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α-klotho (KL) is an anti-aging protein and has been shown to exert anti-inflammatory and

anti-oxidative effects in the lung and pulmonary diseases such as chronic obstructive

pulmonary disease (COPD) and cystic fibrosis. The current study investigated the direct

effect of KL on the bronchial epithelium in regards to mucociliary clearance parameters.

Primary human bronchial and murine tracheal epithelial cells, cultured, and differentiated

at the air liquid interface (ALI), were treated with recombinant KL or infected with a

lentiviral vector expressing KL. Airway surface liquid (ASL) volume, airway ion channel

activities, and expression levels were analyzed. These experiments were paired with

ex vivo analyses of mucociliary clearance in murine tracheas from klotho deficient

mice and their wild type littermates. Our results showed that klotho deficiency led

to impaired mucociliary clearance with a reduction in ASL volume in vitro and ex

vivo. Overexpression or exogenous KL increased ASL volume, which was paralleled

by increased activation of the large-conductance, Ca2+-activated, voltage-dependent

potassium channel (BK) without effect on the cystic fibrosis transmembrane conductance

regulator (CFTR). Furthermore, KL overexpression downregulated IL-8 levels and

attenuated TGF-β-mediated downregulation of LRRC26, the γ subunit of BK, necessary

for its function in non-excitable cells. In summary, we show that KL regulates mucociliary

function by increasing ASL volume in the airways possibly due to underlying BK

activation. The KL mediated BK channel activation may be a potentially important target

to design therapeutic strategies in inflammatory airway diseases when ASL volume

is decreased.

Keywords: klotho, mucociliary clearance, TGF-β, airway surface liquid volume, calcium activated potassium

channels

INTRODUCTION

As part of the innate defense mechanism, mucociliary clearance (MCC) protects the airway
epithelium by trapping inhaled pathogens or particulate matter within the mucus layer and
removing it from the airways through ciliary movement (1, 2). Proper function of MCC depends
on both mucus production and mucus transport, which are affected by coordinated ciliary beating,
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sufficient ASL volume, andmucus viscosity (3).MCC can become
compromised by dysregulation of any of these key components,
which renders the airway and especially the airway epithelium
susceptible to infection. By failing to transport mucus effectively,
airways become obstructed which leads to inflammatory changes
as commonly seen in diseases such as cystic fibrosis (CF), asthma
or COPD (4–9).

ASL volume is regulated by ion fluxes across the apical airway
epithelial membrane, which achieves a balance of sodium (Na+)
absorption and chloride (Cl−) secretion (10–12). The CFTR
channel in part regulates chloride movement across the apical
airway epithelial membrane tomaintain airway fluid homeostasis
and proper ciliary beating (13, 14). However, apical potassium
(K+) secretion via BK channels has been increasingly recognized
for its essential role in delivering an electrochemical driving
force for apical chloride ion exit through CFTR and calcium-
activated chloride channels (CaCC) (15). This regulated ion flux
has been shown to help maintain ASL volume and MCC (16–
19), and dysregulation of these channels has been documented in
the pathogenesis of a multitude of inflammatory airway diseases
including CF and COPD (19–21).

The klotho protein (KL) exists in several forms including the
full-length membrane form and a soluble circulating form, which
results from either proteolytic cleavage or alternative splicing
(22, 23). KL’s interaction with fibroblast growth factor (FGF)
23 is well-documented: FGF23 and KL bind to FGF receptor 1
as a co-receptor, which has been shown to regulate phosphate
and calcium homeostasis in the kidney and parathyroid gland
(24). In addition, KL has been characterized as an anti-aging
protein, exerting anti-oxidative, anti-inflammatory, and anti-
proliferative functions in the heart, lung, and kidney (25–28).
We have previously shown that KL can protect the bronchial
epithelium against transforming growth factor (TGF)-β-induced
inflammation in CF lung disease (26). However, the role of KL
on mucociliary clearance has not been evaluated. In this study,
we investigated the effects of KL on ion flux across the airway
epithelium and thereby ASL homeostasis.

METHODS

Air Liquid Interface (ALI) Cell Culture
Human bronchial epithelial cells from individuals without
significant lung disease (HBEC) were isolated and cultured using
the ALI model as described previously (19, 29). Institutional
review board-approved consent for research was obtained by the
Life Alliance Organ Recovery Agency of the University of Miami
or the Life Center Northwest and the University of Alabama
at Birmingham.

Murine tracheal epithelial cells (MTEC) from wild type mice
and mice, homozygous for the klotho gene disruption (30), were
isolated, cultured, and differentiated for 2–3 weeks according
to an adapted protocol of You et al., as previously described
(26, 31, 32).

µOCT Analyses
The µOCT technique and analysis have been described
previously (33–35). Briefly, CBF, MCT, and ASL height were

directly evaluated via cross-sectional images of the airway
epithelium using high acquisition speed and high resolution.
Quantitative analysis of the images was achieved by use of
ImageJ (36).

Airway Surface Liquid (ASL) Volume in vitro
ASL volumes from HBECs and MTECs were quantified
by meniscus scanning and data were analyzed using the
software generously provided by Dr. Myerburg (University of
Pittsburgh) (37).

Electrophysiology
Differentiated HBECs on Snapwell filters were mounted
in Ussing chambers (Easymount chamber; Physiologic
Instruments) connected to a VCC MC6 voltage clamp unit
(Physiologic Instruments, San Diego, CA, USA) as previously
described (37). For BK activity, basolateral membranes were
permeabilized for 30min with 20µM amphotericin B, 10µM
nigericin, and 10µM valinomycin (whole cell short circuit
current recordings do not distinguish K+ efflux but measure
net current, a combination of K+ and Cl− efflux) (16). For
assessment of BK currents, cells were exposed to a K+ gradient in
the presence of apically applied 10µM amiloride (Sigma-Aldrich
#A7410, St. Louis, MO, USA) and 10µM ATP (Sigma-Aldrich
#A1852). CFTR activity was assessed in non-permeabilized cells
using apical 5mM Cl− in the presence of apically applied 10µM
amiloride and 10µM forskolin (Sigma-Aldrich #F3917) followed
by 10µM CFTRinh172 (Sigma-Aldrich #C2992) as described
previously (14, 37).

ELISA
An ultrasensitive IL-8 enzyme-linked immunosorbent assay
(ELISA) from Invitrogen (Thermo Fisher, Waltham, MA, USA)
was used as described previously (26).

Murine Kl Overexpression in NHBEC Using
a Lentiviral Expression System
A full length murine α-klotho, which was kindly provided by
Dr. Kuro-o (38), was cloned into a p38 plasmid containing
a puromycin resistance cassette. Lentiviral infection of normal
HBEC and puromycin selection was done before differentiation
as previously described (26, 32, 39).

Intracellular Calcium Imaging Using
GCaMP6s Sensor
Imaging was performed as previously described (40). A pEF1-
Puromycin-expressing GCaMP6s construct was designed using
pGP-CMV-GCaMP6s (Addgene plasmid #40753) gifted by Dr.
Douglas Kim (41). NHBEC cultures were infected in an
undifferentiated state with packaged lentiviruses to deliver
pEF1-GCaMP6s. Cultures were allowed to fully-differentiate at
the air-liquid interface (>4 weeks) under constant puromycin
selection (1µg/ml). GCaMP6s-expressing cultures were perfused
at room temperature with HEPES-buffered HBSS, pH 7.3
at 250 µL min−1 (42). GSK1016790A (Tocris), HC-067047
(Tocris), α-Klotho (Peprotech), and DMSO vehicle control
(0.1%; Sigma-Aldrich) were dissolved in HEPES-buffered HBSS
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and also perfused at 250 µL min−1. GCaMP6s emissions were
recorded every 3 s using MetaFluor (Molecular Devices). Data
were analyzed as relative calcium levels (Fx/F0) using IGOR
software (WaveMetrics).

Statistics
Experimental data were analyzed with Prism8 (GraphPad
Software, Inc., La Jolla, CA) as previously described (19) using
Student’s t test and analysis of variance or Kruskal Wallis with
appropriate post tests for at least three independent experiments.
Significance was accepted at p < 0.05.

RESULTS

ASL Height and Volume Is Significantly
Decreased in Tracheas From kl−/−

Deficient Mice
To determine the relevance of KL on parameters of mucociliary
function, we harvested tracheas from kl−/− mice and their wild
type littermates, analyzing them using µOCT as previously
described (3). Consistent with previous findings, we observed
dilated airway spaces, consistent with emphysema, when
compared to wild type littermates (Figure 1A). Interestingly,

FIGURE 1 | (A) Representative images showing hematoxylin staining of whole lung sections from kl−/− (KO) and kl+/+ (WT) mice (4X magnification, scale bar = 100

µm) and representative images of µOCT recordings from kl−/− (KO) and kl+/+ (WT) tracheas. (B) Comparison of fold changes in airway surface liquid (ASL) depth, (C)

ciliary beat frequency (CBF), and (D) mucociliary transport ex vivo from excised tracheas of kl−/− (KO) and kl+/+ (WT) mice using µOCT. (E) Bronchoalveolar lavage

fluid (BALF) analysis showing a trend increase of total neutrophil cell count in three representative WT and KO mice. Statistics: Student’s t-test showing mean ± S.D.

with **p < 0.01, as indicated in appropriate graphs (n = 7–11- animals per group).
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there was a significant decrease in ASL depth in the kl−/−

mice (Figure 1A right panel showing µOCT images and
Figure 1B), and decreased ciliary beat frequency (CBF) and
mucociliary transport (MCT) (Figures 1C,D). Previously, we
and others have shown that kl−/− mice have a significant
increase in total cell count and macrophage/monocytes
in bronchoalveolar lavage (BAL) fluid indicating airway
inflammation (43). Consistent with these previous findings,
we show here also increased neutrophils in BAL fluid from
kl−/− lungs when compared to wild type lungs (Figure 1E).
In summary, klotho deficient mice show emphysema, lung
inflammation and a decrease in ASL depth, CBF resulting in
impaired MCT.

In vitro Effects of Klotho on ASL Volume
Regulation
To validate our ex vivo data, we isolated primary murine
tracheal epithelial cells (MTECs) and differentiated them at
the ALI for 3–4 weeks until cilia and mucus were present as

shown previously (43). MTECs, isolated from kl−/− mice also
showed a significant decrease in their baseline ASL volume
(Figure 2A). When primary human bronchial epithelial ALI
cultures (HBEC) from control lungs were stimulated with TGF-
β, there was a significant decrease in ASL volume, consistent with
the known deleterious effects of TGF-β signaling on ion transport
in non-CF epithelia (44). Supplementation of these cultures
with human recombinant klotho protein mildly increased ASL
volume after 24 h but did not attenuate the TGF-β response
within 24 or 48 h (Figure 2B). Since we experienced significant
loss of activity of the recombinant klotho protein after short
storage time or a freeze thaw cycle, we developed a lentiviral
overexpression system of murine full length klotho in our
ALI cultures (26). Assessment of these differentiated klotho
overexpressing ALI cultures showed a significant increase in

ASL volume after 24 h, when compared to control-infected ALI

cultures. Additionally, the TGF-β-mediated reduction in ASL
volume was also attenuated in the klotho overexpressing cultures
at 48 h (Figure 2C).

FIGURE 2 | (A) Dot plot showing a significant decrease of ASL volume in murine tracheal epithelial cells (MTECs), isolated from kl−/− mice and their wild type

littermates and using meniscus scanning. (B) Bar graphs indicating ASL volume change in human bronchial epithelial cells (HBEC), differentiated at the ALI interface

and treated with TGF-β (2.5 ng/ml) ± recombinant KL (100 ng/ml) for 24 and 48 h. (C) ASL volume change in HBEC, infected with either control or klotho and

differentiated at the ALI interface and effect of TGF-β (2.5 ng/ml) for 24 and 48 h. (n = 3 independent experiments showing mean ± S.E. with *P < 0.05 and

**P < 0.01).

Frontiers in Medicine | www.frontiersin.org 4 January 2020 | Volume 6 | Article 339

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Garth et al. Klotho and Mucociliary Clearance

In vitro Effects of Klotho on HBEC Ion
Channel Activation and Expression
To assess underlying mechanisms how klotho regulates ASL
volume, we used Ussing chamber measurements to assess CFTR,
BK, and ENaC activities; all channels expressed in ALI cultures
and contributing to ASL volume regulation (10, 16). When
ALI cultures were stimulated with recombinant KL or infected
with KL lentiviral particles, only BK channel activity improved
significantly at 24 h (Figure 3A). Lentiviral overexpression of
KL also led to a persistent decrease of IL-8 secretion in these
cultures (Figure 3B). KL itself neither changedmRNA expression
of CFTR, KCNMA1, and LRRC26 (two BK channel subunits)
(Figure 3C), nor affected TGF-β mediated changes after 24 h
(Figure 3D), but there was attenuation of TGF-β-induced
reduction in LRRC26 mRNA levels after 48 h (Figure 3E). This
attenuation was also noted in the analysis of BK channel
activity (Figure 3F). To further elucidate potential underlying

mechanism for the described klotho effects, we could show that
recombinant klotho transiently increased intracellular calcium
in NHBEC cultures, comparable to a TRPV4 channel selective
agonist (GSK1016790A) (Figures 3G,H). Pre-exposure to the
TRPV4 inhibitor amplified the klotho effect on calcium further
(Figure 3I). In summary, klotho attenuated IL-8 secretion in ALI
cultures and may activate and partially restore the BK channel
following TGF-β treatment with intracellular calcium increase as
a potential underlying mechanism, providing protection from a
pro-inflammatory environment (Figure 4).

DISCUSSION

α-Klotho is an anti-aging protein, originally known from its
expression in the kidney (30). Mice deficient in klotho develop
an aging phenotype including emphysematous lung changes and
airway inflammation. We have previously shown that klotho

FIGURE 3 | (A) Effect of treatment with recombinant KL on the activation of CFTR, ENaC, and BK channels, assessed in human ALI cultures using Ussing chambers.

(B) Effect of klotho overexpression on basolateral IL-8 secretion in HBECs. (C) Bar graphs indicating changes in relative mRNA expression of CFTR and BK channels

subunits after treatment with KL, (D) TGF-β (2.5 ng/mL) after 24 h and (E) 48 h. (F) Effect of TGF-β ± KL on BK channel conductance in HBEC. (G) 10 nM

GSK1016790A, a TRPV4-selective agonist, transiently increases intracellular calcium in GCaMP6s expressing HBECs. This response is partially blocked in the

presence of TRPV4 antagonist HC-067047 (10µM, n = 1). (H) Acute KL exposure (0.01µg/ml, 5min) transiently increases intracellular calcium (n = 3). (I)

Pre-exposure to HC-067047 amplified KL-mediated calcium effects. 100µM UTP served as a positive control for calcium influx (n = 3 independent experiments from

3 to 5 different lungs showing mean ± S.E. with *P < 0.05, **P < 0.01, and ***P < 0.005).
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FIGURE 4 | Diagram summarizing working hypothesis. Klotho exerts an

activating effect on the apical BK channel through a direct action but also

indirectly by attenuating (1) a TGF-β-mediated decrease in LRRC26, the

regulatory subunit of the BK channel and (2) a TGF-β-mediated inhibition of

BK. In addition, klotho decreases basolateral IL-8 secretion, which is

pro-inflammatory thereby contributing to ASL volume dysregulation.

exerts an anti-inflammatory action in cystic fibrosis airway
disease by counteracting TGF-β signaling (26), but it is not
clear how klotho affects the mucociliary transport apparatus.
This study examines for the first time the role of klotho on
mucociliary clearance ex vivo and in vitro and attempts to
identify potential underlying mechanisms. Our results show that
CBF was not affected in the klotho deficient mouse model, but
that ASL volume, CBF and MCT are significantly reduced ex
vivo and in vitro, which is paralleled by neutrophilic airway
inflammation. In addition, we show that overexpression of klotho
increased ASL volume. In order to identify a potential underlying
mechanism, we showed that IL-8 levels were attenuated in
klotho-overexpressing ALI-cultures. This is important, since IL-
8 has been shown to negatively regulate ASL volume (10, 17, 45).
Furthermore, klotho itself can increase intracellular calcium and
affects BK channel activity, an apical potassium channel that
has been shown to be involved in ASL homeostasis together
with CFTR (16, 19). One potential mechanism could be through
restoration of its regulatory subunit LRRC26 (Figure 4).

Klotho is expressed in the lung, but it is downregulated in
airway diseases such as COPD (27, 43, 46). Interestingly, other
reports have described an absence of klotho expression in the
lung and suggested that it is synthesized in the kidney, cleaved
at the transmembrane domain, released into the circulation and
taken up by the lung (47, 48). Thus, more studies are needed
to determine the exact organ genesis of klotho. However, the
susceptibility to degradation and lack of sufficient tools to detect
klotho make it difficult to study presently. Therefore, it was
challenging for our studies to demonstrate overexpressed murine
klotho, which made us therefore use both overexpression and
exogenous stimulation for our studies. Using these approaches,
there is sufficient evidence to prove that klotho clearly exerts
effects on the lung and airways. Currently, klotho signaling is

mainly linked to FGF23 signaling, where klotho functions as
a co-receptor mediating phosphorylation of ERK (49). Recent
studies suggest that there is not only klotho independent
FGF23 signaling (43, 50) but also FGF23 independent klotho
signaling (51, 52). We are aware that klotho deficient mice
have elevated FGF23 levels, which could be responsible for
mucociliary dysfunction, but we conducted all our in vitro assays
in ALI cultures that do not express FGF23. Therefore, the klotho-
mediated effects on mucociliary clearance should be independent
of FGF23. We propose that the effect of klotho is two-fold:
(1) klotho can directly activate the BK channel (Figure 3A)
by an unknown mechanism, possibly through an increase of
intracellular calcium (40); and (2) klotho can rescue the TGF-
β-mediated downregulation of LRRC26 and restore BK function
(Figures 2, 3E). More mechanistic studies are needed to identify
the exact signaling pathway. Importantly, these discoveries open
new avenues of research to find anti-inflammatory and anti-
aging therapies for restoring klotho levels or increasing klotho
signaling in the airway through the improvement of ASL volume
and mucociliary clearance. These therapies would potentially
benefit a variety of diseases that feature acute or chronic
airway inflammation.
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