used China’s epidemic related data
to simulate the basic reproduction number R0 and transmission rate under different reporting rates. The results showed that
both the transmission rate and the basic reproduction number decreased significantly with the increase of the reporting rate
(Liu et al., 2020b, 2020c). Specifically, a study (Anastassopoulou et al., 2020) showed that when the reporting rate increased
by 20 times, the basic reproduction number of each stage decreased, and the average value decreased from 2.6 to 2.0. Magal
et al.(Magal & Webb, 2020) obtained similar results using the epidemic data of South Korea, Italy, France and Germany.

With the spread of COVID-19 worldwide, many countries have takenmeasures of social isolation (Liu et al., 2020c), known
as “social distancing” or “physical distancing” (Kissler et al., 2020), such as closing schools and workplaces, and limiting the
size of assembly groups. The goals of these strategies are to reduce the peak intensity of the epidemic (flattening the epidemic
growth curve) (Roy M. Anderson, Heesterbeek, Klinkenberg, & Hollingsworth, 2020), curb the risks to the overwhelmed
health system, and buy time to develop treatments and vaccines. Most models (Chinazzi & Davis, 2020; Ferretti et al., 2020;
Maier & Brockmann, 2020; Tian et al., 2020) predicted that early detection and isolation could help effectively control the
epidemic. Using data from Lima, Peru, Munayco et al.(Munayco et al., 2020) predicted that the impact of school closures and
state emergency announcements slowed the spread of SARS-CoV-2, and the case growth rate dropped from 0.8 to 0.53.
Kissleret et al.(Kissler et al., 2020) pointed out that one-time social distancing measures reduced the epidemic peak when the
transmissionwas not subject to seasonal forcing. One-time social distancingmight push the epidemic peak of the SARS-CoV-2
epidemic into the autumn. Further, if the transmissibility increased in wintertime, it could potentially exacerbate the load on
critical care resources. Intermittent social distancing might maintain critical care needs within current thresholds, but
widespread surveillance would be required to time the distancing measures correctly and avoid overshooting critical care
capacity. However, Koo et al. (Koo et al., 2020) found that isolation measures would be very effective only in a relatively mild
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outbreak scenario (R0 ¼ 1.5), while the extent of the reduction of the outbreak size in severe scenario (R0 ¼ 2.5) would be far
lower. Hauser et al. (Hauser et al., 2020) indicated that even if the strict social isolation measures were taken locally, in Italy,
the number of deaths would continue to increase for a few weeks.

In order to fight against the outbreak of COVID-19, almost all countries in the world introduced interventions, such as
social isolation, inMarch 2020. Governments are seeking a sustainable path back to relaxed social restrictions and functioning
economies. In this situation, more and more voices are supporting that the widespread use of masks. Mask protection has
been effectively implemented in most of East Asia. It is an additional and essential component of the mitigation toolkit and
helps the local population to escape from the harsh blockade in a sustainable way (Kai & Guy-PhilippeGoldstein, 2020;
Ngonghala et al., 2020; WHO, 2020a). Some studies showed that when the coverage rate of 50% effective masks reached 50%,
the effective disease transmission rate would be reduced by half. When masks were widely used, for example, when the
coverage rate reached 80%, the effective disease transmission ratewas reduced by about one third, even if 20% effective masks
were used (Eikenberry et al., 2020; Ngonghala et al., 2020). However, some studies also showed that if only 50% of the
population wore masks or the popularity of masks was questioned, the daily growth rate of infection would not be signifi-
cantly reduced (Kai & Guy-PhilippeGoldstein, 2020). Overall, the research showed that mask protection is one of the most
effective measures to help control the spread of the epidemic, and it is the most likely measure to be implemented
continuously, among all the many epidemic prevention measures.

In addition to the above interventions, the most significant impact was the implementation of travel restrictions inWuhan
and other regions on January 23, 2020, which effectively reduced the number of cases of COVID-19 spatial transmission,
locally and overseas(Boldog et al., 2020; Hauser et al., 2020; Zhu& Chen, 2020). Zhong Nanshan’s team pointed out that if the
implementation time of travel restrictions were delayed for five days, the scale of the epidemic in mainland China would
increase by three times (Yang et al., 2020). For Wuhan, the local average daily reproductive number decreased from 2.35 (95%
CI 1.15e4.77) before the travel restriction to 1.05 (95%CI 0.41e2.39) one week later (Kucharski et al., 2020). For Beijing, with
travel restriction, the number of infected individuals after seven days would decrease by 91.14%, compared with the scenario
of no travel restriction (Tang,Wang, et al., 2020). The travel restriction ofWuhan had amoremarked effect at the international
scale, where imported cases were reduced by nearly 80% by mid-February (Chinazzi & Davis, 2020). However, some studies
believed that there was no strong evidence that travel restrictions had made an outstanding contribution to epidemic pre-
vention and control (Tian et al., 2020). These results indicated that the travel restrictions of Wuhan delayed the overall
epidemic progression by only 3e5 days in mainland China, and that the sustained 90% travel restrictions to and from
mainland China only modestly affected the epidemic trajectory. No evidence has been provided that the intercity travel ban,
which was suspended and implemented after January 23 in Wuhan, had reduced the number of confirmed cases in other
cities in China. It was claimed that transmission rate of disease would be significantly reduced only when combined with
other public health interventions and behavior changes, (Chinazzi & Davis, 2020; Tian et al., 2020).

3.3.3. Impact of interventions on R0
The qualitative conclusions of the impact of different interventions on the transmission of COVID-19 are reviewed above.

Fig. 8 shows the comparison of R0 before and after implementation of public health interventions in different studies. It can
be seen that although different studies have concluded that R0 will decrease after the implementation of intervention pol-
icies, the difference in the predicted results are very significant due to different study areas and intervention measures.
Kucharski et al. (Kucharski et al., 2020) predicted that R0 decreased from 2.35 to 1.05 after the intervention, while Wang et al.
(Wang & Liu, 2020) believed that the impact of the interventions on R0 was more significant, and R0 decreased from 3.86 to
1.26 after the lockdown of Wuhan. In the other two studies (L. Li, Pei, et al., 2020; R. Li, Pei, et al., 2020), there were also
significant differences in the results of the same intervention, the R0 decreased by 1.23 in China and 2.8 in Hubei. There were
also two studies on the impact of social distancing and other intervention measures on R0 in Iran (L. Li, Pei, et al., 2020;
Muniz-Rodriguez et al., 2020), and the results were very similar. R0 decreased from about 4 to near the critical value, indi-
cating that local intervention policies were very effective in controlling the epidemic. Among the predicted results, the biggest
impact of intervention measures on R0 was a study in South Korea(L. Li, Pei, et al., 2020). The results showed that after the
implementation of large-scale epidemic prevention and control measures, R0 decreased from 4.1 to 0.1, and R0 was far below
the critical value (R0 ¼ 1), indicating that the epidemic had been completely controlled and would eventually disappear.

4. Discussion

4.1. Uncertainty of model assumptions

During the initial phase of the COVID-19 epidemic, the application of transmission models for epidemiological prediction
was hampered not only by the lack of reliable epidemiological information and case incidence data, but also by the gaps in
understanding of the mechanisms involved in transmission dynamics in different social backgrounds. To understand the
value of the COVID-19 epidemic models, it is crucial to understand how they are modeled and what assumptions they are
based on.

The understanding of the first outbreak of COVID-19 is limited, and the process of COVID-19 infection is unclear. Some
studies relied on accurate quantification of current epidemic exposure history to make reasonable assumptions, while others
relied on the previous knowledge of coronavirus outbreaks such as SARS and MERS. The assessment of epidemic models is
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Fig. 8. Comparison of R0 before and after implementation of public health interventions in different studies.
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very sensitive to hypothesis (numerical values and distributions) of the natural history of the disease, and some models
carried sensitivity analysis of parameters during the assessment process. In this review, the median value of the incubation
period in more than half of the models was 5.1 or 5.2 days, but there were different assumptions about its average distri-
bution, such as log-normal distribution, gamma distribution, and Erlang distribution. However, the assumption of the in-
fectious period had a large span, fluctuating between 4.41 and 8.4 days, and most studies assumed that the infectious period
followed a gamma distribution. This might be due to the impact of quarantine measures on the process of COVID-19 infection
in different time periods and different regions, or due to the delay in quarantine or reporting caused by the capacity of medical
services in different regions. In the future, if there is more information about the key characteristics of the disease, it will
enable a more accurate understanding of the natural history of COVID-19, which will greatly reduce the uncertainty of the
model.

It is worth noting that the centralized nucleic acid detection results in Wuhan, China showed that no asymptomatic in-
fections were infectious. However, in the early COVID-19 epidemic models, some studies assumed that asymptomatic
infection was infectious, which would overestimate the predicted results. However, it is still unclear whether there is pre-
symptomatic transmission of COVID-19, while ignoring the latent period tends to underestimate the value of R0. From the
comparison between the model assuming no pre-symptomatic transmission and the model assuming pre-symptomatic
transmission, the value of R0 was estimated relatively to be high, and in the model in (Zhu & Chen, 2020) was 0.5 higher.

In addition, the estimation of the asymptomatic infection ratio of COVID-19 varies greatly. As the results of centralized
nucleic acid detection in Wuhan, China on June 2, show the detection rate of asymptomatic infections was only 0.303 per
10,000 (China, 2020), while the data published by the Center for Disease Control and Prevention of the United States shows
that about one-third of COVID-19 infections in the United States are asymptomatic (CDC, 2020). Firstly, the main reason is the
lack of understanding of the SARS-CoV-2. Secondly, the area and time period of the model evaluation are different, and the
process of COVID-19 is in different stages. Finally, different regions have different medical resources, and the popularization of
disease quarantine and other measures is limited. In fact, the outbreak of the epidemic has gone through the initial period, the
rapid growth period, and the recession period. Due to the continuous improvement of medical conditions, the mortality rate
lags behind in the early process, is higher in the middle process, and may decline in the later process. Therefore, the model
hypothesis also has uncertainty.
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In general, it is difficult to accurately estimate the impact of time-related variability factors and to incorporate them into
models without high-resolution and reliable epidemiological data. Public health authorities should work closely with other
government departments to determine accurate epidemiological data, including the geographical location of cases, infor-
mation on the contact track and the date of symptoms onset. The availability of persistent case data is helpful to identify the
transmission patterns of COVID-19 and its evolution with different epidemic periods.

4.2. The impact of asymptomatic infections on the spread of COVID-19

The population with asymptomatic infections is a special group of people in the epidemic that deserves attention. We
found that many studies have mentioned this population group, especially recently, and more and more studies have been
modeling asymptomatic infections (Koo et al., 2020; Maier & Brockmann, 2020; S.; Mandal, Bhatnagar, & Arinaminpathy,
2020; Munayco et al., 2020; Sun & Weng, 2020). All these studies believed that asymptomatic infections were infectious,
and it was necessary to strengthen the supervision of this population. Even in the study of Mandal et al.(S. Mandal, Bhatnagar,
& Arinaminpathy, 2020), it was assumed that asymptomatic infections were half as infectious as symptomatic. Anothermodel
(Sun &Weng, 2020), focusing on the study of the asymptomatic population, believed that this population was unpredictable
and well hidden. The asymptomatic or covert patients could trigger outbreaks more rapidly and terminate with larger
outbreak sizes if the strong control measures became mild. It was suggested that the currently strict interventions should be
continuously implemented, and unraveling the asymptomatic pool was critically important before preventive strategy such
as vaccines become available.

However, the recent results of centralized nucleic acid detection in Wuhan, China, further deepened the understanding of
asymptomatic infections. 9,899,828 people in Wuhan undertook centralized nucleic acid detection (China, 2020), which took
half a month (from 0:00 onMay 14 to 24:00 on June 1) and cost 900 million yuan. Among the nearly 10 million tested people,
no confirmed cases were found, and 300 asymptomatic infections were detected, with a detection rate of only 0.303 per
10,000. Is asymptomatic infection infectious or not? This is based on the following evidence: first, since April 26, the Wuhan
CDC had collected sputum and throat swab samples from 106 asymptomatic infectious patients and sent them to the Wuhan
Institute of Viruses of the Chinese Academy of Sciences and The Hubei CDC for virus isolation, culture and sequencing analysis.
The results showed that no “active virus” had been cultivated. Second, the Wuhan CDC sampled the homes and living en-
vironments of 300 asymptomatic infectious patients, including wipe samples such as masks, water cups, toothbrushes and
mobile phones, as well as some elevator keys and corridor items. All of 3343 samples were negative. In addition, sinceMay 14,
theWuhan CDC has also tested 300 asymptomatic infectious patients with serum antibody. No single positive IgMwas found
in recent infection. The above strong evidence suggested that the recessive infections (i.e., asymptomatic infectious patients
with no or mild symptoms throughout the infection) were not infectious or the likelihood of being infectious was very low,
and the contribution to the transmission of COVID-19 was negligible. This is consistent with the studies of Ferretti et al.
(Ferretti et al., 2020) on this asymptomatic population. However, Ferretti et al. believed that the pre-symptomatic infection
was infectious and its transmission capacity was almost sufficient to sustain an epidemic on its own; which remains to be
studied. Therefore, it is necessary to combine the monitoring results of serological research, recognize the potential trans-
mission characteristics of emerging diseases, and screen infectious pre-symptomatic cases early. This will also contribute to
modelers being able to accurately calibrate the epidemic model according to the actual epidemic situation, and then provide
feedback and decision support during the outbreak. Specifically, if we can effectively detect and distinguish invisible in-
fections among the asymptomatic population, we can significantly reduce the isolation measures and strict medical obser-
vation measures for such people, which will greatly reduce the burden of medical management.

4.3. Suggestions for public health intervention

Transmission dynamics models are the core in designing and evaluating interventions for infectious diseases, especially
for public health interventions.What public health interventions dowe need to take?When should they be carried out?What
is the scope and extent of the adoption? How shouldwe adjust when the epidemic situation changes? If these questions are to
be answered rationally, a method is needed to predict the impact on health outcomes, such as reducing the number of
confirmed cases or deaths. Policy issues determine the necessary components and complexity of models. However, models
need to be simple enough to analyze, but accurate enough to solve problems.

For a single intervention, severe travel restrictions have the most significant effect on suppressing the spread of COVID-19
in the early stage of an outbreak. As COVID-19 continues to spread around the world, improving quarantine and reporting
rates is critical for the expert teams to understand the situation more comprehensively. On this basis, the national govern-
ments can formulate the most effective prevention and control plan in time, so as to prevent the further spread of the
epidemic and curb the large-scale outbreak as much as possible. At the same time, once the epidemic is confirmed, a series of
medical prevention and control measures, such as patient isolation and contact tracking should be taken immediately. It is
helpful to identify and control the source of infection in a timely and effective manner, block the route of transmission, and
protect the susceptible population (Nelson &Wiliams., 2014). Considering that digital tools offer opportunities to strengthen
contact tracking, theWHO has published interim guidance on the considerations, opportunities and challenges of integrating
digital tools into contact trackingmethods (WHO, 2020c). All the above-mentioned interventions need to pay attention to the
significant economic and social costs. On the premise of stable control of the epidemic situation through the above-
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mentioned interventions in the early stage, other long-term sustainable control schemes should be considered to gradually
return the social order to the right track. Therefore, mask protection is still essential.

Clearly, more studies (Choi & Ki, 2020; Eikenberry et al., 2020; Kissler et al., 2020) showed that a single measure was not
enough to delay the outbreak by several weeks or longer. Targeted stratified containment, that is, a combination of several
interventions, can effectively prevent the continued spread of COVID-19, and ultimately reduce the overall scale of the
outbreak until the danger alert is removed.

At present, the epidemic has spread to all parts of the world, but the epidemic situation varies from place to place.
Therefore, through a summary study of COVID-19 epidemic models, this paper suggests that different countries should take
appropriate intervention measures to prevent and control the epidemic on the premise of considering their own national
conditions, economic development levels and public cooperation. Those countries that have not been effectively controlling
the epidemic can refer to the effective prevention and control experience of Eastern countries, including China, and take strict
control measures to effectively control an epidemic in the shortest time. Those countries such as China, where the epidemic
has been preliminarily controlled, have begun to return to work gradually and trying to restore normal living standards and
social order. Travel restrictions mainly prevent the influx of imported cases from abroad, and the lockdown can be gradually
lifted in low-risk cities in China. Social distancing policy can also be relaxed but not completely ended, as some studies
(Ngonghala et al., 2020) showed that early termination of social distancing might lead to a devastating second wave of the
COVID-19 epidemic. However, in terms of the three basic measures of contact tracing, quarantine and timely reporting,
vigilance should not be relaxed until the confirmed end of the epidemic. Of course, the economic and social costs of
combating the epidemic at this stage are greatly reduced compared with the period of concentrated outbreak. In addition,
protective masks have a significant effect on reducing the effective transmission rate, especially for pre-symptomatic in-
fections. As a sustainable prevention and control measure, it needs to be implemented for a long time. It can bemore effective
to reduce the mortality rate of infectious diseases and to release the burden of health care system when it is combined with
the above-mentioned interventions (especially social distancing and health measures). FollowingWHO updated guidance on
the use of masks on 5 June, the public is encouraged towear masks where the physical distancing cannot be achieved, such as
the public transport, shops or other environments with high population density (WHO, 2020a).

Caution is also required when implementing COVID-19 prevention and control measures. On the one hand, strict disease
control measures can reduce the risk of morbidity and mortality associated with COVID-19 outbreaks. However, on the other
hand, in the process of infection prevention, in the daily life and behavior of ordinary people are often difficult to achieve a
comprehensive unified constraint and standard, and may cause some discontent to a certain extent. These measures may
include significant movement restrictions, social distancing and reducing recreational life, continued wearing of uncom-
fortable masks, frequent cleaning and disinfection, and the financial and spiritual “cost” of implementing thesemeasures. The
duration and timing of relaxing or terminating strict social isolationmeasures are critical to determine the future trajectory of
the COVID-19 pandemic. If the strict social alienationmeasures are terminated early, it may lead to a devastating secondwave,
with a burden similar to that predicted before the implementation of strict social isolation measures. Therefore, we can
conclude that the short-term economic and spiritual “cost” is a necessary condition for the recovery of long-term normal life
and better economic development. In the absence of effective drug intervention at present, strict comprehensive intervention
measures are essential for epidemic prevention and control.
5. Conclusions and suggestions

With the global pandemic of COVID-19, governments all over the world rely on mathematical prediction to help guide
decision-making during the epidemic. Extrapolation of the epidemic impacts from the early growth phases is influenced by
model, data, and behavioral uncertainties (Schuster, 2015). Although the complexity and methods are different, simple
models in the early growth epidemic phases can still be used as reference information and provide a basis for more complex
transmission models in order to understand the progress of disease outbreaks. As George E. P. box, a British statistician, said,
“all models are wrong, but some are useful.” Facing the challenge of COVID-19, on the one hand, public health authorities
should work closely with other government departments to determine accurate epidemiological data, which is helpful to
accurately estimate the impact of time-related change factors and incorporate them into the various models. At the same
time, combined with the monitoring results of serology research, it is helpful for modelling researchers to calibrate the
epidemiological model accurately based on the actual situation. On the other hand, for the prediction differences under
different public health strategies, the most significant effect has been travel restrictions. There were different studies on the
impact of contact tracking and social isolation, but it was considered that improving the quarantine rate and reporting rate,
and the wearing of protective face masks were essential for epidemic prevention and control. Different countries should take
appropriate public health interventions to control the development of the epidemic.

Notably, there is evidence that the recessive infections are not infectious or the likelihood of being infectious is very low,
which suggests that the existing COVID-19 epidemiological models might overestimate the epidemic risk. The input
epidemiological parameters of the prediction models have significant differences in the prediction of the severity of the
epidemic spread. Therefore, prevention and control institutions should be cautious when formulating public health strategies
by drawing on the prediction results of mathematical models.
339



Y. Xiang, Y. Jia, L. Chen et al. Infectious Disease Modelling 6 (2021) 324e342
CRediT authorship contribution statement

Yue Xiang: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing - original draft,
Writing - review & editing. Yonghong Jia: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Re-
sources, Writing - original draft, Writing - review& editing. Linlin Chen: Investigation, Resources, Writing - original draft. Lei
Guo: Writing - review & editing. Bizhen Shu: Writing - review & editing, All authors have read and agreed to the published
version of the manuscript. Enshen Long: Conceptualization, Methodology, Validation, Formal analysis, Supervision, Project
administration, Funding acquisition.

Declaration of competing interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this
article.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (51778382), and the National Key R&D
Program of China (2016YFC0700400).

References

Acuna-Zegarra, M. A., Santana-Cibrian, M., & Velasco-Hernandez, J. X. (2020). Modeling behavioral change and COVID-19 containment in Mexico: A trade-
off between lockdown and compliance. Mathematical Biosciences, 325, 108370. https://doi.org/10.1016/j.mbs.2020.108370

Anastassopoulou, C., Russo, L., Tsakris, A., & Siettos, C. (2020). Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PloS One, 15(3),
Article e0230405. https://doi.org/10.1371/journal.pone.0230405

Anderson, R. M. (1992). Infectious diseases of humans: Dynamics and control. Oxford: Oxford University Press.
Anderson, R. M., Heesterbeek, H., Klinkenberg, D., & Hollingsworth, T. D. (2020). How will country-based mitigation measures influence the course of the

COVID-19 epidemic? The Lancet, 395(10228), 931e934. https://doi.org/10.1016/S0140-6736(20)30567-5
Boldog, P., Tekeli, T., Vizi, Z., Denes, A., Bartha, F. A., & Rost, G. (2020). Risk assessment of novel coronavirus COVID-19 outbreaks outside China. Journal of

Clinical Medicine, 9(2). https://doi.org/10.3390/jcm9020571
CDC. (2020). Coronavirus disease 2019 (COVID-19)-Cases, data & surveillance. Retrieved from https://www.cdc.gov/coronavirus/2019-ncov/covid-data/

covidview/index.html.
Chen, X., & Yu, B. (2020). First two months of the 2019 coronavirus disease (COVID-19) epidemic in China: Real-time surveillance and evaluation with a

second derivative model. Glob Health Res Policy, 5, 7. https://doi.org/10.1186/s41256-020-00137-4
China, H. P. P. s. G. o. (2020). The result of Wuhan’s centralized nucleic acid detection: No confirmed cases found. Retrieved from http://www.hubei.gov.cn/

zhuanti/2020/dqssl/qwtb/202006/t20200602_2376060.shtml.
Chinazzi, M., & Davis, J. T. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489),

eaba9757.
Choi, S., & Ki, M. (2020). Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiol Health, 42, Article e2020011. https://doi.

org/10.4178/epih.e2020011
Eikenberry, S. E., Mancuso, M., Iboi, E., Phan, T., Eikenberry, K., Kuang, Y., et al. (2020). To mask or not to mask: Modeling the potential for face mask use by

the general public to curtail the COVID-19 pandemic. Infect Dis Model, 5, 293e308. https://doi.org/10.1016/j.idm.2020.04.001
Fanelli, D., & Piazza, F. (2020). Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons & Fractals. https://doi.org/10.1016/j.

chaos.2020.109761
Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dorner, L., et al. (2020). Quantifying SARS-CoV-2 transmission suggests epidemic control

with digital contact tracing. Science, 368(6491). https://doi.org/10.1126/science.abb6936
Foppa, I. M. (2017). 4 - W.O. Kermack and A.G. McKendrick: A seminal contribution to the mathematical theory of epidemics (1927). In I. M. Foppa (Ed.),

A historical introduction to mathematical modeling of infectious diseases (pp. 59e87). Boston: Academic Press.
Ganyani, T., Kremer, C., Chen, D., Torneri, A., Faes, C., Wallinga, J., et al. (2020). Estimating the generation interval for coronavirus disease (COVID-19) based

on symptom onset data, March 2020. Euro Surveillance, 25(17). https://doi.org/10.2807/1560-7917.ES.2020.25.17.2000257
Halloran, M. E. (2001). Concepts of transmission and dynamics. In D. J. W. J. C. Thomas (Ed.), Epidemiol methods for the study of infectious diseases (pp.

56e85). New York: Oxford University Press.
Hauser, A., Counotte, M. J., Margossian, C. C., Konstantinoudis, G., Low, N., Althaus, C. L., et al. (2020). Estimation of SARS-CoV-2 mortality during the early

stages of an epidemic: A modelling study in Hubei, China and northern Italy. https://doi.org/10.1101/2020.03.04.20031104
Heesterbeek, H., Anderson, R. M., Andreasen, V., Bansal, S., De Angelis, D., Dye, C., et al. (2015). Modeling infectious disease dynamics in the complex

landscape of global health. Science, 347(6227), aaa4339. https://doi.org/10.1126/science.aaa4339
Hellewell, J., Abbott, S., Gimma, A., Bosse, N. I., Jarvis, C. I., Russell, T. W., et al. (2020). Feasibility of controlling COVID-19 outbreaks by isolation of cases and

contacts. Lancet Global Health, 8(4), E488eE496. https://doi.org/10.1016/s2214-109x(20)30074-7
Hou, C., Chen, J., Zhou, Y., Hua, L., Yuan, J., He, S., et al. (2020). The effectiveness of quarantine of Wuhan city against the corona virus disease 2019 (COVID-

19): A well-mixed SEIR model analysis. Journal of Medical Virology. https://doi.org/10.1002/jmv.25827
Hu, Z., Cui, Q., Han, J., Wang, X., Sha, W. E. I., & Teng, Z. (2020). Evaluation and prediction of the COVID-19 variations at different input population and

quarantine strategies, a case study in Guangdong province, China. International Journal of Infectious Diseases, 95, 231e240. https://doi.org/10.1016/j.ijid.
2020.04.010

Kai, D., & Guy-PhilippeGoldstein. (2020). Universal masking is urgent in the COVID-19 pandemic: SEIR and agent based models, empirical Validation,Policy
recommendations.

Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H., & Lipsitch, M. (2020). Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic
period. Science, 368(6493), 860e868. https://doi.org/10.1126/science.abb5793

Koo, J. R., Cook, A. R., Park, M., & Sun, Y. (2020). Interventions to mitigate early spread of SARS-CoV-2 in Singapore: A modelling study. The Lancet Infect.
https://doi.org/10.1016/S1473-3099(20)30162-6

Kraemer, M. U. G., Yang, C. H., Gutierrez, B., Wu, C. H., Klein, B., Pigott, D. M., et al. (2020). The effect of human mobility and control measures on the COVID-
19 epidemic in China. Science, 368(6490), 493e497. https://doi.org/10.1126/science.abb4218

Kucharski, A. J., Russell, T. W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., et al. (2020). Early dynamics of transmission and control of COVID-19: A math-
ematical modelling study. The Lancet Infect. https://doi.org/10.1016/S1473-3099(20)30144-4
340

https://doi.org/10.1016/j.mbs.2020.108370
https://doi.org/10.1371/journal.pone.0230405
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref3
https://doi.org/10.1016/S0140-6736(20)30567-5
https://doi.org/10.3390/jcm9020571
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
https://doi.org/10.1186/s41256-020-00137-4
http://www.hubei.gov.cn/zhuanti/2020/dqssl/qwtb/202006/t20200602_2376060.shtml
http://www.hubei.gov.cn/zhuanti/2020/dqssl/qwtb/202006/t20200602_2376060.shtml
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref9
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref9
https://doi.org/10.4178/epih.e2020011
https://doi.org/10.4178/epih.e2020011
https://doi.org/10.1016/j.idm.2020.04.001
https://doi.org/10.1016/j.chaos.2020.109761
https://doi.org/10.1016/j.chaos.2020.109761
https://doi.org/10.1126/science.abb6936
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref14
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref14
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref14
https://doi.org/10.2807/1560-7917.ES.2020.25.17.2000257
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref16
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref16
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref16
https://doi.org/10.1101/2020.03.04.20031104
https://doi.org/10.1126/science.aaa4339
https://doi.org/10.1016/s2214-109x(20)30074-7
https://doi.org/10.1002/jmv.25827
https://doi.org/10.1016/j.ijid.2020.04.010
https://doi.org/10.1016/j.ijid.2020.04.010
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref22
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref22
https://doi.org/10.1126/science.abb5793
https://doi.org/10.1016/S1473-3099(20)30162-6
https://doi.org/10.1126/science.abb4218
https://doi.org/10.1016/S1473-3099(20)30144-4


Y. Xiang, Y. Jia, L. Chen et al. Infectious Disease Modelling 6 (2021) 324e342
Kuniya, T. (2020). Prediction of the epidemic peak of coronavirus disease in Japan, 2020. Clinical Medicine. https://doi.org/10.3390/jcm9030789
Kwok, K. O., Tang, A., Wei, V. W. I., Park, W. H., Yeoh, E. K., & Riley, S. (2019). Epidemic models of contact tracing: Systematic review of transmission studies of

severe acute respiratory syndrome and Middle East respiratory syndrome. Computational and Structural Biotechnology Journal, 17, 186e194. https://doi.
org/10.1016/j.csbj.2019.01.003

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronaviruseinfected pneumonia (Vol.
382, pp. 1199e1207). https://doi.org/10.1056/NEJMoa2001316, 13.

Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., et al. (2020). Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus
(COVID-19). https://doi.org/10.1101/2020.02.14.20023127

Liu, Z., Magal, P., Seydi, O., & Webb, G. (2020a). A COVID-19 epidemic model with latency period. Infect Dis Model. https://doi.org/10.1016/j.idm.2020.03.003
Liu, Z., Magal, P., Seydi, O., & Webb, G. (2020b). Predicting the cumulative number of cases for the COVID-19. https://doi.org/10.1101/2020.03.11.20034314
Liu, Z., Magal, P., Seydi, O., & Webb, G. (2020c). Understanding unreported cases in the 2019-nCov epidemic outbreak in Wuhan.
Li, L., Yang, Z., Dang, Z., Meng, C., Huang, J., Meng, H., et al. (2020). Propagation analysis and prediction of the COVID-19. Infect Dis Model, 5, 282e292. https://

doi.org/10.1016/j.idm.2020.03.002
Magal, P., & Webb, G. (2020). Predicting the number of reported and unreported cases for the COVID-19 epidemic in South Korea. Italy, France and Germany.

https://doi.org/10.1101/2020.03.21.20040154
Maier, B. F., & Brockmann, D. (2020). Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science,

368(6492), 742e746. https://doi.org/10.1126/science.abb4557
Mandal, S., Bhatnagar, T., & Arinaminpathy, N. (2020). Prudent public health intervention strategies to control the coronavirus disease 2019 transmission in India

A mathematical model-based approach. Indian Council of Medical Research. https://doi.org/10.4103/ijmr.IJMR_504_20
Mandal, M., Jana, S., Nandi, S. K., Khatua, A., Adak, S., & Kar, T. K. (2020). A model based study on the dynamics of COVID-19: Prediction and control. Chaos,

Solitons, and Fractals. https://doi.org/10.1016/j.chaos.2020.109889, 109889-109889.
Munayco, C. V., Tariq, A., Rothenberg, R., Soto-Cabezas, G. G., Reyes, M. F., Valle, A., … Peru, C.-w. g (2020). Early transmission dynamics of COVID-19 in a

southern hemisphere setting: Lima-Peru: February 29th-March 30th, 2020. Infect Dis Model. https://doi.org/10.1016/j.idm.2020.05.001
Muniz-Rodriguez, K., Fung, I. C.-H., Ferdosi, S. R., Ofori, S. K., Lee, Y., Tariq, A., et al. (2020). Severe acute respiratory syndrome coronavirus 2 transmission

potential, Iran, 2020. Emerging Infectious Diseases, 26(8). https://doi.org/10.3201/eid2608.200536
Ndaïrou, F., Area, I., Nieto, J. J., & Torres, D. F. M. (2020). Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos,

Solitons & Fractals, 135. https://doi.org/10.1016/j.chaos.2020.109846
Nelson, K. E., & Wiliams, C. M. (2014). Infectious disease epidemiology. In Theory and practice (3rd ed.). Burlington: Jones & Bartlett Learning.
Ngonghala, C. N., Iboi, E., Eikenberry, S., Scotch, M., MacIntyre, C. R., Bonds, M. H., et al. (2020). Mathematical assessment of the impact of non-

pharmaceutical interventions on curtailing the 2019 novel Coronavirus. Mathematical Biosciences, 325, 108364. https://doi.org/10.1016/j.mbs.2020.
108364

Omori, R., Mizumoto, K., & Chowell, G. (2020). Changes in testing rates could mask the novel coronavirus disease (COVID-19) growth rate. International
Journal of Infectious Diseases, 94, 116e118. https://doi.org/10.1016/j.ijid.2020.04.021

Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., et al. (2020a). Real-time forecasts of the COVID-19 epidemic in China from february 5th to
february 24th, 2020. Infect Dis Model, 5, 256e263. https://doi.org/10.1016/j.idm.2020.02.002

Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., et al. (2020b). Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang,
China: February 13e23, 2020. Journal of Clinical Medicine, 9(2). https://doi.org/10.3390/jcm9020596

Sanche, S., Lin, Y. T., Xu, C., Romero-Severson, E., Hengartner, N., & Ke, R. (2020). High contagiousness and rapid spread of severe acute respiratory syndrome
coronavirus 2. Emerging Infectious Diseases, 26(7). https://doi.org/10.3201/eid2607.200282

Scarabel, F., Pellis, L., Bragazzi, N. L., & Wu, J. (2020). Canada needs to rapidly escalate public health interventions for its COVID-19 mitigation strategies.
Infectious Disease Modelling. https://doi.org/10.1016/j.idm.2020.03.004

Schuster, P. (2015). Ebola-challenge and revival of theoretical epidemiology why extrapolations from early phases of epidemics are problematic. Complexity,
20. https://doi.org/10.1002/cplx.21694

Shim, E., Tariq, A., Choi, W., Lee, Y., & Chowell, G. (2020). Transmission potential and severity of COVID-19 in South Korea. International journal of infectious
diseases : IJID (Vol. 93, pp. 339e344). official publication of the International Society for Infectious Diseases. https://doi.org/10.1016/j.ijid.2020.03.031

Sun, T., & Weng, D. (2020). Estimating the effects of asymptomatic and imported patients on COVID-19 epidemic using mathematical modeling. Journal of
Medical Virology. https://doi.org/10.1002/jmv.25939

Tang, B., Bragazzi, N. L., Li, Q., Tang, S., Xiao, Y., & Wu, J. (2020). An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect
Dis Model, 5, 248e255. https://doi.org/10.1016/j.idm.2020.02.001

Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., et al. (2020). Estimation of the transmission risk of the 2019-nCoV and its implication for public
health interventions. Journal of Clinical Medicine, 9(2), 462. https://doi.org/10.3390/jcm9020462

Thompson, R. N. (2020). Novel coronavirus outbreak in Wuhan, China, 2020: Intense surveillance is vital for preventing sustained transmission in new
locations. Journal of Clinical Medicine, 9(2). https://doi.org/10.3390/jcm9020498

Tian, H., Liu, Y., & Li, Y. (2020). An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science.
Verity, R., Okell, L. C., Dorigatti, I., & Winskill, P. (2020). Estimates of the severity of COVID-19 disease. https://doi.org/10.1101/2020.03.09.20033357
Wang, C., & Liu, L. (2020). Evolving epidemiology and impact of non-pharmaceutical interventions on the outbreak of coronavirus disease 2019 in wuhan, China.

https://doi.org/10.1101/2020.03.03.20030593
WHO. (2020a). Advice on the use of masks in the context of COVID-19. Retrieved from https://www.who.int/publications/i/item/advice-on-the-use-of-

masks-in-the-community-during-home-care-and-in-healthcare-settings-in-the-context-of-the-novel-coronavirus-(2019-ncov)-outbreak.
WHO. (2020b). Coronavirus disease 2019 (COVID-19) situation report - 51. Retrieved from https://www.who.int/docs/default-source/coronaviruse/

situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn¼1ba62e57_10.
WHO. (2020c). Coronavirus disease (COVID-19) situation reporte 137. Retrieved from https://www.who.int/docs/default-source/sri-lanka-documents/

20200605-covid-19-sitrep-137.pdf?sfvrsn¼a13df572_2.
WHO. (2020d). Novel coronavirus (2019-nCoV) situation report - 11 (2020). Retrieved from https://www.who.int/docs/default-source/coronaviruse/

situation-reports/20200131-sitrep-11-ncov.pdf?sfvrsn¼de7c0f7_4.
WHO. (2020e). WHO coronavirus disease (COVID-19) dashboard. Retrieved from https://covid19.who.int/.
Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak orig-

inating in Wuhan, China: A modelling study. The Lancet, 395(10225), 689e697. https://doi.org/10.1016/s0140-6736(20)30260-9
Yang, Z., Zeng, Z., Wang, K., Wong, S.-S., Liang, W., Zanin, M., et al. (2020). Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China

under public health interventions. Journal of Thoracic Disease, 12(3), 165. https://doi.org/10.21037/jtd.2020.02.64
Zhang, J., Litvinova, M., Wang, W., Wang, Y., Deng, X., Chen, X., et al. (2020). Evolving epidemiology and transmission dynamics of coronavirus disease 2019

outside Hubei province, China: A descriptive and modelling study. The Lancet Infectious Diseases. https://doi.org/10.1016/s1473-3099(20)30230-9
Zhang, X., Ma, R., & Wang, L. (2020). Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries. Chaos, Solitons &

Fractals, 135, 109829. https://doi.org/10.1016/j.chaos.2020.109829
Zhao, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wang, W., et al. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-

nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 92, 214e217.
https://doi.org/10.1016/j.ijid.2020.01.050
341

https://doi.org/10.3390/jcm9030789
https://doi.org/10.1016/j.csbj.2019.01.003
https://doi.org/10.1016/j.csbj.2019.01.003
https://doi.org/10.1056/NEJMoa2001316
https://doi.org/10.1101/2020.02.14.20023127
https://doi.org/10.1016/j.idm.2020.03.003
https://doi.org/10.1101/2020.03.11.20034314
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref33
https://doi.org/10.1016/j.idm.2020.03.002
https://doi.org/10.1016/j.idm.2020.03.002
https://doi.org/10.1101/2020.03.21.20040154
https://doi.org/10.1126/science.abb4557
https://doi.org/10.4103/ijmr.IJMR_504_20
https://doi.org/10.1016/j.chaos.2020.109889
https://doi.org/10.1016/j.idm.2020.05.001
https://doi.org/10.3201/eid2608.200536
https://doi.org/10.1016/j.chaos.2020.109846
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref42
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref42
https://doi.org/10.1016/j.mbs.2020.108364
https://doi.org/10.1016/j.mbs.2020.108364
https://doi.org/10.1016/j.ijid.2020.04.021
https://doi.org/10.1016/j.idm.2020.02.002
https://doi.org/10.3390/jcm9020596
https://doi.org/10.3201/eid2607.200282
https://doi.org/10.1016/j.idm.2020.03.004
https://doi.org/10.1002/cplx.21694
https://doi.org/10.1016/j.ijid.2020.03.031
https://doi.org/10.1002/jmv.25939
https://doi.org/10.1016/j.idm.2020.02.001
https://doi.org/10.3390/jcm9020462
https://doi.org/10.3390/jcm9020498
http://refhub.elsevier.com/S2468-0427(21)00003-8/sref55
https://doi.org/10.1101/2020.03.09.20033357
https://doi.org/10.1101/2020.03.03.20030593
https://www.who.int/publications/i/item/advice-on-the-use-of-masks-in-the-community-during-home-care-and-in-healthcare-settings-in-the-context-of-the-novel-coronavirus-(2019-ncov)-outbreak
https://www.who.int/publications/i/item/advice-on-the-use-of-masks-in-the-community-during-home-care-and-in-healthcare-settings-in-the-context-of-the-novel-coronavirus-(2019-ncov)-outbreak
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10
https://www.who.int/docs/default-source/sri-lanka-documents/20200605-covid-19-sitrep-137.pdf?sfvrsn=a13df572_2
https://www.who.int/docs/default-source/sri-lanka-documents/20200605-covid-19-sitrep-137.pdf?sfvrsn=a13df572_2
https://www.who.int/docs/default-source/sri-lanka-documents/20200605-covid-19-sitrep-137.pdf?sfvrsn=a13df572_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200131-sitrep-11-ncov.pdf?sfvrsn=de7c0f7_4
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200131-sitrep-11-ncov.pdf?sfvrsn=de7c0f7_4
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200131-sitrep-11-ncov.pdf?sfvrsn=de7c0f7_4
https://covid19.who.int/
https://doi.org/10.1016/s0140-6736(20)30260-9
https://doi.org/10.21037/jtd.2020.02.64
https://doi.org/10.1016/s1473-3099(20)30230-9
https://doi.org/10.1016/j.chaos.2020.109829
https://doi.org/10.1016/j.ijid.2020.01.050


Y. Xiang, Y. Jia, L. Chen et al. Infectious Disease Modelling 6 (2021) 324e342
Zhao, S., Musa, S. S., Lin, Q., Ran, J., Yang, G., Wang, W., et al. (2020). Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in
the first half of January 2020: A data-driven modelling analysis of the early outbreak. Journal of Clinical Medicine, 9(2). https://doi.org/10.3390/
jcm9020388

Zhao, S., Stone, L., & Gao, D. (2020). Imitation dynamics in the mitigation of the novel coronavirus disease (COVID-19) outbreak in Wuhan, China from 2019 to
2020. https://doi.org/10.21037/atm.2020.03.168

Zhu, Y., & Chen, Y. Q. (2020). On a statistical transmission model in analysis of the early phase of COVID-19 outbreak. Statistics in Biosciences. https://doi.org/
10.1007/s12561-020-09277-0
342

https://doi.org/10.3390/jcm9020388
https://doi.org/10.3390/jcm9020388
https://doi.org/10.21037/atm.2020.03.168
https://doi.org/10.1007/s12561-020-09277-0
https://doi.org/10.1007/s12561-020-09277-0

	COVID-19 epidemic prediction and the impact of public health interventions: A review of COVID-19 epidemic models
	1. Introduction
	2. Methods
	3. Results
	3.1. Research models
	3.2. Key epidemiological parameters
	3.2.1. Basic reproductive number (R0)
	3.2.2. Key time periods of COVID-19 infection
	3.2.3. Asymptomatic infection ratio and mortality

	3.3. The impact of public health interventions
	3.3.1. Overview of public health interventions
	3.3.2. Differences in the impact of different public health interventions
	3.3.3. Impact of interventions on R0


	4. Discussion
	4.1. Uncertainty of model assumptions
	4.2. The impact of asymptomatic infections on the spread of COVID-19
	4.3. Suggestions for public health intervention

	5. Conclusions and suggestions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


