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ABSTRACT
Accurate characterization of the vaginal microbiome remains a fundamental goal of
the Human Microbiome project (HMP). For over a decade, this goal has been made
possible deploying high-throughput next generation sequencing technologies (NGS),
which indeed has revolutionized medical research and enabled large-scale genomic
studies. The 16S rRNA marker-gene survey is the most commonly explored approach
for vaginal microbial community studies. With this approach, prior studies have
elucidated substantial variations in the vaginal microbiome of women from different
ethnicities. This review provides a comprehensive account of studies that have deployed
this approach to describe the vaginalmicrobiota of Africanwomen in health anddisease.
On the basis of published data, the few studies reported from the African population
are mainly in non-pregnant post pubertal women and calls for more detailed studies in
pregnant and postnatal cohorts. We provide insight on the use of more sophisticated
cutting-edge technologies in characterizing the vaginalmicrobiome. These technologies
offer high-resolution detection of vaginal microbiome variations and community
functional capabilities, which can shed light into several discrepancies observed in the
vaginalmicrobiota of Africanwomen in anAfrican population versuswomen of African
descent in the diaspora.

Subjects Microbiology, Molecular Biology, Gynecology and Obstetrics, Women’s Health
Keywords Vaginal microbiome, Sub-Saharan African women, High throughput sequencing, Next
generation sequencing

INTRODUCTION
Accurate identification of the vaginal microbiota has broadened our understanding
of the aetiology of genital tract infections and adverse pregnancy outcome. Most post
pubertal women have a vaginal microbiome dominated by Lactobacilli, which enhances
vaginal community stability (De Seta et al., 2019). Over 130 Lactobacillus species have been
reported, and 20 of these species have been isolated from the vagina (Zhou et al., 2004;
Ravel et al., 2011). By hierarchical clustering analysis, Ravel et al. (2011) classified these
bacteria into community state types (CST), including CST I (L. crispatus dominated), CST
II (L. gasseri dominated), CST III (L. iners dominated), CST V (L. jensenii dominated), and
CST IV (a heterogeneous group of strict anaerobes). A healthy vaginal community may
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often be dominated by one or two vagitypes (Zhou et al., 2010a; Ravel et al., 2011). A
deviation from a ‘Lactobacillus’ vaginal profile primes abnormal conditions such as
bacterial vaginosis (BV) (Nelson et al., 2015), and aerobic vaginitis (AV) (Donders et al.,
2002). Aerobic vaginitis describes a state of bacterial colonization by aerobic pathobiont
such as Group B Streptococcus and E.coli (Donders et al., 2002), whereas BV is a condition
characterized by an heterogenous mixture of Bacterial Vaginosis Associated Bacteria
(BVAB) including Bifidobacterium spp, Dialister spp, Prevotella spp, Atopobium spp,
Megasphaera spp, Group B Streptococcus, Mycoplasma spp, Bacteriodes spp, Mobiluncus
spp, Gardnerella spp, Sneathia spp, Finegoldia spp, Peptoniphilus spp, Anaerococcus spp,
Corynebacterium spp and other taxa of the order Clostridiales (Smith & Ravel, 2017). These
bacteria are classified as community state type IV (Ravel et al., 2011; Gajer et al., 2012). A
higher prevalence (51.4%) of a BV-associated profile has been reported in African and
African-Americanwomen, double the prevalence of 23.2% found inWhitewomen (Fettweis
et al., 2014). This condition predisposes to Pelvic inflammatory diseases (Ness et al., 2004),
increased HIV and STI acquisition (Martin et al., 1999; Schwebke, 2003; Wiesenfeld et al.,
2003; Coleman et al., 2007; Cherpes et al., 2003) and has been noted as a major risk factor
for pre-term premature rupture of membranes (PPROM), pre-term births (PTB), early
miscarriage and ascending urogenital infections (Hillier et al., 1995;Nelson et al., 2009). For
women with a Lactobacillus-dominated profile, those whose vaginal profile are dominated
by L. crispatus are less likely to develop vaginal dysbiosis whereas women with L. iners
dominated vaginal profile are easily prone to vaginal dysbiosis (Verstraelen et al., 2009).
There have been several observations regarding variations in the vaginal microbiome
between women from different ethnicities. Caucasians and Asians are reportedly known to
have a significant amount of Lactobacillus dominated vaginal profile, compared to Black
women (Zhou et al., 2010a; Zhou et al., 2010b; Fettweis et al., 2014). Furthermore, Black
women more often develop BV during pregnancy and becomes susceptible to preterm
birth compared to European women (Paige et al., 1998; Kramer & Hogue, 2008). The basis
for these ethnic differences in the vaginal microbiome composition remains unclear.
With Nugent score system (a traditional method of bacterial identification), several
studies have observed vaginal colonization with BVAB in African and African-American
women. The Nugent score is a gram staining score criteria used to quantify bacteria
of vaginal samples such that a high score depicts BV while a low score translates to a
healthy vagina (Nugent, Krohn & Hillier, 1991). Prior studies had reported high vaginal
Nugent scores in African-American women in contrast to women of European ancestry
(Nugent, Krohn & Hillier, 1991; Royce et al., 1999; Ness et al., 2003; Fiscella & Klebanoff,
2004). However, this traditional method of bacterial identification only gives details of
bacterial morphotype and not their genetic constitution, consequently leaving a sizeable
fraction of the vaginal microbiota undeciphered. For easy characterization of the complex
vaginalmicrobial communities, impenetrable by traditional culture techniques, theHuman
Microbiome Project (HMP) proposed the deployment of DNA sequencing technology
(NIH et al., 2009; HMP, 2012). Most notable is the profiling of the 16S rRNA maker-gene.
Despite some promising results obtained with deploying this method, there have been
conflicting reports about the vaginal microbiota of African women. These conflicting
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reports stem from the differences observed between the vaginal microbiome of African
women in the Western hemisphere and those in sub-Saharan Africa. This suggests that
there may be a geographical influence on the vaginal microbiome and calls for more
geographically-tailored community-scale studies. The objective of this review is first
to provide a comprehensive account of the vaginal microbial profile in non-pregnant,
pregnant and puerperal women of African ancestry in studies that have deployed 16S
rRNA sequencing, provide better insight (and possibly reveal important gaps) in vaginal
microbiome science and, secondly, we seek to provide insight into other refined cutting-
edge technologies for the identification of vaginal bacterial communities.

METHODOLOGY
Search Strategy
To select eligible and relevant literature for this review, we conducted a peer-reviewed article
search strategy using important key words. Searches included articles and grey literature
including reviews and original research published in PubMed, PubMed central, Google
Scholar, Scopus, Web of Science, Evidence-Based Medicine, Biosis preview, Biological
Abstract and African Journal Online database.

Identification of Eligible Studies
From the database search, titles, abstracts and full-text versions of articles were identified
and screened for potential eligibility. After title, abstract and full-text reviews, irrelevant
and non-eligible articles were screened out, leaving only potentially relevant ones. Eligible
articles were studies written in English language. Multiple keywords were used for the
literature search both alone as well as in combination. Some of the important keywords
used for literature search were vaginal microbiome, vaginal microbiota studies, sequencing
approach, amplicon marker gene sequencing, next-generation sequencing platforms,
vaginal microbiota of African women, postpartum vaginal profile, vaginal microbiota
during pregnancy in African cohorts. Original research and critical reviews were both
included and studies irrelevant to the scope of this review were excluded described in
Fig. 1. All three investigators independently reviewed titles/abstracts and full text for
eligibility. The reference lists of eligible articles were also screened to detect relevant articles
that were not identified by the initial search strategy.

Evaluation of eligible studies
All investigators independently extracted data from the selected search database and
downloaded article. Any discrepancies in data extraction and risk of bias assessment were
resolved by consensus. All authors reviewed article, titles and abstracts independently
and retrieved full articles that potentially met the inclusion criteria. Having identified the
studies that met the inclusion criteria, full text versions of these articles were read and saved
in personal devices.
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216 Articles selected for full-text 
review 

Studies identified through 
data base search (n= 550) 

180 titles and abstract were 
reviewed 

33 articles were excluded based on 
inability to meet specific criteria. 

334 studies excluded after title (n= 
29) and abstract review (n= 305) due 

to the following 

58 studies were related to vaginal microbiome 
in menopause and cervical cancer"!

!
127 were studies which deployed vaginal 
culture method 

 
102 were studies related to vaginal microbiota 
and treatment with probiotics 

!
9 were studies related to treatment of abnormal 
vaginal microbiota with traditional medicine 

!
20 were studies on clinical trials with vaginal 
probiotics 

!
10 were studies on vaginal microbiota transplant!

!
8 were studies on vaginal microbiota and 
contraceptives 

!

36 articles were duplicated   

!

147 unique studies were retrieved, read 
and reported 

!
Figure 1 PRISMA flow diagram for data representation and analysis.

Full-size DOI: 10.7717/peerj.9684/fig-1

RESULTS
Selection of eligible studies
Of 550 unique titles/abstracts identified from the database search, 29 were excluded after
title review and 305 after abstract review, leaving 216 eligible articles for full text review
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(Fig. 1). Of these, 36 articles were discarded as duplicates as they were foundmore than once
in the selected database search engine. The remaining 180 titles and abstracts of articles
were reviewed again and another 33 articles were excluded, based on their irrelevance or
inability to meet specified criteria. The remaining 147 full-text studies were retrieved and
read in full (Fig. 1).

The vaginal ecosystem
The vaginal epithelium comprises of three cell layers, superficial, intermediate, and
basal. The epithelial mucosa of the lower genital tract is extensively populated by
commensal microorganisms, while the tissues of the upper genital tract are not colonized
by commensals thus are less prone to infection (Rampersaud, Randis & Ratner, 2012).
The vaginal microbiome is distinctive for its relatively simple biodiversity, low species
richness andnumerousLactobacillus speciesHuman Microbiome Project Consortium (2012).
Lactobacillus stand out as key players in modulating reproductive health in post pubertal
women by exerting a protective effect on the vagina. The mechanisms by which Lactobacilli
modulate reproductive health of women is not knownwith certitude butmay be by it acting
as a competitor with other pathogenic organisms for nutrients, epithelial cell receptors and
space (Boris et al., 1998). Other putative mechanisms are the release of metabolites and
secretion of bacteriocins to maintain a low hostile vaginal pH (Martin & Suarez, 2010) and
the production of lactic acid which protects the vagina from colonization by other species
(Witkin et al., 2013).

A vaginal microenvironment less dominated by Lactobacilli predisposes to adverse
clinical conditions like BV (Allsworth & Peipert, 2007; Srinivasan & Fredricks, 2008) or
non-specific vaginitis (Amsel et al., 1983). Due to the multifaceted function of the vagina,
coupled with its anatomical location, it may be influenced by hormones, menstruation,
douching practices, contraceptives, sexual intercourse and the gastrointestinal microflora
from the rectum (Reid, 2018). Several studies have reported a Lactobaccillus depleted
vaginal profile in African-American and Hispanic women (Shendure, Porreca & Reppas,
2005; Ravel et al., 2011; Zhou et al., 2010b). Jespers et al. (2014) noted similar findings in a
cohort of African women. Interestingly, others have also reported a high prevalence of BV
in sub-Saharan African women (Gautam et al., 2015; Torrone et al., 2018). With the advent
of next generation sequencing, explicit identification of vaginal microbiota has been made
possible. This move has also provided a platform for scientists to make comparisons across
populations and construct novel research questions in vaginal microbiology and ecology.

Next generation sequencing
NGS describes a method of sequencing where millions of oligonucleotides sequencing
fragments are executed in parallel, giving rise to large number of sequencing outputs
(Mendz, Kaakoush & Quinlivan, 2016). Until the HMP was established, therapeutic
interventions and treatment of vaginal disorders has been unsuccessful because the
identification of the complex vaginal microbial community depended on the tripods
of clinical diagnosis, microscopy and basic culture technique (White et al., 2011). DNA
Sequencing was first elaborated by Sanger in a method known as Sanger sequencing or
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the chain-terminator methods (Sanger, Nicklen & Coulson, 1977). It was developed in 1977
and remains the ‘‘gold standard’’ in molecular diagnostics. It operates by utilizing DNA
polymerase to generate a complementary copy to a single stranded DNA template which
bind to a given primer. Due to primer binding, the preceding bases of the sequences
produced are usually of poor quality (Sanger, Nicklen & Coulson, 1977; Adams, 2008). In
addition, it is time consuming and expensive.With these limitations, Sanger sequencing has
been replaced by other powerful next-generation sequencing methods which has improved
the identification of the myriads of microbes even in larger scale (NIH et al., 2009; Human
Microbiome Project Consortium, 2012). A major application of NGS is in phylogenetic
sequencing analysis.

Application of next generation sequencing
Phylogenetic marker gene (16SrRNA gene) sequencing
The 16S rRNA gene was first described by Carl Woese and George Fox (Woese, Kandler &
Wheelis, 1990;Woese & Fox, 1977) and was later explored for phylogenetic analysis (Lane et
al., 1985). Overtime, the 16S rRNA gene has been tagged a reliablemolecular clock revealing
sequences from distantly related bacterial lineages (Tsukuda, Kitahara & Miyazaki, 2017).
It has been widely used in characterization of vaginal microbial communities in several
cohort (Aagaard et al., 2012; Gajer et al., 2012; Huang et al., 2014; Walther-António et al.,
2014; Fettweis et al., 2019; Ceccarani et al., 2019). The 16S rRNA gene has a length of
approximately 1,500 bp which is sufficient for bioinformatics analysis (Janda & Abbot,
2007). Bacterial 16S rRNA genes generally comprises of nine ‘‘hypervariable regions’’ that
demonstrate considerable sequence diversity among various bacterial species and can be
used for species identification (Van de Peer, Chapelle & De Wachter, 1996; Chakravorty et
al., 2007). Of these 9 variable regions, VI-V3, V4, and V4-V5 offers a genus level sequence
resolution (Kim, Morrison & Yu, 2011). The degree of conservation widely varies between
hypervariable regions. More conserved regions are associated with high taxonomic level
while a less conserved regions with a lower taxonomic level (Yang, Wang & Qian, 2016).
It is best to choose two hypervariable regions to identify bacteria because no single
hypervariable region is able to distinguish among all bacteria. Making such a choice
increases the advantage of employing 16S rRNA gene analysis for bacterial identification
(Tao et al., 2017).

Protocol for 16S rRNA gene sequencing
16S gene sequencing has shown its efficacy in both deciphering bacterial species in
environmental specimen and establishing phylogenetic relationship between them (Shah
et al., 2011; Eren, Ferris & Taylor, 2011). This analysis has a robust but simplified protocol
given that it requires only polymerase chain reaction (PCR) and sequencing. First, an
amplicon of the 16S gene is obtained through PCR. Amplicons are then sequenced by
targeting the hypervariable regions of choice. The sequence obtained can be matched
with a reference sequence from an existing DNA database. These signature nucleotides
(reference sequences of 16S rRNA gene) allows for taxonomical classification and
identification by basis of similarities to already known sequences in preceding databases
(Chanama, 1999; Barghoutti, 2011; Mizrahi-Man, Davenport & Gilad, 2013). Furthermore,
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several bioinformatic pipeline can be used to analyze the resulting sequences including
QIIME 2 (Bolyen et al., 2019), MOTHUR, USEARCH-UPARSE (for OTU-level), DADA2,
USEARCH-UNOISE3(for ASV-level) (Prodan et al., 2020). Existing NGS platforms for 16S
rRNA sequencing are described in Table 1.

Vaginal microbiota in non-pregnant African women
The vaginal microbial communities have been studied in multiple levels, from
morphological descriptions to understanding the genetic signature ofmicrobes and how the
mixtures of microbes could promote or disrupt reproductive outcome. By microscopy, the
vaginal microbiota of Black women are reported to correlate with high Nugent Scores and
a low proportion of Lactobacilli compared to their European counterparts (Nugent, Krohn
& Hillier, 1991; Royce et al., 1999; Ness et al., 2003; Jespers et al., 2014). These observations
were further buttressed by terminal restriction, fragment polymorphism and shallow
profiling of the 16S rRNA ribosomal gene (Zhou et al., 2007; Zhou et al., 2010a; Zhou et
al., 2011). By pyrosequencing, Zhou et al. observed a higher prevalence of Lactobacillus
specie in Black women (33%) compared to the 7% observed in Caucasians. Furthermore,
only one or two species of Lactobacillus were found in the few Black participant with a
Lactobacillus profile (Zhou et al., 2010b). Similarly, Ravel et al. (2011) characterized the
vaginal microbiota of 396 women by pyrosequencing of the V1 and V2 region of the 16S
rRNA gene and identified a high prevalence of BVAB in African-American women (39%)
compared to the lower prevalence in Asians (18%) and Caucasians (9%). The absence
of L. jensenii vagitype and minute proportion of L. crispatus in African Americans was
another important observation noted in their study (Ravel et al., 2011). In keeping with
this, by sequencing the V1-V3 region of the 16S rRNA gene, Fettweis et al. also described
the vaginal profile of Black women to be depleted of Lactobacillus and rich in BVAB,
including Prevotella and Sneathia (Fettweis et al., 2014). It should be noticed that these
studies highlighted are reports on African women living outside Africa. Results obtained
from characterizing the vaginal microbiome of African women living in Africa appear
to deviate from what has been observed among Africans in the diaspora. This raises
important questions about the influence of geography on the vaginal microbiome. With
NGS technology, a few studies have provided insight into the vaginalmicrobiome of women
in Africa. In an 8-week longitudinal cohort study, Jespers et al. (2017) studied the vaginal
microbiota of South African, Rwandan and Kenyan women and these were reported to
be relatively stable and dominated by L. iners (75%) and L. crispatus (35%). Two other
studies in the South African population also reported an abundance of L. crispatus and
L. iners, including an heterogenous mix of CST IV microbes in the vaginal microbiota of
these women in Africa (Anahtar et al., 2015; Bayigga et al., 2019).

Similarly, Lennard et al. (2017), observed a vaginal microbiota dominated by
Lactobacillus species and some proportions of BVAB. No remarkable differences were
found between the vaginal microbiome of Nigerian and Swedish women. Anukam and
colleagues reported the presence of L. gasseri, L. crispatus and high proportions of L. iners
in Nigerian women (Anukam et al., 2006), which is similar to the vaginal microbiome
profile that had earlier been reported in Swedish women (Vasquez et al., 2002). Bacterial
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Table 1 Next Generation Sequencing platforms.

Sequencing method Sequencing system Detection/Principle Length Advantage Disadvantage

Pyrosequencing Roche/454 GS FLX Tita-
nium and the GS Junior
sequencer

Optical detection,
Uses DNA polymerase
to synthesize
complementary
strands to a single
stranded template
Provides only one type
of deoxynucleotide
triphosphate base in
a single cycle of the
reaction. (Shendure,
Porreca & Reppas,
2005;Mardis, 2013;
Goodwin, McPherson &
McCombie, 2016).

0.4–1 Kb
Give rise to
shorter fragments.
Usually produce
approximately 400 bp
reads (Schuster, 2007)

Long read length of
400–1,000 nucleotides
compared to sanger se-
quencing (Shendure,
Porreca & Reppas, 2005;
Mardis, 2013; Goodwin,
McPherson & McCom-
bie, 2016; Roche, 2020).
Maximum throughput
performance approxi-
mately 700 Mb (Roche,
2020)

High cost.
Challenging
sample preparation
High error prone
rate especially within
homopolymers regions
(Claesson et al., 2009;
Loman et al. (2012).

Ion semiconductor-
based sequencing

Ion PGM/Ion Torrent
(Thermofischer, 2020)

Utilizes the release of
H+ during sequencing
to detect the sequences
of clusters (ABM, 2020;
Thermofischer, 2020)

Read length of approx-
imately 100 to 200 nu-
cleotide bp (Thermofis-
cher, 2020)

More cost effective, time
efficient and versatile
(Thermofischer, 2020)
It has a very low er-
ror rate of 1%, thus ac-
curacy is guaranteed
(Thermofischer, 2020)

Lower throughput
of 10 Mb to 15 Gb
compared to illumina)
Produces indel error
(Thermofischer, 2020)

(continued on next page)
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Table 1 (continued)

Sequencing method Sequencing system Detection/Principle Length Advantage Disadvantage

Sequencing by synthesis
(SBS) using a reversible
terminator chemistry
approach or cyclic re-
versible terminator
(CRT) based sequencing

Illumina Genome
Analyzer II/IIX, Illumina
MiniSeq, MiSeq,
NextSeq, HiSeq and
HiSeq X (Illumina,
2020)

Requires step by step
incorporation of
reversible florescent and
terminated nucleotides
for DNA sequencing
(Rodrigue et al., 2010;
Goodwin, McPherson
& McCombie,
2016; ABM, 2020).
Florescence/optical
detection
(Bentley et al., 2008;
Illumina, 2020),
Overcomes the
disadvantages of
pyrosequencing by
only incorporating a
single nucleotide at
a time thus reducing
error prone rate with
homopolymers regions
(Mardis, 2013; Buermans
& Den Dunnen,
2014; ABM, 2020).
Associated with high
error rate with increased
read lengths (Bentley et
al., 2008; Illumina, 2020)

Read length ranges
from 150 to 300 bp
(Goodwin, McPherson
& McCombie, 2016;
Illumina, 2020)
Give rise to shorter
fragments (illumina
MiSeq 400–700 bp
reads) (Schuster,
2007; Shendure,
Porreca & Reppas,
2005;Mardis, 2013;
Goodwin, McPherson
& McCombie, 2016;
Rodrigue et al., 2010)

Very high-through
put (Harismendy et al.,
2009; Illumina, 2020)
Up to 99.5% accuracy is
guaranteed (Bentley et
al., 2008; Illumina, 2020)
Less prone to
homopolymer error

Long run time (Illu-
mina, 2020)

(continued on next page)
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Table 1 (continued)

Sequencing method Sequencing system Detection/Principle Length Advantage Disadvantage

Sequencing by ligation SOLiD Florescence/optical
detection,
Uses DNA ligase for
sequence extension
Does not utilize a
DNA polymerase to
incorporate nucleotide
instead relies on 16
8mer oligonucleotide
probes labelled by four
different florescent
dyes (Hoppman-
Chaney et al., 2010;
Thermofischer, 2020)
Requires 5 sequencing
primer for the entire
reaction (Hoppman-
Chaney et al.,
2010; ABM, 2020;
Thermofischer, 2020)

Produces 25–75 bp, 1 ×

75 or 2 × 60 bp (Good-
win, McPherson & Mc-
Combie, 2016)

Very high-throughput
(Thermofischer, 2020)

Give rise to shorter frag-
ments/short read length
(Thermofischer, 2020)

Single-molecule real-
time sequencing
(SMRT)

Pacific Biosciences
(Pacb, 2020)

Optical detection
Requires the addition
of labelled phospho-
linked nucleotides
unto immobilized
DNA template and
polymerase. This
incorporation is
detected by specific
fluorescent light
emission which
continually generate
high throughput
sequence reads (Pacb,
2020)

Give rise to approxi-
mately 20,000 bp to 10
Gb read length (Eid et
al., 2009; Carneiro et al.,
2012; Pacb, 2020)

Millions of sequence
reads are produced
(Pacb, 2020)

Prone to error due to
million reads generated
and wrong interpreta-
tion of nucleotide (Eid et
al., 2009; Carneiro et al.,
2012; Pacb, 2020)

(continued on next page)
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Table 1 (continued)

Sequencing method Sequencing system Detection/Principle Length Advantage Disadvantage

Nano pore-based princi-
ple

Oxford Nanopore tech-
nologies (GridION X5
and PromethION)

DNA is sequenced di-
rectly by measuring
the change in current
flow due to the passage
of molecule through a
nanopore embedded
within a membrane
(Jain et al., 2016; Loose,
Malla & Stout, 2016)
Requires the use of sen-
sors to detect changes in
Ionic current (Nanopore
tech, 2020)

Read length is approxi-
mately 1 Mb (Nanopore
tech, 2020)

Has a base calling accu-
racy of 99% (Nanopore
tech, 2020)

Requires expertise
for reproducibility.
Prone to large
indel error
Homopolymers
cannot be accurately
sequenced since it is
difficult to differentiate
the nanopore signals
due to similar type
of ‘‘leaving’’ and
‘‘entering’’ nucleotide
(Goodwin, McPherson &
McCombie, 2016)

Optical mapping princi-
ple

Bionano technologies Based on the possibil-
ity to fluorescently la-
bel sequence-specific
traits of long, high-
molecular weight DNA
(up to 1 Mb) to have
an optical barcode per
each DNA molecule.
DNA is then loaded
in nanotunnels and
channels where it is lin-
earized and imaged by a
high-resolution camera.
The images are then
converted into digi-
tal label patterns (Bio-
nanogenomics, 2020)

Larger read produced
compared to other NGS

High detection capacity
(Bionanogenomics, 2020)

Requires expertise for
reproducibility.
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vaginosis-associated vaginal profile has also been reported in African women (Torrone
et al., 2018; Jespers et al., 2014). By Illumina sequencing, the vaginal microbial profile of
Tanzania women was characterized and found to have a significant proportion of Prevetolla
bivia an observation made in only a small proportion of Caucasian and African-American
women in North America (Hummelen et al., 2010).

Similarly, Lennard et al. (2017) reported a vaginal microbiota dominated byGardnerella,
Prevotella and Lactobacillus species. Furthermore, in a longitudinal study, Gossman
and colleagues sequenced the V4 region of the 16S rRNA gene and reported a diverse
vaginal microbiota dominated by G. vaginalis, Prevotella, Megasphaera, Sneathia, and
Shuttleworthia in 58% of the study cohort. Only few subjects had a Lactobacillus profile
dominated by L. iners and L. crispatus (Gosmann et al., 2017). The higher prevalence of BV
in Black women compared to White may be explained by differences in host genetics (Ness
et al., 2003;Gajer et al., 2012;Hickey et al., 2013). Besides ethnic influence and geographical
consideration the vaginal microbiome of African womenmay also vary due to diet (Faucher
et al, 2019; Tuddenham et al., 2019), innate/adaptive immunity (Jespers et al., 2017; Torcia,
2019), hormonal flunctuation (Gajer et al., 2012; Van de Wijgert et al., 2013) and other
confounding factors (Koumans et al., 2007; Peipert et al., 2008). Given the inconsistency in
reports from various studies on the vaginal microbiome of African women, future studies
are definitely necessary.

Vaginal microbiome of African women during pregnancy
Pregnancy represents a unique phase, characterized by a suspension of the menstrual
cycle vaginal microbiome (Genc & Onderdonk, 2011). During pregnancy, the vaginal
microbiome is more enriched with Lactobacillus than in the non-pregnant state (Romero
et al., 2014; Freitas et al., 2017). Several studies have described the vaginal microbiota
in pregnant women. These studies have also noted significant differences in the vaginal
profile of Black and White women. African-American ethnicity increases the likelihood
for having an absence of protective Lactobacilli which predisposes to preterm birth and
other pregnancy complications (Beigi et al., 2005; Larsson et al., 2007; Klatt et al., 2010).
Since no prior study has described in details the vaginal microbiome profile of African
women during pregnancy in a longitudinal fashion, researchers continue to rely on results
extrapolated fromAfricanwomen in the diaspora. Although ethnicitymay have a significant
influence on the vaginal microbiome, geographical variations may also be contributory.
The study of Hyman et al. (2014) observed a low proportion of Lactobacillus in Black
women who encountered preterm birth (Hyman et al., 2014). Fettweis and colleagues
made a similar observation (Fettweis et al., 2019). These findings were further reinforced
by the observations made in a longitudinal study of a cohort comprising of 23 White, 5
Black and 13 Asian healthy women. A large proportion of L. jensenni and L. gasseri were
reported inWhite and Asian women but no traces of L. gasseri and L. jensenniwere found in
the vaginal samples of the Black women in this cohort (MacIntyre et al., 2015). Conversely,
a study conducted in Burkina Faso which features HIV- infected pregnant women at 36–38
weeks’ gestation reported a large number of women having a Lactobacillus-dominant
profile comprising of three distinct clusters. The first cluster comprised of L. iners (77%),
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L. crispatus (11%), L. fornicalis (3.9%), L. gasseri (3.2%) and L.vaginalis (0.5%). The second
cluster comprised of coagulase-negative Staphylococcuswhile the third group of bacteriomes
were a mixture of microbes of the CST IV type, dominated by Gardnerella species (Frank et
al., 2012). Obviously, a Lactobaccillus depleted and BV-dominated vaginal profile correlates
significantly with STI and HIV (Bayigga et al., 2019), yet the study of Frank et al. reported
some Lactobacillus vagitypes in the vaginal profile of the HIV-positive pregnant women.
To bridge the gap in these discrepancies, a geographically tailored approach to vaginal
microbiome science is required.

Vaginal microbiome of African women in the postpartum period
Following the changes that occur in a woman’s physiology during the postpartum,
the vaginal microbiome profile is dramatically altered. During pregnancy, estrogen in
maternal circulation rises (Roy & Mackay, 1962; Siiteri & MacDonald, 1966), however
during the postpartum elevated level of estrogen falls dramatically due to expulsion
of the placenta (Nott et al., 1976; O’Hara et al., 1991). This suggests why any estrogen
driven Lactobacillus during pregnancy are significantly depleted postpartum (MacIntyre
et al., 2015). Only few studies have successfully described the composition of the vaginal
profile in postnatal women of African descent using 16S rRNA gene sequencing. These
studies have observed a predominance of BVABs, Prevotella, Anaerococcus, Streptococcus,
Atopobium and Peptoniphilus than Lactobaccillus in numerous postnatal women (Poretsky
et al., 2014; MacIntyre et al., 2015; DiGiulio et al., 2015; Doyle et al., 2018). Notable is a
study which described the vaginal microbial profile of rural Malawian women postpartum
as being dominated by Gardnerella vaginalis (75.7%), with minute proportions of L.
crispatus and L. iners in 30.4% of the study population (Doyle et al., 2018). The report
Doyle’s group presented is similar to other observations on the postpartummicrobiome in
several other populations (Poretsky et al., 2014; MacIntyre et al., 2015; DiGiulio et al., 2015;
Doyle et al., 2018). These observations are interesting, given that these studies featured
participants from different ethnicities with variations in sample size, sample collection
methods and laboratory methods. It therefore appears that the postpartum microbiome
may neither be influenced by ethnicity nor geography. Till date, only the study of Doyle et
al. (2018) has described the vaginal microbiota in an African population (rural Malawian
women) postpartum employing 16S rRNA sequencing (Table 2). This highlights the need
for further studies on the vaginal microflora during the postpartum. Another transition
requiring further study is the period of restoration from the postpartum vaginal profile
to the interpregnancy (normal) profile. While MacIntyre et al. (2015) focused on a mixed
ethnic cohort at 6 weeks postpartum, Doyle’s group focused on a postpartum cohort
one week after delivery and followed the cohort up for up to one year, yet reported no
trace of Lactobacillus restoration (Doyle et al., 2018). Another group observed a cohort
of postnatal women for one year, yet no profound vaginal Lactobacillus was observed
(DiGiulio et al., 2015). A large longitudinal study is therefore recommended to establish
the composition of the postpartum vaginal microbiome accurately and to provide more
insight into how a Lactobacillus profile is restored after lochia regression. The vaginal
microbiome composition of sub-Saharan African women is described in Table 2.
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Table 2 Vagina microbial profiles of sub-Saharan African women.

First Author Country Participants description
and sequencing method

Findings

Anahtar et al. (2015) South Africa Black women, 16S rRNA
sequencing

Vaginal profile charac-
teristically dominated
by Gardnerella vaginalis
in 45% of participants.
37% of participants had
a Lactobacillus domi-
nated vaginal profile.
The remaining partici-
pants (18%) had vaginal
profile dominated with a
heterogenous mixture of
several BVAB.

Borgdorff et al. (2014) Rwanda 174 Female sex
workers between
(18–47) years of age.
Phylogenetic microarray
analysis

The vagitypes identified
included L. iners (74%),
L. crispatus (16%), L.
jensenii/L. salivarius/
other (6%), L. gasseri/L.
johnsonii/other (6%),
L. vaginalis/other
(21%), Leptotrichia
(94%), Prevotella
(91%), Corynebacterium
(90%) and Gardnerella
species (82%).
Other common BV-
associated anaerobes
found were Atopobium
(65% of samples),
Dialister (61%), BVAB1
(50%),Mobiluncus
(48%), Sneathia (47%)
andMegasphaera (44%),
but their prevalence was
low in the Lactobacilli-
dominated clusters but
approached 100% in
BV-associated clusters

Gosmann et al. (2017) South Africa 236 Black women, 16S r
RNA sequencing on Illu-
mina platform

Diverse vaginal mi-
crobiome characteris-
tically dominated by
G.vaginalis, Prevotella,
Megasphaera, Sneathia,
and BVAB1 was ob-
served in 58% of the
women.
(continued on next page)
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Table 2 (continued)

First Author Country Participants description
and sequencing method

Findings

Lennard et al. (2017) South Africa Black women between
16–22 years, 16S r RNA
sequencing on Illumina
platform

Vaginal communities
were clustered into L.
crispatus, L. iners and an
heterogenous mixture of
anaerobes. 44% were BV
positive, 13% BV inter-
mediate, and 43 were BV
negative.

McClelland et al. (2018) Eastern African (Kenya,
Uganda and Tanzania)
And Southern African
(South Africa, Botswana
and Zambia).

Participants included
sex workers, HIV-
serodiscordant
heterosexual couples
and few pregnant
and postpartum
women above 14 years,
Deep sequencing of
16S rRNA gene

Seven taxa, Parvimonas
species Types 1 and 2,
Gemella asaccharolytica,
Mycoplasma hominis,
Leptotrichia/Sneathia,
Eggerthella species Type
1, and vaginalMegas-
phaera species.

First Author Country Participants description
and sequencing method

Findings

Pregnancy Vaginal Microbial Profiles in African women
Frank et al. (2012) Burkina Faso HIV-1-infected

pregnant women at 36–
38 weeks of gestation.
16S r RNA
pyrosequencing

Three major clusters
were observed. 47%
of participants had a
Lactobaccillus dominated
vagitype (30/64), L.
iners (77%), L. crispatus
(11%), L. fornicalis
(3.9%), L. gasseri (3.2%)
and L. vaginalis (0.5%).
The second cluster
comprised of coagulase-
negative Staphylococci
with lesser abundance
of Lactobacilli.
The third clusters
observed had a mixture
of genera dominated by
Gardnerella species.

Gudza-Mugabe et al.
(2020)

Zimbabwe 356 women between
(15 and 35) weeks of
gestation and aged
between (24–35) years.
16S r RNA
sequencing on Illumina
platform

Vaginal profile
characteristically
dominated by BVAB.
Prevetolla colorans,
Gemella asaccharolytica
andMycoplasma.
hominis associated with
PTB in HIV cohort
while L. jensenni and L.
delbrueckii were most
abundant in uninfected
women that delivered
preterm.
(continued on next page)
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Table 2 (continued)

First Author Country Participants description
and Sequencing method

Findings

Postpartum Vaginal Microbial Profiles in African women
Doyle et al. (2018) Rural Malawi 994 postnatal Black

women, 16S r RNA se-
quencing on Illumina
platform

Vaginal profile of
75% of participant
(752/994) dominated by
Gardnerella vaginalis.
27.1% of participants
(269/994) had
less abundance of
Lactobacillus.

Alternative platform for bacterial identification
Over a decade after the recommendations by the HMP, we have witnessed a growing body
of literatures deployed the 16S rDNA sequencing for bacteria identification. Although
it’s been a reliable and convenient method of bacterial species identification, it has some
shortfalls. It is difficult for bacteria that share similar gene sequence to be differentiated
at specie level. When sequences are aligned wrongly, bacteria species are matched
incorrectly. Other pitfalls with this technique are hitches with purity of bacteria isolates
and sequencing artefacts which introduce errors into a DNA database which mostly likely
is interpreted as an existing or reference database for new studies thus hampering accurate
bacterial identification (Tshikhudo et al., 2013). Alternative cutting-edge technologies are
recommended to facilitate bacteria identification even further (Table 3).

CONCLUSION
NGS applications have revealed novel frontiers in microbiome research by strikingly
providing phylogenetic and functional portraits of the vaginal microbial communities,
including microbes that have not yet been cultivated by traditional method. We described
here the 16S rRNAgene sequencing, a commonly deployedNGSplatform in deciphering the
vaginal microbial communities. On the basis of published literature, vaginal microbiome
studies in the African population mainly features non-pregnant healthy and diseased
cohorts. Future studies should consider providing insight into the pregnancy vaginal
microbiome in healthy cohorts, both in cross- sectional and longitudinal fashion. A refined
longitudinal multicenter study is recommended so as to critically study the influences of
personal behaviors, hygiene practices, host characteristics and other maternal covariates
on the vaginal microbiome during pregnancy. The study on the postpartum vaginal
microbiome identified in the African population concluded by emphasizing the need for
a better understanding of the complex postpartum vaginal community profile. This
therefore calls for more large-scale studies on the postpartum vaginal microbiome.
The commonly deployed 16S rRNA gene sequencing has enabled the identification
of the distinct vaginal bacterial communities but, with some geographical and ethnic
discrepancies observed across various populations, more sophisticated high-throughput
platforms are recommended to exhaustively clarify inconsistencies between existing reports.
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Table 3 Cutting-edge methods for bacterial identification.

Cutting edge method Principle Advantage Disadvantage

Whole Genome Se-
quencing (WGS)

Bacteria are identified
by a Chain termination
principle

The entire genome
is accessed
Has a high-resolution
for capturing
genomic information
Encompasses both
large and small variants
omitted with targeted
sequencing approaches
Remits large volume
of data in a short time
and facilitates assembly
of novel genomes
Capable of identifying
both causative variants
and variants with
unknown significance
(Cirulli & Goldstein,
2010; Illumina, 2020).

Requires intensive
skilled labour and
expertise for accurate
interpretation and
organization of the
huge data generated
(Guan et al., 2012).
Sequencing cost is
expensive (Illumina,
2020).

Matrix-Assisted Laser
Desorption/Ionization-
Time of Flight Mass
Spectrometry (MALDI-
TOFMS)

Bacteria are identified
based on Polypeptide
finger-printing

This system is reliable,
simple and convenient
compared to WGS
Has the ability to
measure and analyze
complex peptide
mixtures thus ideal
for measuring whole
bacteria cells (Barbuddhe
et al., 2008; Fagerquist,
Yee & Miller, 2007;
Moura et al., 2008; De
Bruyne et al., 2011)

Sample preparation, the
cell lysis method, matrix
solutions and organic
solvents procedures may
affect the quality and re-
producibility of bacte-
rial MALDI-TOF MS
fingerprints thus com-
promising accurate bac-
teria identification (De
Bruyne et al., 2011)

The Biolog OmniLog
Identification System
(BIOLOG)

Bacteria are identified
based on oxidase
and catalase
biochemical activity.
Requires the
production of a unique
biochemical fingerprint.
Bacteria are identified
when these biochemical
fingerprints are analyzed
and compared to
existing database (Pires
& Seldin, 1997; Hung &
Annapurna, 2004)

The Biolog system is
better at identifying
both Gram negative and
Gram-positive fermen-
tative bacteria (Stager &
Davis, 1992; Hung & An-
napurna, 2004)

Protocol requires pure
cultures and the sub-
sequent growth of the
bacteria and pure cul-
ture and growth which
is time consuming espe-
cially slow-growing, fas-
tidious non-culturable
bacteria (Morgan et al.,
2009)

(continued on next page)
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Table 3 (continued)

Cutting edge method Principle Advantage Disadvantage

Ribotyping Bacterial are identi-
fied by ribotyping se-
quence differences in ri-
bosomal RNA (rRNA)
also known as Ribo-
typing finger printing.
Ribotying involves the
use of rRNA as probe
to detect chromoso-
mal restriction frag-
ment length polymor-
phisms (RFLPs) (Ki-
vanç, Vilmaz & Cakir,
2011; Inglis et al., 2002)

The Ribotyping device
used determines the ri-
botypes of diverse bacte-
ria isolates and permits
the differentiation of
molecular typing data.
This comparison allows
for accurate identifica-
tion of several bacte-
rial species from simi-
lar family or genus level
(Inglis et al., 2002; Ki-
vanç, Vilmaz & Cakir,
2011)

Requires intensive
skilled labour and
expertise for accurate
interpretation and
organization since
several discriminating
molecular typing data
on all isolates requires
analysis

Shotgun Sequencing Bacteria are identified
by a chain termination
principle

Provide information
concerning the func-
tional relevance of gene
due to its high taxo-
nomic resolution com-
pared to 16S sequenc-
ing (Poretsky et al., 2014;
Claesson et al., 2009;
Brown et al., 2019).
Evaluate the viral con-
stituents of the micro-
biome (viromes) (Fer-
retti et al., 2017).

More expensive, re-
quires greater exper-
tise, have a more chal-
lenging workflow and
allows contaminated
DNA fragment to be se-
quenced simultaneously
with microbial DNA
(Brown et al., 2019)

This move would offer a paradigm to both clearly decipher discrepancies in the vaginal
microbiome of women of similar ethnicities in different geographical regions and also
identify novel potential symbionts andpathobionts in the vagina.Ultimately,NGS approach
represents a giant step forward in the direction toward individualized medicine. Important
breakthroughs in the prediction of accurate treatment and therapeutic interventions, for
vaginal imbalances in sub-Saharan African women is envisaged.

Abbreviations

BV Bacterial Vaginosis
BVAB Bacteria associated with vaginosis
QIIME 2 Quantitative Insights into Microbial Ecology 2
PID Pelvic inflammatory disease
ASV Amplicon sequence variants
VMB Vaginal microbiome
OTU Operational Taxonomic Unit
PTB Pre-Term Births
PPROM Pre-Term Premature Rupture of Membranes
16S rRNA Ribosomal profiling of the Ribosomal RNA gene
HTS High-Throughput Sequencing
HMP Human Microbiome Project
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V Hypervariable region
CST Community State Types
NGS Next-Generation Sequencing
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