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Abstract

Background: Digital polymerase chain reaction (dPCR) is an increasingly popular technology for detecting and
quantifying target nucleic acids. Its advertised strength is high precision absolute quantification without needing
reference curves. The standard data analytic approach follows a seemingly straightforward theoretical framework but
ignores sources of variation in the data generating process. These stem from both technical and biological factors,
where we distinguish features that are 1) hard-wired in the equipment, 2) user-dependent and 3) provided by
manufacturers but may be adapted by the user. The impact of the corresponding variance components on the
accuracy and precision of target concentration estimators presented in the literature is studied through simulation.

Results: We reveal how system-specific technical factors influence accuracy as well as precision of concentration
estimates. We find that a well-chosen sample dilution level and modifiable settings such as the fluorescence cut-off
for target copy detection have a substantial impact on reliability and can be adapted to the sample analysed in ways
that matter. User-dependent technical variation, including pipette inaccuracy and specific sources of sample
heterogeneity, leads to a steep increase in uncertainty of estimated concentrations. Users can discover this through
replicate experiments and derived variance estimation. Finally, the detection performance can be improved by
optimizing the fluorescence intensity cut point as suboptimal thresholds reduce the accuracy of concentration
estimates considerably.

Conclusions: Like any other technology, dPCR is subject to variation induced by natural perturbations, systematic
settings as well as user-dependent protocols. Corresponding uncertainty may be controlled with an adapted
experimental design. Our findings point to modifiable key sources of uncertainty that form an important starting
point for the development of guidelines on dPCR design and data analysis with correct precision bounds. Besides
clever choices of sample dilution levels, experiment-specific tuning of machine settings can greatly improve results.
Well-chosen data-driven fluorescence intensity thresholds in particular result in major improvements in target
presence detection. We call on manufacturers to provide sufficiently detailed output data that allows users to
maximize the potential of the method in their setting and obtain high precision and accuracy for their experiments.

Keywords: Digital PCR, Absolute nucleic acid quantification, CNV, Variance component, Precision, Accuracy,
Reliability, Experimental design, Polymerase chain reaction

Background
Advances in the field of polymerase chain reaction have
enabled researchers to detect and quantify nucleic acids
with increasing precision and accuracy. Until recently,
real-time quantitative PCR was the gold standard for
determining the concentration of a known target DNA or
RNA sequence in a sample [1]. More than two decades
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ago, digital PCR was introduced as a potential alterna-
tive for detecting and quantifying nucleic acids [2]. The
proof of concept followed a few years later [3]. Building
on the necessary technological advances in the field of
nanofluidics, commercially viable products were recently
developed by 4 major players on the current market [4,5].
Promising applications are found in food safety [6],

forensic research, cancer diagnostics detection [7,8],
pathogen detection [9-11], rare allele detection [12],
development of biomarkers [5] and sample preparation for
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next-generation sequencing [13] among others. The most
popular applications so far are low copy number detection
[14,15] and copy number variation [16,17].
Digital PCR uses microfluidic droplets or chips to divide

a sample in hundreds, thousands or millions of tiny par-
titions. This is followed by a classical PCR amplification
step. The endpoint fluorescence signal is used to clas-
sify partitions in two distinct groups: those that contain
at least one target sequence and those that do not. From
this, the percentage of partitions that are void of copies
is obtained. The concentration of the target sequence can
now be estimated as the number of copies per partition
follows a Poisson distribution under regularity conditions.
Technical and biological factors that influence the con-

centration estimates have been studied extensively for
quantitative PCR, which resulted in the formulation of
guidelines for scientific authors [1]. Similar efforts to raise
awareness and formulate guidelines for digital PCR have
been very recently published [18]. Some of the relevant
sources of variation largely remain to be explored how-
ever. One study examined the assumption that target
copies are randomly distributed among partitions for a
chip based system [19] while another focused on the pres-
ence of variance components in a droplet based system
[20]. Experimental comparative studies between real-time
quantitative PCR and digital PCR have found similar per-
formance [9,10,21] while others are claiming digital PCR
can measure smaller copy number variations than quan-
titative PCR [14,16]. We study how the precision and
accuracy of digital PCR results is affected by realistic lev-
els of variation likely present in either system, and derive
some guidelines for establishing more reliable estimates.

dPCRWorkflow
The digital PCR workflow allows for quick quantification
of target sequences. The typical dPCR protocol reads as
follows: (1) Extracting RNA or DNA from the biological
sample. (2) Preparing the PCR master mix and including
a quantity of extract. (3) Dividing the reaction mix over
a large number of partitions. (4) Amplifying the target
material present in the partitions over a selected number

of amplification cycles and measuring the endpoint flu-
orescence. (5) Estimating the target concentration and
quantifying the uncertainty on the estimates.
Below, we discuss the different steps in the dPCR work-

flow together with their key sources of variation in the
data production process as visualized in Figure 1 and
summarized in Table 1.
Digital PCR starts from an extracted DNA or RNA sam-

ple in a similar fashion as qPCR (step 1). Imperfections in
the extract can lead to inhibited amplification of the target
sequence. A dilution step may often be indicated.
Next, a predetermined amount of the (diluted) NA

extract is mixed with the PCR Master Mix to create the
reaction mix (step 2). The importance of transferring
extracted NA accurately into the reaction mix is well rec-
ognized, yet small pipette errors are unavoidable for volu-
metric dilutions. These errors are typically much smaller
for gravimetric dilutions although errors due to the bal-
ance and measurement method may still exist. Technical
replicates of the same experiment may be prepared simul-
taneously, aiming for identical stochastic properties and
sampling variation stemming from the Poisson process
only. In practice they are subject to additional technical
variation as a result of pipette error and sample hetero-
geneity among other technical factors. The magnitude of
pipette error can be estimated from known systematic and
random errors of pipettes.
From this moment on, the digital PCR workflow devi-

ates from classic PCR. In the following dPCR step, each
replicate sample is divided into a large number of par-
titions (step 3). Using microfluidics for instance, parti-
tions are created which are either water-in-oil droplets
or microchambers filled with reaction mix. The theoret-
ical framework assumes that partitions are of equal size.
In practice, droplets vary in size while chambers do not
contain the exact same volume [19,20]. In [19], the within-
array coefficient of variation was estimated at around 10%
for one of the chip-based systems.
The partitions are subsequently thermally amplified

as in a classical PCR. Fluorescence levels are read for
each partition and at the endpoint only in most systems

pipetting unequal
partition size

partition
loss

sampling
variation error misclassification

DNA
Target Partitions Endpoint

Fluoresence K, nMix
Reaction

Figure 1 Visualisation of the different steps in a typical digital PCR workflow. Important variance components are included as arrows
between the appropriate steps. The steps are: (1) extracting RNA or DNA from the biological sample, (2) preparing the PCR master mix and including
a quantity of extract, (3) dividing the reaction mix over a large number of partitions (droplets or cells), (4) amplifying the target material present in
the partitions over a selected number of amplification cycles and measuring the endpoint fluorescence and (5) estimating the target concentration
and quantifying the uncertainty on the estimates. Variance components are (i) technical variation: sampling variation and pipette error, (ii)
machine-specific variation: unequal partition size and possible partition loss, and (iii) possibly user-optimized (mis)classification of endpoint
fluorescence.
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Table 1 Digital PCRWorkflow

Step Output Associated variation

1 Extracted DNA Inhibition, overdilution, underdilution

2 Reaction mix Pipette error, sample heterogeneity

3 Partitions Loss of partitions, unequal partition size

4 Fluorescence signal Loss of partitions, amplification efficiency

5 Estimated Misclassification, model uncertainty,
concentration inaccurate partition size

A summary of the steps in digital PCR with associated variance components.

(step 4). As in classical PCR, the experimenter is free to
choose the number of amplification cycles. Most com-
mercial machines include a default protocol with a fixed
number of cycles.
Between partitioning and the fluorescence measure-

ment, partitions may be lost in a random fashion for
various reasons. In droplet-based systems, this might be
induced by droplets that stick to the sides of the tube, clog
the reader or coalesce together. In chip-based systems,
spatial effects may play a role as adjacent chambers are
more likely to be both lost, for example because of small
hairs. Losses of about 30% seem normal for droplet-based
systems [4,12,20].
Raw fluorescence levels are finally transformed into a

binary variable by applying a threshold obtained through
data-analysis. Figure 2 illustrates the fluorescence pattern

for an experiment with two dyes with arbitrary thresholds
of 5000 and 4000. When end-point fluorescence exceeds
this threshold, the partition is labelled positive and
assumed to have at least one initial target copy. Mean-
while, a partition for which the fluorescence level does
not reach the threshold is labelled negative and declared
void of target copies. Current systems embed their own
thresholds before labelling fluorescence values obtained
at the end of the amplification cycle as signal of target
presence rather than noise. Inhibition, slow starting reac-
tions, primer depletion and other sources of technical
and biological variation may result in misclassification for
some partitions. The influence of inhibition on efficiency
has been modelled for qPCR [22]. Increased inhibition
has been shown to slow down the reaction considerably.
In digital PCR, inhibitors or slow starting reactions may
result in misclassification as partitions fail to reach the
fluorescence threshold while still containing at least one
initial target copy. Resulting false negatives hence reduce
sensitivity for the detection of positive partitions.
On the other hand, the presence of highly homologous

sequences and other contaminations may lead to non-
specific binding of primers and can cause positive signals
in the absence of a target sequence. These false positives
correspondingly reduce specificity.
From [12,14,20,23], we see that the amount of false pos-

itives for NTC’s (no template controls) is relatively small
and often 0. Experiments on mutant DNA that include

Figure 2 Example of the endpoint fluorescence for two dyes. In the left panel, the endpoint fluorescence of an artificial experiment without rain
is shown, in the right panel the result of an artificial experiment with about 6% rain. For both dyes, the distribution is a mixture of two components,
composed of output from both positive and negative partitions as shown with appropriate density functions on top and on the right of both
graphs. An arbitrary threshold to separate both groups is added for each dye, dividing the area in four classification quadrants.
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a wildtype reference sample provide similar results. The
amount of false negatives may be much larger as we often
see a (downward) bias [12,14,23].
Additionally, we noticed up to about 10% so called ‘rain’,

which are partitions with an endpoint fluorescence mea-
surement that can not be clearly classified as positive
or negative based on the visible clusters. A visual exam-
ple with about 6% rain can be seen in the right panel
of Figure 2. The impact of changes in the threshold is
confided to the labelling of observations in the rain as
cluster members tend to be clearly positively or negatively
labelled.
It was empirically verified in [23] that an increased

number of amplification cycles tends to increase the per-
centage of amplified partitions. Consequently, the number
of partitions that are difficult to classify, visualised as rain,
are reduced and with it misclassification rates.
The choice of the threshold and subsequent labelling

of the partitions is considered the first part of the data-
analysis (step 5). Although the cut-off is somewhat arbi-
trarily and automatically chosen in most systems, it is
possible for the researcher to set a user defined threshold.
Finally, the proportion of positive partitions is counted

and the concentration of the target gene derived. Define X
as the number of copies in a partition and λ as our param-
eter of interest: the expected number of target copies per
partition. When the number of copies in a constant vol-
ume of a homogeneous mix is Poisson distributed [24,25],
we expect a proportion p = P(X = 0) = e−λ of partitions
that is void of target copies. Let K be the number of par-
titions with a negative signal and nr the total number of
partitions for which results are returned. We can estimate
P(X = 0) by p̂ = K

nr , the proportion of observed partitions
void of target copies in our sample and we have:

λ̂ = − log
(
K
nr

)
.

Manufacturers of commercial systems provide an aver-
age partition size or volume v, in nanoliter say. The con-
centration estimate θ̂ of target copies per nanoliter then
follows directly as λ̂/v. When the designated volume v is
inaccurate, this leads to biased concentration estimates
θ̂ . This error is systematic and in addition to any ran-
dom between-replicate variability on the average partition
volume. In practice, small deviations exist. In [20], an
overall average droplet size of 0.868 nL in 1122 droplets
was observed, not significantly different from the estimate
(v = 0.89 nL) provided independently by the manufac-
turer. For a hypothetical sample with average partition size
v = 0.868, the use of v = 0.89 leads to a 2.5% downward
bias of the concentration θ .
When technical replicates are available, results can be

combined in two ways as shown in Figure 3. When the
replicates are pooled, the formula above can be applied on

Figure 3 Comparison of 95% confidence intervals on the target
concentration for different estimation procedures. The analysis
per replicate shows typical 95% confidence intervals for single
samples. Each replicate presents a random sample with expected
concentration λ = 1.25 target copies per partition and 5% pipette
error. Option 1 on the left shows the 95% confidence interval
calculated with a single sample method pooling the partitions of the
8 technical replicates before estimating the concentration and its
variance with Poisson statistics. Option 2 on the right uses a replicate
based method to estimate a 95% confidence interval based on the 8
individual replicates. Both the concentration and its variance were
calculated using the empirical mean and variance of the
concentration estimates of 8 independent replicates.

the total number of partitions of all replicates to obtain
a single concentration estimate. Alternatively, the con-
centration estimates can be calculated separately for all
replicates and combined into a single number by taking
the empirical average.
We simulate this digital PCR procedure while taking

into account the different sources of variation to get a
better understanding of the reliability of the proposed esti-
mation procedures under the presence of these variation
components. We quantify the influence of each source
of variation on the accuracy and precision of the con-
centration estimates. Some sources of variation may be
fixed by manufacturers such as equal partition sizes, but
most factors that strongly influence both the accuracy
and precision of concentration estimates are under exper-
imental control or can be if the manufacturer allows it.
This includes the number of amplification cycles, dilu-
tion levels of the sample and the classification method
to determine the percentage of negative partitions. We
study the relative importance and discuss the ability to
improve results by well-chosen experimental set-ups and
corresponding analyses.
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Although the values in the simulation protocol below
may not reflect the exact set-up of a specific machine,
both the theoretical considerations and obtained results
are relevant for all systems including, but not limited to,
all commercial systems currently in use [4].

Methods
Below, we detail our simulation set-up presenting plau-
sible departures from the theoretical model described
above. From each generated dataset, we estimate the
number of target copies in the sample and derive the con-
centration of the original dilution relying on the assump-
tions of the simple working model, which may ignore
components of variation in the data-generating model.
For each set-up 1000 simulations are run to get stable
results.

Data-generating model
We generate data according to the steps described in
Table 1 and Figure 1 and evaluate multiple scenarios
that combine different sources of variation in different
simulations.
In step 1, we simulate the process for several orders of

magnitude of NA concentration reflecting dilution levels
used in practice. We therefore let the expected number
of target copies per partition λ range from 0.0001 (1 in
10 000) up to 5.
In step 2, we add random pipette errors to our sim-

ulations. Pipette error results in a small deviation of
the expected target sequence concentration in the reac-
tion mix from the original concentration in the dilution.
We simulate random pipette errors, without the non-
stochastic systematic pipette error. Our pipetted volume
is normally distributed with a coefficient of variation of
0% to 10%. These deviations are based on the maximum
allowed pipette error guidelines (ISO 8655-7:2005) com-
bined with possible heterogeneity of the original dilution.
All other sources of between-replicate technical variabil-
ity, including between-replicate variation of partition size,
are lumped in what we generally refer to as pipette error.
In [20], a between-well coefficient of variation of 2.8%
was found based on 16 wells in a droplet based sys-
tem. In [19], a between-array coefficient of variation of
4.9% can be crudely estimated based on 2 arrays for a
chip based system. In each simulation run, we consider
8 technical replicates from the same biological sample.
Consequently, they keep technical variability as a direct
result of the pipette error described above among other
sources of technical variation. Hence, our simulations can
be interpreted as repeated experiments under the same
conditions performed by the same experimenter with the
same pipette.
In step 3, we study the difference in partition size, or

equivalently in partition volume between the different

partitions within a replicate. We assume that sizes vary
independently and follow the same distribution in each
replicate. We model this size as a log-normal distribution
with parameters μ = 0 and σ = 0.1 which is approxi-
mately equal to a normal distribution with a coefficient of
variation of 10%. The expected number of target copies in
a partition is modelled to be proportional to the size of the
partition.
In step 4, the fluorescence levels of all partitions are

measured. During this process, some partitions may be
lost for unknown reasons. We assume random loss imply-
ing missingness is completely at random with respect to
outcome. If this is true, lost partitions are as likely to
return a positive signal as returned partitions. This is
equivalent to an experiment in which fewer partitions
were created and none lost.
We did our simulations for a system with 20 000

partitions. To examine the influence of random parti-
tion loss, we varied the number of returned partitions
between replicates and simulations independently with an
expected value and standard deviation of approximately
14 000 and 1800 respectively, as in [20].
In Additional file 1, we derive precision estimates.

For the large number of partitions currently generated,
the anticipated loss imply but a slight loss in precision
amounting to a negligible source of variation.
In step 5, the fluorescence level of each partition is

transformed into a binary 0/1-signal after applying a
somewhat arbitrarily chosen threshold based on the data.
In simple experiments, the positive and negative parti-
tions can be easily separated by the observed fluorescence
and as such the number and proportion of partitions with
a positive signal can be determined with minimal error.
This is shown in Figure 2 on the left.
In our simulations, we look at a fixed underlying mis-

classification probability without appointing a specific
cause for this misclassification. This allows us to study the
effect of the misclassification itself without putting much
emphasis on the reason behind it. Every partition contain-
ing a target copy has a given conditional probability to
return a negative signal (the expected false negative rate,
1-sensitivity) while every partition without target copy has
a given conditional probability to return a positive signal
(the expected false positive rate, 1-specificity). We assess
the following false positive-false negative (FPR,FNR) com-
binations: (0.01%; 0%), (0.01%; 0.2%), (0.01%; 1%), (0.01%;
5%), (0.01%; 20%), (0%; 1%), (0.1%; 1%), (1%; 1%).
This set-up allows for a broad range for the false nega-

tive rate under a fixed specificity of 99.99% as experiments
tend to be more vulnerable to not detecting true posi-
tive partitions. The influence of the false positive rate is
limited to smaller deviations with a specificity at least
99% in each simulation under a fixed realistic sensitivity
of 99%.
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We include the different variance components both in
parallel simulations (each separately) as well as sequen-
tially. In the latter case, sources were added in the follow-
ing order: random partition loss, pipette error, unequal
partition size, misclassification.

Generated parameter estimates
We calculate a concentration estimate λ̂, the bias λ̂ − λ,
the associated asymptotic variance and a 95% confidence
interval for each of the 8 replicates of each experiment (see
Additional file 1 for the calculation and derivation of the
asymptotic variance and associated confidence interval).
We chose 8 replicates as the number of reactions that can
run simultaneously by the different systems is typically a
multiple of 8. Most systems use 12×8 = 96 well plates for
preparing the reaction mix.
Additionally, the results from the 8 simulations are com-

bined in two different ways.
The first option that we consider, is pooling the repli-

cates as if it were one sample with
(
nr, tot = ∑8

i=1 nr, i
)

partitions. The estimate, its bias, asymptotic variance and
confidence interval are calculated, again as if it was one
sample. This method is still used in the literature and
stems from initial papers on digital PCR which deal with
small numbers of partitions and pooled repeated experi-
ments to obtain the required accuracy [12,16,21,26].
As a second option, we study the variation between the

replicates by assuming the 8 estimates stem from inde-
pendent results, which may show some between-replicate
variation. We calculate the empirical average and empiri-
cal variance of the 8 separate estimates and derive a 95%
confidence interval under the assumption that the esti-
mates of different replicates follow a normal distribution.
This is a realistic assumption since the number of target
copies in each replicate follows an approximately normal
distribution (Poisson distribution) for a constant volume
under the theoretical assumptions [24,25].

Results and discussion
In what follows, we discuss how the impact of each com-
monly encountered source of variation in the data gen-
erating process can be quantified. These results form a
starting point for optimizing tuning parameters of the
method and guide the experimental design.

Optimal concentration and loss of partitions
The first simulated scenario follows the simple theoretical
model which includes random partition loss as the only
source of variation. When the loss is completely at ran-
dom, the precision of the concentration estimate solely
depends on the model-based variability for a given num-
ber of partitions. This describes the best-case scenario
where random sampling variation as described by the
Poisson process is the only source of variation as in [26].

Since model-based variability is driven by the target
DNA concentration in the sample, an optimal proportion
of positive partitions leads to the most precise estimates.
This can be achieved for an average of 1.59 target copies
per partition (see Additional file 1). Figure 4 shows the-
oretical relative boundaries of the confidence interval for
any given concentration as a function of the true gener-
ated λ. The most narrow intervals close to the optimal
concentration grow into much larger intervals as bound-
ary conditions are reached with few negative or positive
partitions.
Our simulations confirmed this trend. Estimators are

unbiased while the variance and thus the width of the 95%
confidence interval decreases for increasing concentra-
tion until an optimum is reached around 1.5 target copies
per partition. From 1.5 onwards the variance and CI width
start to increase again. A more detailed figure is shown in
Additional file 2.
A random loss of partitions translates into a small

decrease of precision. We simulated samples under the-
oretical conditions with on average 20 000 created par-
titions. Randomly removing approximately 30% of the
partitions increased the estimated asymptotic relative
standard deviations under the Poisson assumption by on
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Figure 4 Theoretical confidence interval limits of the estimated
concentration relative to the true concentration. The theoretical
limits of a 95% confidence interval of the concentration estimate λ̂

divided by the true concentration λ as a function of this concentration
(in copies per partition) for 20 000 analysed partitions. The limits are
shown relative to the true concentration such that the precision of
different dilutions of the same sample can be assessed on the same
scale. Although the application can be used for concentration ranges
of up to 5 orders of magnitude, very precise estimates are
theoretically only possible for about 2 orders of magnitude.
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average about 20%. The standard deviation based on esti-
mates from 1000 simulation runs was 44% higher. These
numbers are consistent with theoretical expectations and
small compared to other sources of variation discussed
below.

Pipette error leads to underestimation of the variation
In a next group of simulations, we study the impact of
additional variation between technical replicates induced
by pipette errors, sample heterogeneity and between-
replicate variation in average partition size. This generates
slightly different amounts of target NA and varying vol-
umes in each replicate. We expect the number of target
copies in a constant volume to vary between replicates due
to pipette errors and sample heterogeneity on top of the
inherent Poisson variability.
Since the theoretical model does not account for varia-

tion between replicates (see Additional file 1), it underes-
timates the variance and overestimates the coverage of the
confidence intervals as illustrated in Figure 5. This is most
problematic for the concentrations where the Poisson
model yields the smallest confidence intervals. The the-
oretical model assumes that the model variance is lower
close to 1.59 copies/partition, but the technical variance
as a result of pipette error is similar for most concen-
trations. Both Poisson and technical variability contribute

to the total variation. The technical variation appears to
dominate the Poisson variation for concentrations close
to the optimum under typical experimental conditions.
Consequently, the precision decreases considerably.
The extra variance can not be estimated from a single

reaction but replicates allow for realistic estimates on the
precision of the results. The replicate based variance esti-
mator has the advantages of being unbiased and capturing
the total variance. The resulting intervals do show a cor-
rect coverage, as illustrated on the right panel of Figure 5.
Naive pooling of partitions from different replicates seems
to increase precision, but in fact it dramatically underesti-
mates the variance and it must be avoided. In Figure 3, we
see how the small confidence interval resulting from pool-
ing (option 1) may not contain the true parameter value.
The replicate based variance estimator (option 2) captures
the variance both within (purple lines) and between (blue
dots) replicates.
Since the width of a replicate based confidence inter-

val is a decreasing function of the number of replicates
m, a large number of replicates is preferred such that the
confidence interval is as small as possible. Conversely, we
would like to keep m small for cost-efficiency. In Table 2,
we calculated the width of the confidence intervals relative
to the standard deviation and added the expected reduc-
tion of the width as a result of every additional technical
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Figure 5 Coverage of 95% confidence intervals of target concentration in the presence of pipette error. For a given concentration λ, the
coverage was calculated as the ratio of the number of confidence intervals out of 1000 simulations that contain the true concentration λ divided by
the total number of confidence intervals calculated (1000). The left panel shows results for confidence intervals calculated using a single sample
method after pooling the partitions of the 8 technical replicates before estimating the concentration and its variance with Poisson statistics. The
right panel shows results for confidence intervals calculated using a replicate based method. The concentration and its variance were calculated
using the empirical mean and variance of the concentration estimates of 8 independent replicates. The pooled method shows a dramatic loss of
coverage while the replicate based method shows correct coverage.
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Table 2 Width of a replicate based confidence interval

Replicates (m) Width Improvement

2 1.000

3 0.276 72.35%

4 0.177 35.94%

5 0.138 21.97%

6 0.117 15.48%

7 0.103 11.87%

8 0.093 9.60%

9 0.086 8.06%

10 0.080 6.94%

11 0.075 6.09%

12 0.071 5.42%

The relative width of a confidence interval (proportional to t/
√
m) for a constant

standard deviation is a function of the number of technical replicates and the
t-quantile. The rightmost column gives the improvement (percentage decrease
in width) when increasing the number of technical replicates with one. Note,
that in this table we only consider uncertainty due to technical variability and
that reducing technical variability does not eliminate biological variability.
Hence, in experiments for comparing nucleic acid content across biological
conditions an appropriate number of biological repeats, each with technical
replicates, will always be required.

replicate. It can be clearly observed that 4 or more tech-
nical replicates would be preferred to get a decent con-
fidence interval, while more than 8 technical replicates
does not improve the results considerably. Additionally,
biological repeats are essential in most applications to

capture any existing between-sample variation. In the lat-
ter case, at least 4 technical replicates are advised for each
biological repeat.

Unequal partition size leads to downward bias
In this section, we assume that the size for a given parti-
tion is no longer constant, but varies randomly, indepen-
dent of any other variable. We assume that there is no
intra- nor inter-run effect and thus the size follows the
same distribution between replicates.
Theoretical derivations (see Additional file 1) indicate

that underestimation is to be expected especially for
samples with high concentration. In Figure 6, relative
estimates are summarized for normally distributed sizes
with a relative deviation of 10%. The estimators show
a systematic downward bias that is negligible for small
concentrations and maximally 2.5% for the highest con-
centration in this set-up. The variance is similar to that
of the equivalent simulation with constant partition size
although slightly lower for higher concentrations as it is
directly related to the estimated concentration, which is in
turn underestimated.

We use the RMSE =
√

1
S

∑S
s=1

(
λ̂s − λ

)2
, estimated as

the square root of the sum of the variance and the squared
bias, to take both the variance and the bias into account
and give accuracy and precision an equal weight. In the
right panel of Figure 6, the RMSE reaches its minimum

Figure 6 Relative bias and RMSE of the target concentration estimates in the presence of unequal partition size.When droplets or chips do
not contain the same volume, bias is introduced. In the left panel, a boxplot shows relative estimates for 1000 simulated experiments at given

concentration λ (copies/partition). The relative bias is calculated using a replicate based method as
(
λ̂ − λ

)
/λ for 1000 simulated experiments of 8

replicates. High concentrations show a downward bias. In the right panel, the associated root mean squared error RMSE =
√

1
S

∑S
s=1

(
λ̂s − λ

)2
is

shown, estimated as the square root of the sum of the relative variance and squared relative bias for S = 1000 simulated experiments of 8 replicates.
For a given concentration λ, this combines the errors as a result of the variance and the bias in a single number based on the results of 1000
simulated experiments. The best combination of accuracy and precision is achieved when the function hits its minimum.
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around 0.5 copies per partition with decent performance
between 0.1 and 2 target copies per partition for this
specific set-up.
We note that the influence of unequal partition size is

limited and can be easily avoided by diluting a sample.
Since this is a fixedmachine setting, manufacturers should
guarantee that sizes of the partitions created by or present
in their products are somewhat comparable.

Misclassification of target presence leads to bias
Next, we study the misclassification.We assess the follow-
ing false positive-false negative (FPR,FNR) combinations
discussed above: (0.01%; 0%), (0.01%; 0.2%), (0.01%; 1%),
(0.01%; 5%), (0.01%; 20%), (0%; 1%), (0.1%; 1%), (1%; 1%).
In the first data-generating model, misclassification is

the only source of variation while in the other model all
previously discussed sources of variation are included in
addition to the misclassification.
In Figure 7, we see the results for the bias for simula-

tions without other variance components. Misclassifica-
tion creates bias since false negatives lead to underesti-
mation and false positives to overestimation of λ. A few
false positives already have a big impact on samples with

Figure 7 Relative bias of the target concentration estimates
under theoretical assumptions andmisclassification. The relative

bias is calculated as
λ̂ − λ

λ
for 1000 simulated experiments of 8

replicates without any additional sources of variation. As results are
relative to the true concentration λ, the precision of different dilutions
of the same sample can be assessed on the same scale. Results were
plotted for different misclassification probabilities (FPR, FNR) with
FPR = false positive rate = 1-specificity and FNR = false negative
rate = 1-sensitivity. False positives have considerable influence on the
estimates for low concentrations, while false negatives substantially
influence the results for highly concentrated samples.

few target copies, while increasing false negatives espe-
cially has a very high impact on samples with a higher
concentration.
Since the variance is proportional to the rate itself,

its estimate decreases as false negatives increase and
increases with more false positives. The false negative
(positive) risk has a bigger impact with higher (lower)
concentrations.
Interestingly, every line in Figure 7 that includes both

sources of misclassification crosses 0 at some point. This
means that for a given combination of false positive and
false negative risks, we can find a dilution for which the
estimator is unbiased.
Based on a dilution series with enough points, one of the

patterns in Figure 7 may be recognized when plotting the
estimated concentration against the dilution rate. This is
similar to the linearity and precision plots that are already
used in the literature [20] and may help the user to assess
possible bias.
Conversely, we can derive the ratio of false negatives

over false positives that results in unbiased estimates for
a given concentration (See Additional file 1). This too
has practical relevance. The threshold to discriminate
between positive and negative partitions can be manually
adapted to allowmore positive partitions when false nega-
tivesmay bemost problematic. This is assumingly the case
in most experiments. The threshold should be increased
to allow less positive partitions when false positives are
expected to dominate the estimation error. This would be
especially useful in experiments with small concentrations
or that focus on detection.
Users may choose to add a two-step procedure to

improve the threshold in their protocol. In the first step,
an initial concentration estimate can be obtained with the
standard threshold. In the second step, the threshold may
be changed based on the concentration estimate obtained
in the first step and optional prior information on the
expected misclassification rates.
The bias as a result of misclassification dwarfs any possi-

ble bias that may be present due to unequal partition sizes
if the partition sizes are somewhat similar. In Figure 8, we
see that the lines with respect to highmisclassification rise
quickly while the bias as a consequence of unequal par-
tition size is hardly visible as it is a small part of the rise
of the curves for high concentrations. This is more clearly
visible in Figure 9. We see that a small, realistic false neg-
ative rate of 1% leads to increasing bias for increasing λ

while the influence of unequal partition sizes is limited for
average to small concentrations.
The optimal window that gives a concentration esti-

mate λ̂ with the highest precision is strongly dependent
on the proportion false positives and false negatives. In
Figure 8, all sources of variation discussed are combined
and the relative RMSE as a combined measure of the bias
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Figure 8 Relative RMSE of the target concentration estimates
under realistic assumptions andmisclassification. The RMSE =√

1
S

∑S
s=1

(
λ̂s − λ

)2
is estimated as the square root of the sum of the

relative variance and squared relative bias for S = 1000 simulated
experiments of 8 replicates. As results are relative to the true
concentration λ, the precision of different dilutions of the same
sample can be assessed on the same scale. Results were plotted for
different misclassification probabilities (FPR, FNR) with FPR = false
positive rate = 1-specificity and FNR = false negative rate =
1-sensitivity and in the presence of pipette error and unequal partition
size. When misclassification is limited, a relatively wide window of
dilution exists in which high accuracy and precision can be achieved.

and variance is plotted against the true concentration.
Larger numbers of false positives and false negatives lead
to smaller windows with optimal estimates. When there
is limited misclassification, relatively large windows with
both accurate and precise estimates exist.
Note that one strategy to influence and reduce the mis-

classification rates in practice may involve changing the
number of amplification cycles. Additionally, reference
materials, qPCR and no-template controls can help to
assess the vulnerability of a sample to misclassification
and may allow for a crude estimate of expected misclassi-
fication rates.

Non-stochastic errors
While our simulations focus on stochastic settings, sys-
tematic errors may be present as well.
Systematic pipette error, for instance, introduces under-

estimated (overestimated) concentration estimates and
data-analytic methods cannot correct for a lack (excess)
of NA material in the reaction mix. Systematic volumet-
ric pipette error can however be estimated with gravimetric
procedures and be reduced by recalibrating pipettes regularly.

The partition volume v supplied by the manufacturer
enters in the denominator of the final concentration esti-
mate as a constant assumed to be correct.When the actual
mean partition volume deviates from v, systematic bias is
added when the concentration θ is reported in copies per
nanoliter, λ/v. We demonstrated how small deviations in
partition volumewithin a replicate create only limited bias
for high concentrations. Systematic deviations of the aver-
age partition size from v can create amuch larger bias. The
small, non-significant difference of 2.5% found in [20] for
instance induces more bias than 10% within replicate vari-
ation. It is therefore essential that manufacturers invest in
accurate partition volume estimates.

Combining sources of variation
In practice, all of the aforementioned sources of variation
are present in experiments in one way or another. It is not
feasible to describe all combinations jointly. Additional
file 3 provides the R-code used in this article and enables
the user to simulate the outcome of an experiment with
specific settings for each source of variation discussed
above. Additional file 4 consists of an interactive tool
embedded in a mini-website that allows researchers to
study results that can be expected from a useful range of
combinations of these sources of variation. The tool pro-
vides valuable information on the joint effect of different
realistic sources of variation present in most experiments.
Note, that our results can guide dPCR users to optimise
their experiments with respect to signal bias or RMSE.
This is useful as our results show that a well-chosen
threshold (rightmost drop-down menu) combined with
an optimal sample dilution (x-axis) can improve accuracy
and precision considerably.

Conclusions
We studied the influence of several sources of variation
on estimators produced by digital PCR. We showed how
some have higher impact than others and found certain
background conditions to be more vulnerable to this than
others. This impact may stay hidden to the naive user who
could take away suboptimal results with a false sense of
precision, accuracy and reliability.
A first source of variance is technical variation, which

includes pipette error. Although careful sample prepara-
tion can keep this error relatively small, it is unavoidable
and reduces precision. This can not be captured with a
single replicate and previously published asymptotic con-
fidence intervals. Replicates allow this source of variation
to be included in the data-analytic process and provide
correct precision estimates.
Unequal partition size reduces the accuracy for highly

concentrated samples. Since this source of variation
is dependent on the machine itself, it is one of the
priorities for manufacturers to optimize it and keep
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Figure 9 Influence of different sources of variation on the width and location of confidence intervals for the target concentration. The
influence of the different sources of variation is shown on the width of 95% confidence intervals calculated with the replicate based method for λ
small (≈ 0.009), average (≈ 0.18) and large (≈ 3.65). Unequal partition size is included in the misclassification examples.

the variation between partitions small. We have shown
that the bias is small for realistic limited deviations
and can be neglected when the concentration is not
close to the upper limit. Users are advised to avoid
strongly concentrated samples and dilute samples when
necessary.
The fluorescence threshold chosen for target detection

drives the misclassification rates and has a high impact
on the results, reducing accuracy. Samples with few tar-
get copies and experiments with a very high concentration
of target nucleic acid are especially vulnerable. In the
former case, the focus may usefully shift to detection
rather than quantification while in the latter, dilutions or
qPCR may be advised. Misclassification to some extent
is unavoidable, but the informed user can do a lot to
reduce it.
The underlying continuous distribution of the fluores-

cence is a mixture distribution composed of output from
both positive and negative partitions. These two partsmay
be partially overlapping as a result of biological factors
such as inhibition, contamination or primer depletion.
The choice of the threshold results in corresponding false
positive and false negative rates. The optimal trade-off
naturally depends on the concentration of target copies in

the sample. When the software allows it, users can cal-
ibrate the threshold to reflect expected misclassification
rates of their application and get more accurate results.
Additionally, dilution series may help to determine the

concentration where the variance-bias trade-off is low-
est and the measurement reflects the best combination
of accuracy and precision. This is especially useful
at high concentrations when the focus is on accurate
quantification. Users can achieve this by comparing pre-
cision and linearity plots to the patterns in Figure 7
to picture the bias, while an estimate of the stan-
dard deviation follows from correctly analysed replicate
experiments.
Since we identified misclassification as the major bottle-

neck that induces the largest accuracy drop, methods to
optimise classification and accuracy are promising topics
of future research.
Finally, it is worth emphasizing that our results have

focussed on technical replicates involving variation in
results generated by machine settings and human han-
dling of a given biological sample. It is essential to
acknowledge sources of variation such as systematic
pipette error and correct for them when necessary.
As for any biological measurement, additional sampling
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variation may be present in many experiments at several
levels. This happens quite independently of the technol-
ogy and is discussed widely in the literature [1]. A thought-
ful protocol to correct also for this source of variation
should be generally considered in addition to the specific
digital PCR protocol.
Digital PCR is a promising tool for high precision esti-

mation. We showed how several sources of variation can
influence results and can be accommodated with the
correct knowledge such that accurate and precise concen-
tration estimates remain possible. Our findings indicate
that reliability can be increased by well-chosen sample
preparation and machine settings. Machine calibration in
theory allows the researcher to adapt the technology to
yield results optimized for each specific setting. While it
is of course essential to provide default settings to simplify
the process for the users, it is at least as important that
manufacturers provide detailed output to facilitate per-
sonalized treatment and thus enhance the quality of their
results.

Additional files

Additional file 1: Mathematical derivations. This PDF file includes
mathematical derivations on the theoretical confidence interval,
optimization of the theoretical precision, decomposition of the variance in
the presence of pipette error, a model for unequal partition sizes and
theoretical methods to optimize the threshold in the presence of
misclassification.

Additional file 2: Additional figures. This PDF file includes two
additional figures on the width of confidence intervals.

Additional file 3: R-script. Users can simulate their own experiments with
this code as well as reproduce all the numerical results discussed above.

Additional file 4: Interactive tool. In this mini-website, we provide an
interactive tool to study the influence of specific sources of variation on the
performance of the concentration estimators. This can serve as a guide
when designing an experiment. All results are relative to the true
concentration and based on 1000 simulations with 8 technical replicates.
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