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Abstract: Ratiometric near-infrared fluorescent probes (AH+ and BH+) have been prepared for pH
determination in mitochondria by attaching dithioacetal and formal residues onto a hemicyanine
dye. The reactive formyl group on probe BH+ allows for retention inside mitochondria as it can
react with a protein primary amine residue to form an imine under slightly basic pH 8.0. Probes
AH+ and BH+ display ratiometric fluorescent responses to pH changes through the protonation and
deprotonaton of a hydroxy group in hemicyanine dyes with experimentally determined pKa values
of 6.85 and 6.49, respectively. Calculated pKa values from a variety of theoretical methods indicated
that the SMDBONDI method of accounting for solvent and van der Waals radii plus including a
water molecule located near the site of protonation produced the closest overall agreement with the
experimental values at 7.33 and 6.14 for AH+ and BH+ respectively.

Keywords: near-infrared fluorescence; ratiometric imaging; pH; mitochondria; fluorescent probe

1. Introduction

Mitochondria are small subcellular organelles that generate adenosine triphosphate
(ATP) to power various cell functions in all eukaryotic cells [1–4]. Mitochondria also
control homeostasis and redox signaling and regulate cell apoptosis and death [1–4]. An
alkaline pH ≈ 8.0 is essential in mitochondria to sustain the proton motive potential during
the synthesis of ATP [5,6]. Effective detections of mitochondrial pH changes provide an
insightful understanding of mitochondrial physiology and pathology [7]. Many fluorescent
probes have been developed for monitoring mitochondrial pH and some of these feature
excellent sensitivity and high three-dimensional and temporal resolution [7–9]. Specific
targeting of mitochondria has been achieved by employing electrostatic interactions of
positively charged fluorescent probes, such as rhodamine or cyanine dyes, with the poten-
tially negative internal membranes of mitochondria [7–9]. Another strategy to position
dyes within mitochondria consisted of designing a hemicyanine dye to covalently link
with mitochondrial proteins through a direct displacement of the reactive chlorine group
on the fluorophore [10].

It is well-known that the formyl group easily reacts with primary amines to form imine
derivatives as Schiff bases [11–15]. For this reason, we developed a reactive ratiometric
near-infrared fluorescent probe (BH+) for pH detection in mitochondria by attaching a
formyl group to a hemicyanine dye in order to prevent the probe from diffusing away
from mitochondria. We also contrast results with a ratiometric fluorescent probe bearing a
thioacetal residue (AH+), which could be hydrolyzed in cells, resulting in covalent linking
to proteins. Ratiometric near-infrared fluorescent probes have desirable advantages such

Molecules 2021, 26, 2088. https://doi.org/10.3390/molecules26072088 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-6626-0863
https://orcid.org/0000-0001-5436-1942
https://doi.org/10.3390/molecules26072088
https://doi.org/10.3390/molecules26072088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26072088
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/7/2088?type=check_update&version=1


Molecules 2021, 26, 2088 2 of 16

as near-infrared imaging to achieve deep tissue penetration, low photodamage to cells, and
less biological sample autofluorescence. Our probes also possess self-calibration capability
with two emissions to overcome systematic errors of intensity-based fluorescent probes
produced by excitation light fluctuation, probe concentration changes, uneven distribution,
and compartmental localization [16–24]. Both AH+ and BH+ probes (Scheme 1) show
ratiometric fluorescent probes to pH changes with the largest bathochromic shifts of 38 nm
and 59 nm based on the protonation and deprotonation of a hydroxy group attached to the
hemicyanine dyes, respectively.
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Scheme 1. Chemical structures of ratiometric fluorescent probes bearing thioacetal and formyl residues for pH detection
in mitochondria.

2. Results and Discussion
2.1. Probe Design and Synthesis

The fact that formyl and dithioacetal groups chemically react with amine residues
has been widely used for the covalent modification of proteins. We sought to utilize this
property to prevent the fluorescent probe from diffusing out of mitochondria and designed
probes AH+ and BH+ that carry dithioacetal and formyl moieties, respectively, on the hemi-
cyanine dye. We envisioned that the formyl moiety could directly interact with proteins
upon localization of the probe in mitochondria. On the other hand, the dithioacetal could
hydrolyze to yield a reactive formyl group in cells for an analogous covalent linking with
proteins. The chemical synthesis of these probes started with protecting an aldehyde group
of 2,4-dihydroxybenzaldehyde (1) by converting it into a dithioacetal residue, yielding
4-(1,3-dithiolan-2-yl)benzene-1,3-diol (2). Reacting compound 2 with cyanine dye (IR-780)
(3) in DMF under basic conditions generated a hemicyanine dye bearing a dithioacetal
residue (probe AH+). Deprotection of the dithioacetal residue in probe AH+ under an
acidic environment produced the hemicyanine dye bearing a formyl group (probe BH+)
(Scheme 2).
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2.2. Optical Responses of Probes AH+ and BH+ to pH Changes

UV-vis studies of probes AH+ and BH+ show that both probes are sensitive to changes
in pH level. At pH 4.0, probe AH+ shows two absorption peaks at 611 nm and 658 nm
(Figure 1, left). A gradual increase of pH from 4.0 to 10.1 causes a significant red shift in
absorption with a broad absorption peak appearing at 700 nm. The observed shift can be
attributed to the stabilization of a negatively charged hemicyanine portion of the dye due
to the deprotonation of the hydroxyl group on the hemicyanine dye under basic conditions.
Probe BH+ exhibits a main absorption peak at 586 nm, and a shoulder peak at 630 nm
at pH 4.0 (Figure 1, right). Gradual increases in pH result in considerable red shifts to
two absorption peaks at 630 nm and 684 nm at pH 10.1. The changes in absorption for
probe BH+ can be also observed visually as the color of the solution changes from purple
to blueish green with increasing pH (Figure 2).

Molecules 2021, 26, x FOR PEER REVIEW 3 of 16 
 

 

2.2. Optical Responses of Probes AH+ and BH+ to pH Changes 

UV-vis studies of probes AH+ and BH+ show that both probes are sensitive to changes 

in pH level. At pH 4.0, probe AH+ shows two absorption peaks at 611 nm and 658 nm 

(Figure 1, left). A gradual increase of pH from 4.0 to 10.1 causes a significant red shift in 

absorption with a broad absorption peak appearing at 700 nm. The observed shift can be 

attributed to the stabilization of a negatively charged hemicyanine portion of the dye due 

to the deprotonation of the hydroxyl group on the hemicyanine dye under basic condi-

tions. Probe BH+ exhibits a main absorption peak at 586 nm, and a shoulder peak at 630 

nm at pH 4.0 (Figure 1, right). Gradual increases in pH result in considerable red shifts to 

two absorption peaks at 630 nm and 684 nm at pH 10.1. The changes in absorption for 

probe BH+ can be also observed visually as the color of the solution changes from purple 

to blueish green with increasing pH (Figure 2). 

300 400 500 600 700 800

0.00

0.05

0.10

0.15

0.20

700 nm

658 nm

A
b

s
o

rb
a
n

c
e

Wavelength (nm)

 4.0

 4.6

 5.0

 5.6

 6.0

 6.2

 6.4

 6.6

 6.8

 7.0

 7.4

 8.0

 9.2

 9.6

 10.1

611 nm

(A)  

300 400 500 600 700 800

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

684 nm

630 nm

A
b

s
o

rb
a
n

c
e

Wavelength (nm)

 4.0

 4.6

 5.0

 5.6

 6.0

 6.2

 6.4

 6.6

 6.8

 7.0

 7.4

 8.0

 9.2

 9.6

 10.1

586 nm

(B)  

Figure 1. Absorption spectra of 10 µM probes AH+ (A) and BH+ (B) in PBS buffers with pH changes from 4.0 to 10.1, 

respectively. 

 

Figure 2. Photos of 10 µM probe +AH+ in different pH PBS buffers where pH values were marked in the vials above. 

Standard pH titrations of the probes were also conducted to assess fluorescence 

changes. At pH 4.0, probe AH+ shows a fluorescence peak at 680 nm at pH 4.0 (Figure 3, 

left). Gradual increase of pH from 4.0 to 10.1 results in decreased fluorescence emission at 

680 nm and increased emission at 718 nm with an overall bathochromic shift of 38 nm 

(Figure 3, left). The experimental pKa value for AH+ is 6.85 (Figure 4). The quantum yields 

measured for AH+ at pH 4.1 and 9.2 are 0.06% and 0.27%, respectively, (Table 1). Altera-

tions in solution pH also impacted fluorescence for probe BH+. At pH 4.0, probe BH+ dis-

plays a fluorescence peak at 667 nm. Changing the pH of the solution from 4.0 to 10.1 

induced a ratiometric red shift in fluorescence emission to 715 nm, with an overall batho-

chromic shift of 48 nm. The experimental pKa value for BH+ is 6.49 (Figure 4). In compari-

son to AH+, probe BH+ is slightly blue-shifted in fluorescence due to the electron-with-

drawing nature of the formyl group (Figure 3). The quantum yields measured for probe 

Figure 1. Absorption spectra of 10 µM probes AH+ (A) and BH+ (B) in PBS buffers with pH changes from 4.0 to
10.1, respectively.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 16 
 

 

2.2. Optical Responses of Probes AH+ and BH+ to pH Changes 

UV-vis studies of probes AH+ and BH+ show that both probes are sensitive to changes 

in pH level. At pH 4.0, probe AH+ shows two absorption peaks at 611 nm and 658 nm 

(Figure 1, left). A gradual increase of pH from 4.0 to 10.1 causes a significant red shift in 

absorption with a broad absorption peak appearing at 700 nm. The observed shift can be 

attributed to the stabilization of a negatively charged hemicyanine portion of the dye due 

to the deprotonation of the hydroxyl group on the hemicyanine dye under basic condi-

tions. Probe BH+ exhibits a main absorption peak at 586 nm, and a shoulder peak at 630 

nm at pH 4.0 (Figure 1, right). Gradual increases in pH result in considerable red shifts to 

two absorption peaks at 630 nm and 684 nm at pH 10.1. The changes in absorption for 

probe BH+ can be also observed visually as the color of the solution changes from purple 

to blueish green with increasing pH (Figure 2). 

300 400 500 600 700 800

0.00

0.05

0.10

0.15

0.20

700 nm

658 nm

A
b

s
o

rb
a
n

c
e

Wavelength (nm)

 4.0

 4.6

 5.0

 5.6

 6.0

 6.2

 6.4

 6.6

 6.8

 7.0

 7.4

 8.0

 9.2

 9.6

 10.1

611 nm

(A)  

300 400 500 600 700 800

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

684 nm

630 nm
A

b
s
o

rb
a
n

c
e

Wavelength (nm)

 4.0

 4.6

 5.0

 5.6

 6.0

 6.2

 6.4

 6.6

 6.8

 7.0

 7.4

 8.0

 9.2

 9.6

 10.1

586 nm

(B)  

Figure 1. Absorption spectra of 10 µM probes AH+ (A) and BH+ (B) in PBS buffers with pH changes from 4.0 to 10.1, 

respectively. 

 

Figure 2. Photos of 10 µM probe +AH+ in different pH PBS buffers where pH values were marked in the vials above. 

Standard pH titrations of the probes were also conducted to assess fluorescence 

changes. At pH 4.0, probe AH+ shows a fluorescence peak at 680 nm at pH 4.0 (Figure 3, 

left). Gradual increase of pH from 4.0 to 10.1 results in decreased fluorescence emission at 

680 nm and increased emission at 718 nm with an overall bathochromic shift of 38 nm 

(Figure 3, left). The experimental pKa value for AH+ is 6.85 (Figure 4). The quantum yields 

measured for AH+ at pH 4.1 and 9.2 are 0.06% and 0.27%, respectively, (Table 1). Altera-

tions in solution pH also impacted fluorescence for probe BH+. At pH 4.0, probe BH+ dis-

plays a fluorescence peak at 667 nm. Changing the pH of the solution from 4.0 to 10.1 

induced a ratiometric red shift in fluorescence emission to 715 nm, with an overall batho-

chromic shift of 48 nm. The experimental pKa value for BH+ is 6.49 (Figure 4). In compari-

son to AH+, probe BH+ is slightly blue-shifted in fluorescence due to the electron-with-

drawing nature of the formyl group (Figure 3). The quantum yields measured for probe 
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Standard pH titrations of the probes were also conducted to assess fluorescence
changes. At pH 4.0, probe AH+ shows a fluorescence peak at 680 nm at pH 4.0 (Figure 3,
left). Gradual increase of pH from 4.0 to 10.1 results in decreased fluorescence emission
at 680 nm and increased emission at 718 nm with an overall bathochromic shift of 38 nm
(Figure 3, left). The experimental pKa value for AH+ is 6.85 (Figure 4). The quantum yields
measured for AH+ at pH 4.1 and 9.2 are 0.06% and 0.27%, respectively, (Table 1). Alterations
in solution pH also impacted fluorescence for probe BH+. At pH 4.0, probe BH+ displays a
fluorescence peak at 667 nm. Changing the pH of the solution from 4.0 to 10.1 induced a
ratiometric red shift in fluorescence emission to 715 nm, with an overall bathochromic shift
of 48 nm. The experimental pKa value for BH+ is 6.49 (Figure 4). In comparison to AH+,
probe BH+ is slightly blue-shifted in fluorescence due to the electron-withdrawing nature
of the formyl group (Figure 3). The quantum yields measured for probe BH+ at pH 4.1 and
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9.2 are 1.9% and 12.3%, respectively (Table 1). It is noteworthy that both probes behave as
fluorescent pH sensors as is evident from the experimentally-observed reversible red or
blue shifts due to the reversible protonation and deprotonation of the hemicyanine dye
upon pH changes as the probes show satisfactory reversibility between pH 10.0 and pH 4.0
(Figure 5).
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Figure 3. Fluorescence spectra of 10 µM probes AH+ (A) and BH+ (B) in buffers with pH changes from 4.0 to 10.1 under
excitation at 630 nm.
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Table 1. Photophysical data of the probes.

Probe pH Absmax (nm) Emmax (nm) ε (105 M−1 cm−1) Φf ∆λfl (nm) pKa

AH+ 4.0 658 680 0.21 0.06
22 6.85

9.2 701 718 0.17 0.27

BH+ 4.0 586 667 0.42 1.9
81 6.49

9.2 684 715 0.36 12.3

2.3. Theoretical Results

We further employed computational models to assess the pH-induced geometric
changes and the nature of the electronic transitions, and to calculate pKa values for both
probes. For A, AH+, B, and BH+, stable converged geometries in almost completely
planar conformations of the pseudo-rhodamine and hemicyanine moieties were obtained
(Figures S1, S4, S7, and S10). This planarity resulted in a complete delocalization of
the π-orbitals, with the apparent energy transition (Figure 6) between protonated and
deprotonated forms. In all cases, this main transition consisted of the delocalization
of electronic density from LCAO-HOMO to LCAO-LUMO upon deprotonation of the
hydroxyl moiety. We found the calculated (Figures S2, S5, S8, and S11) and experimental
absorption values to be in good agreement for B (0.18 eV) and BH+ (0.23 eV) probes (within
the expected 0.20–0.25 eV range [25]) but they were off for A (0.29 eV) and AH+ (0.35 eV)
probes. Calculations also identified H-bonding between the dithioacetal and hydroxyl
functionalities for AH+ that could contribute to the appearance of the red-shifted transition
for AH+ at low pH (700 nm shoulder, Figure 1) and also influence the equilibrium between
the protonated and deprotonated OH group. Analogous H-bonding between the carbonyl
and OH, although not detected through calculations, could contribute to the shoulder in
the UV absorption of BH+.

Given the plethora of functional and basis set combinations available today, cal-
culating pKa values represents a challenging task. However, recent publications have
suggested a more directed route to accomplish these calculations. The nature of the cal-
culation involves getting the values listed in Equation (1), where G*aq refers to the calcu-
lated standard free energies of the deprotonated and protonated species in solution and
G*aq(H+) = −270.30 kcal/mol [26]. The bases for the nature of the calculation have been
described previously for carboxylic acids, amines, and thiols [27].

pKa = [G ∗
aq(A

−) − G∗
aq(AH+) + G∗

aq(H
+)] / (2 .303 x RT) (1)

In order to derive the pKa values of alcohols, in addition to the utilization of the SMD
method [28], it was suggested to model an H2O adduct hydrogen-bonded to the alcohol
(Figure 7) [29]. We conducted calculations on these models and the data are summarized
in Table 2. The calculations based on the IEF-PCM (the inclusion of a dielectric medium)
model of aqueous solvation afforded a reasonable pKa = 6.37 value for probe AH+ that
is comparable to the experimental value of 6.85. However, for probe BH+, a significant
difference in values (0.264 calculated vs. 6.40 experimental) was observed.
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Figure 7. GaussView [30] drawings of the water molecule near the OH group for probes A, AH+, B, and BH+ (left to right
with the Oprobe···Owater separation at 2.648, 2.659, 2.667 and 2.637 Å respectively).

Table 2. Calculated pKa values for the probes.

Probe Experimental IEF-PCM a SMD b SMD c (H2O) d Bondi Bondi(H2O) SAS SAS(H2O)

AH+ 6.85 6.37 8.52 8.29 (8.66) 8.54 7.33(7.57) 9.64 8.60 (9.76)

BH+ 6.49 0.26 6.48 6.27 5.81 6.14 7.60 6.92
a reference [28,31].b reference [28]. c reference [29].d With S·H intramolecular interaction preserved.
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Based on previous reports, we performed calculations using the SMD variant of
solvation (i.e., intrinsic Coulomb radii), including SMDBondi (intermolecular van der Waals
radii [32]) and SMDsSAS (a scaled solvent-accessible surface) [27]. As listed in Table 2,
pKa values of 8.52, 8.54, and 9.64 were calculated for probe AH+ for the three methods,
respectively. Using the same methods, the pKa values of 6.48, 5.81, and 7.60 were calculated
for the BH+ probe. In this case, a close correlation between the calculated and experimental
(6.49) pKa values was observed for the BH+ probe but not for the AH+ probe. Considering
the shared H-bonding between the hydroxyl and dithioacetal moieties calculated for AH+,
it is plausible that the discrepancy in pKa values for AH+ arise due to the large errors
in calculating the pKa values (~6 pKa units) for thiols using this method [27]. As a next
step, we calculated pKa values after including a hydrogen-bonded water molecule near the
hydroxyl group (Figure 7) [29]. Similar to previous calculations, a good agreement with
experimental data was observed for BH+ (calculated pKa values of 6.27, 6.14, and 6.92).
For AH+, a reasonable correlation with the experimental pKa value was observed using
the SMDBondi method (Table 2, Bondi(H2O)). This agreement may pertain to the additional
H-bonding between the added water molecule and a lone pair on the hydroxyl’s O atom
(Figure S13 and Tables S33–S35), which would essentially mimic the partially-solvated OH
bond within AH+. Overall, the SMDBondi method, with one water molecule included, was
able to provide a close correlation with experimental pKa values, owing to the inclusion
of a solvation factor. This would suggest that this type of model could serve as a useful
starting point for theoretical pKa calculations on structurally similar and related molecules.

2.4. Assessing H+ Specificity of Probes AH+ and BH+

In order to evaluate the probe selectivity to pH over other potential interferents, the
fluorescence spectra of the probes were recorded in the presence of various cations, anions,
and amino acids at the physiological conditions (pH 7.4). We found that cations such as K+,
Mg2+, Al3+, Ba2+, Fe3+, Co2+, Ni2+, Sn4+, Cu2+, Zn2+, Cd2+, Hg2+, Mn2+, Cr3+, Pb2+, and
Fe2+ (Figure 8), and anions such as Cl−, CO3

2−, HCO3
−, SO4

2−, SO3
2−, HSO3

−, NO3
−,

PO4
3− and S2O3

2− do not cause any significant fluorescence changes in probe fluorescence
(Figure 9). Probe fluorescence was also independent of the presence of amino acids (DL-
cysteine, DL-homocysteine, DL-alanine, DL-arginine, DL-leucine, DL-tyrosine, glutamic
acid, glycine) and glutathione (GSH) (Figure 10). These results confirmed that the probes
possess good selectivity to pH and suggested that probes are useful as pH sensors in a
complex biological environment.
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2.5. Photostability of the Probes

We then performed the photostability experiment of these two probes. As shown
in Figure 11, the intensity of probes did not show significant changes either under an
acid environment, at about pH 4.0, or at neutral pH 7.0, indicating that the probe shows
excellent photostability (Figure 11).
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2.6. Cell Cytotoxicity

We evaluated the cell cytotoxicity of the probes for their biocompatibility by MTT
assay. The cytotoxicity of the probe increases slightly with the probe concentration with
lower cell viability. High concentrations (50 µM) of the probe do not cause considerable
cytotoxicity because the cell viability is still higher than 91%, indicating that the probe
shows excellent biocompatibility and low toxicity (Figure 12). IC50 values of probes AH+

and BH+ are 135 µM and 155 µM, respectively, when the cell viability rate reaches 50%
after incubation of HeLa cells with probe AH+ or BH+.
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Figure 12. Cytotoxicity and cell proliferation effect of probes (left) and (right) was tested by
MTT assay. The HeLa cells were incubated with different concentrations of the probe for 2 h
for mitochondria staining.

2.7. Analysis of Mitochondrial Localization for AH+ and BH+ Probes in Live Cells

To assess the validity of our assumption that probes AH+ and BH+ can specifically
accumulate inside of mitochondria [33,34], we conducted colocalization studies in live
cells, using a commercial available mitochondria-specific dye, i.e., Mitoview Blue, for the
control. As probes AH+ and BH+ exhibit near-infrared fluorescence (>667 nm), it is easy to
distinguish their fluorescent signal from biological background fluorescence as that occurs
at a lower wavelength (i.e., 400–500 nm). For live-cell imaging, HeLa cells were incubated
with AH+/Mitoview Blue and BH+/Mitoview Blue mixtures. The dye-treated cells were
further taken for confocal imaging. Imaging analysis has shown that both AH+ and BH+

probes have effectively penetrated the cellular membrane and localized in the cytoplasm.
AH+ and BH+ probes were visible using a 635 nm excitation/700–750 nm emission channel
(channel II, Figure 13). Mitoview Blue was visible in these cells under a 405 nm excitation
and 425–475 nm emission (channel III, Figure 13). Colocalization analysis of the probes
AH+ and BH+ with Mitoview Blue resulted in Pearson’s correlation coefficient values of
0.924 and 0.955, which confirms that the new probes are localized within mitochondria.

We further assessed whether the presence of the electrophilic formyl or dithioacetal
groups contributes to the retention of these probes in mitochondria. It has been well
established that the membrane potential is the driving force for the uptake of fluorescent
lipophilic cations in mitochondria [35]. It has also been shown that ionophores can effec-
tively prevent the uptake of such species [35]. Furthermore, changing the membrane po-
tential has also been shown to promote the efflux of charge species from mitochondria [36].
On these bases, it is expected that changing the membrane potential in probe-treated
HeLa cells would induce the efflux of fluorescent lipophilic cations from mitochondria.
Therefore, we sought to alter the mitochondrial membrane potential to assess the retention
of either probe AH+ or BH+ within the mitochondria. We used FCCP (carbonyl cyanide
p-(tri-fluoromethoxy)phenyl-hydrazone)—the ionophore demonstrated to uncouple ox-
idative phosphorylation in mitochondria, disrupt the proton gradient along the inner
mitochondrial membrane, and acidify mitochondria [35].
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Figure 13. Fluorescence images of HeLa cells incubated with 10 µM probes AH+ (left), BH+ (right), and 5.0 µM Mitoview
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HeLa cells were first incubated with AH+ and BH+ and then treated with FCCP
(carbonyl cyanide p-(tri-fluoromethoxy)phenyl-hydrazone) [37–39]. After the subsequent
treatments, we used fluorescence microscopy to assess the results (Figures 14 and 15).
Before the FCCP treatment, only near-infrared fluorescence in channel II (700–750 nm) was
observable for AH+ and BH+ probes, corresponding to the existence of these probes in a
non-protonated state. After FCCP treatment, a new fluorescence signal became observable
in channel I (650–675 nm). The intensity of this new signal increased as fluorescence in
channel II decreased. The appearance of a new fluorescence signal appears to be informative
of probe protonation and stabilization of more blue-shifted AH+ or BH+ and indicative of
mitochondrial acidification. We also observed that FCCP appears to induce a background
green fluorescence in cells (Figures 14 and 15). The green fluorescence co-localizes with
the fluorescence induced by AH+ and BH+ probes, suggesting the same site accumulation.
The observed lack of AH+ or BH+ diffusing from the mitochondria supports the idea that
the introduced electrophilic formyl and dithioacetal moieties reacted and bonded with
interstitial mitochondrial proteins for the observed mitochondrial retention.

2.8. Assessing AH+ and BH+ as Intercellular pH Sensors

In order to demonstrate that our probes can respond to intracellular pH changes,
we incubated HeLa cells with AH+ and BH+, adjusted intracellular pH to 9.0, 8.0, 7.5,
6.5, 6.0, and 5.0 by nigericin (H+/K+ ionophore) [16,18,23,24,40–44], and collected cellular
fluorescence in two channels from 650 nm to 657 nm, and from 700 nm to 750 nm under
excitation of 635 nm. With the confocal fluorescence imaging (Figure 16), upon gradual
decrease of intracellular pH from 9.0 to 5.0, we observed an expected gradual decrease
in fluorescence in the channel II and gradual increase in fluorescence in the channel I
(Figures 16 and 17). Merged images of channels I and II show color change from deep red
to green, validating AH+ and BH+ as ratiometric reporters of intracellular pH changes
(Figure 16).
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microscope. ImageJ software was used to obtain ratiometric images. The software is free from https://imagej.nih.gov/ij/,
2 April 2021.
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Figure 15. Fluorescence images of HeLa cells incubated with 10 µM probes BH+ before and after FCCP treatment. The first
and second channels in the fluorescence images were recorded from 650 nm to 675 nm, and from 700 nm to 750 nm under
excitation at 635 nm, respectively. Scale bars: 10 µm. HeLa cells were incubated with 10 µM probe BH+ for 20 min, and
further treated with 10 µM FCCP in PBS at 37 ◦C for 20 min. Live cell images were obtained by an Olympus IX 81 confocal
microscope. ImageJ software was used to obtain ratiometric images. The software is free from https://imagej.nih.gov/ij/,
2 April 2021.
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Figure 16. Fluorescence images of HeLa cells incubated with 10 µM probes AH+ (left) and BH+ (right) and nigericin to
homogenize the intracellular pH of the cells with the surrounding medium at different pH values from 9.0, 8.0, 7.5, 6.5, 6.0,
to 5.0. The first and second channels in the fluorescence images were recorded from 650 nm to 675 nm, and from 700 nm to
750 nm under excitation at 635 nm, respectively. HeLa cells were incubated with 10 µM probe AH+ or BH+ for 20 min first,
and then treated with 5 µg/mL nigericin in different pH buffer solutions at 37 ◦C for 20 min. Live cell images were obtained
by an Olympus IX 81 confocal microscope.
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3. Experimental Section
3.1. Computational Analysis of Probes A, AH+, B, and BH+

Models for probes A, AH+, B, and BH+ were generated using previously published
procedures [38] and conducted with density functional theory (DFT), using the APFD
functional [45] and electron basis sets initially at the 6-31g(d) level to convergence in
Gaussian 16 [46]. The results from this level were refined in a Polarizable Continuum
Model (PCM) of water [47] with 6-311+g(d) basis sets, and frequency calculations were
conducted. Imaginary frequencies were not obtained. Seven excited states were assessed
using TD-DFT optimizations [48] in a Polarizable Continuum Model (PCM) [48] in water
with the 6-311+g(d) basis set. pKa calculations were conducted as described previously with
the 6-311+g(d) basis set with the optimized SMD implicit solvation method as described
on AQUA-MER [26,27] on the converged models. pKa calculations were also conducted
with the models enclosing one additional water molecule H-bonded to the active -OH
group [29]. Harmonic frequencies were derived in all cases to ensure that the structures
obtained (atomic coordinates listed in Tables S9–S32) were minima on the potential energy
surface and to obtain the required thermodynamic data for the pKa calculations. Results
were interpreted using GaussView 6 [30] for all data and figures and are presented as
Supporting Information.

3.2. Reagents and Methods

All solvents were purchased from Sigma-Aldrich (Saint Louis, MI, USA) and used
directly. All solvents for spectroscopic studies were HPLC grade without fluorescent
impurities and water was deionized. Dulbecco’s modified Eagle’s medium (DMEM) high
glucose with stable glutamine with sodium pyruvate, Dulbecco’s phosphate-buffered saline
(DPBS), fetal bovine serum (FBS), trypsin 0.25%-EDTA in HBSS, and penicillin-streptomycin
were purchased from Aldrich-Sigma. Thiazolyl Blue Tetrazolium Bromide (MTT) was
purchased from Sigma-Aldrich and used as received without further purification. 1H and
13C NMR spectra were recorded at room temperature with a Varian Unity Inova 400 MHz
spectrometer. All spectra of the probes were recorded in pH buffer containing 30% (v/v)
ethanol. The following abbreviations are used to indicate the multiplicity: s—singlet;
d—doublet; t—triplet; q—quartet; m—multiplet. The coupling constants are expressed in
Hertz (Hz). Cary 60 UV-Vis spectrometer and Jobin Yvon Fluoromax-4 spectrofluorometer
were used for absorption and fluorescence spectra, respectively. Confocal images were
taken with Olympus FluoViewTM FV1000 using the FluoView software. Fluorescence
imaging was done with an EVOS FLAuto inverted microscope.

3.3. Cell Culture and Cytotoxicity Assay

HeLa cells were cultured in the high glucose DMEM media supplemented with 10%
FBS, 1% penicillin streptomycin in an incubator (37 ◦C, 5% CO2) [16,18,23,24,40–44]. Cells
were replenished with fresh medium every 2 days. The cellular metabolic activity was
detected using colorimetric MTT assay, reflecting the loss of metabolic activity through
the reduction of tetrazole (MTT) to formazan in mitochondria. For the assay, Hela cells
were seeded in 96-well flat-bottomed plates at 1 × 104 cells per well and allowed to adhere
for 24 h in the incubator (37 ◦C, 5% CO2). The medium was then removed, and a probe
was added to the cells at different concentrations. The culture medium was added to the
control group. Cells were then incubated (37 ◦C, 5% CO2) for 6 h, the probe solution was
removed, and cells were rinsed with DPBS gently. MTT reagent (0.5 mg/mL) in culture
media was then added to the individual wells and incubated (37 ◦C, 5% CO2) for 3 h. The
MTT reagent was then removed from the cells, and DMSO (100 µL/well) was added to
dissolve formazan crystals. The plate was gently shaken using a mixer to solubilize the
crystal for 30 min. The absorbance was read at 550 nm using a Spectra Max i3x microplate
reader. The data points from each concentration of probe were obtained from three wells
and all experiments were repeated three times.
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3.4. Cellular Imaging

Hela cells were seeded on glass coverslips of a confocal dish without surface treatment
and allowed to adhere for 24 h. Subsequently, the medium was removed and the glass
coverslips rinsed gently with DPBS. The cells were then stained with organelle trackers
including commercial Mitoview Blue for 30 min in DPBS solution, before staining with
the probe. The organelle markers are susceptible to potential oxidases in serum, therefore
we used DPBS instead of a complete culture medium. Indeed, when we used a complete
culture medium, mitochondria were not stained by the markers. After the cells were stained
with one of the organelle trackers, the cells were then sequentially stained with the probe
for 90 min in an incubator (37 ◦C, 5% CO2) and the fluorescence images were obtained by a
confocal microscope every 10 min. The cells were visualized simultaneously in each channel
by a confocal fluorescence microscope, image analysis, and the data of colocalization
between probe and organelle trackers was obtained by using ImageJ software.

4. Conclusions

Two ratiometric near-infrared fluorescent probes (AH+ and BH+) based on hemicya-
nine dyes bearing thioether and formal residues have been developed for mitochondrial
pH detection in live cells. The probes show reversible and ratiometric fluorescent responses
to pH changes based on the protonation and deprotonation of a hydroxy group in hemi-
cyanine dyes. Probes AH+ and BH+ possessed experimental pKa values of 6.85 and 6.49,
respectively, which are close to calculated pKa values of 7.33 and 6.14 for AH+ and BH+.

Supplementary Materials: The following are available online. Results from the theoretical calcu-
lations for all probes including the pKa calculations, 1H and 13C NMR and high-resolution mass
spectra for probes AH+ and BH+, and fluorescence measurements of the probes with added cations
and anions.
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