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ABSTRACT

Protein–DNA binding is a fundamental component
of gene regulatory processes, but it is still not com-
pletely understood how proteins recognize their tar-
get sites in the genome. Besides hydrogen bond-
ing in the major groove (base readout), proteins
recognize minor-groove geometry using positively
charged amino acids (shape readout). The underly-
ing mechanism of DNA shape readout involves the
correlation between minor-groove width and electro-
static potential (EP). To probe this biophysical ef-
fect directly, rather than using minor-groove width
as an indirect measure for shape readout, we devel-
oped a methodology, DNAphi, for predicting EP in
the minor groove and confirmed the direct role of
EP in protein–DNA binding using massive sequenc-
ing data. The DNAphi method uses a sliding-window
approach to mine results from non-linear Poisson–
Boltzmann (NLPB) calculations on DNA structures
derived from all-atom Monte Carlo simulations. We
validated this approach, which only requires nu-
cleotide sequence as input, based on direct com-
parison with NLPB calculations for available crys-
tal structures. Using statistical machine-learning ap-
proaches, we showed that adding EP as a biophysical
feature can improve the predictive power of quantita-
tive binding specificity models across 27 transcrip-
tion factor families. High-throughput prediction of EP
offers a novel way to integrate biophysical and ge-
nomic studies of protein–DNA binding.

INTRODUCTION

The recognition by proteins of DNA binding sites among
the many putative targets in the genome is a key determi-

nant of biological regulatory processes. Transcription fac-
tors (TFs) and other DNA binding proteins employ two
different DNA readout mechanisms to recognize their ge-
nomic target sites (1,2). Base readout refers to hydrogen
bonds and hydrophobic contacts between amino acid side
chains and functional groups of the bases (3). These con-
tacts are highly sequence-specific only when formed in the
major groove; contacts in the minor groove cannot distin-
guish A/T and T/A base pairs (bp), or G/C and C/G bp,
because of degeneracy in the pattern of functional groups
(4) (Figure 1).

Shape readout refers to the recognition of structural fea-
tures of a DNA binding site (4–7). These structural features
include sequence-dependent conformational properties and
flexibility within a core binding site and its flanking regions
(8). Using molecular modeling approaches, intrinsic DNA
structure can be predicted as a function of sequence. Molec-
ular dynamics (9) or Monte Carlo (MC) simulations (10)
thereby fill the gap due to the incomplete sequence cover-
age of experimentally solved structures (11). Data mining of
molecular simulation trajectories enabled development of
methods for the high-throughput (HT) prediction of DNA
shape features, such as minor-groove width (MGW) (12,13),
and their use in quantitative models of TF–DNA binding
(14,15).

We previously showed that variations of electrostatic po-
tential (EP) upon changes in minor-groove topography rep-
resent a biophysical source of protein–DNA binding speci-
ficity (16). Variations in the three-dimensional (3D) struc-
ture of DNA alter its dielectric boundary with surrounding
solvent. These structural changes deform electric field lines,
resulting in enhanced negativity of the EP in regions of nar-
row minor groove (16). This phenomenon, called electro-
static focusing (17), was originally discovered for proteins
(18) and, more recently, was applied to protein–DNA inter-
actions and used to explain biophysically why arginine (16),
lysine (19) and histidine (20) residues often recognize DNA
sequences with a narrow minor groove. However, because
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Figure 1. Functional groups of C/G and A/T bp exposed on major and minor grooves. Proteins recognize binding sites mainly through contacts with
unique functional groups in the major groove (base readout), whereas the pattern is degenerate in the minor groove. For example, in the major groove, a
G/C bp can be distinguished by its unique functional-group pattern ‘AADN’ (A: hydrogen bond acceptor; D: hydrogen bond donor; N: nonpolar hydrogen)
as it differs from a C/G bp pattern (‘NDAA’), an A/T bp pattern (‘ADAM’) and a T/A bp pattern (‘MADA’) with ‘M’ representing the thymine methyl
group. In the minor groove, the G/C bp shares the same functional-group pattern ‘ADA’ with a C/G bp. Likewise, the functional-group pattern is identical
for A/T and T/A bp (‘ANA’). The positively charged guanine amino group in the minor groove (circled) can affect EP in the minor groove by partially
neutralizing the negative EP.

EP could only be calculated for individual structures (16),
it was not accessible on a genome-wide basis and could be
used only indirectly in modeling TF binding specificity due
to its correlation with MGW (14,15). While a correlation
between EP and MGW holds for narrow minor-groove re-
gions, MGW is not a proxy for EP in general. To capture
the actual biophysical contribution of minor-groove EP to
TF binding, knowledge of EP on a genome-wide basis is
required for analysis of HT binding data.

Experimentally determined structures of protein–DNA
complexes represent atomic-resolution data on interactions
between TFs and their DNA binding sites (21), thus pro-
viding crucial insights into binding mechanisms (22). How-
ever, co-crystal structures are available for relatively few TFs
and are typically limited to complexes where a protein or
its DNA binding domain binds to a single DNA sequence.
Rarely, structural biology provides insights into the bind-
ing of a TF to multiple DNA sequences (22–27). To fill this
gap and probe the binding of a given TF to many DNA se-
quences, technologies for measuring protein–DNA binding
specificity in a HT manner have advanced tremendously in
the last decade (1,28–31). Assays, such as protein-binding
microarray (PBM) (32), genomic-context PBM (gcPBM)
(8), high-throughput SELEX (HT-SELEX) (33–35) and
SELEX-seq (36), have enabled measurements of binding
affinities of one protein or protein complex against thou-
sands or even millions of different DNA sequences. Such
HT approaches to DNA binding specificity provide an al-
ternative path to infer protein–DNA binding mechanisms
without requiring time-consuming structural biology exper-
iments or molecular simulations (1,36,37).

The minor-groove EP of DNA can be obtained by
solving the non-linear Poisson–Boltzmann (NLPB) equa-
tion, as provided by the DelPhi program (17). Previous
work showed that DelPhi represents an accurate descrip-

tion of electrostatic interactions involving DNA in atomic-
resolution structures (16,22,38–40). However, NLPB calcu-
lations are computationally costly and cannot be used on
massive or genome-scale DNA sequences. To infer minor-
groove EP in a HT manner, we previously developed a
HT method, DNAshape (12), which enables prediction of
MGW for massive experimental and computational data.
Prediction results can be used to measure minor-groove EP
somewhat indirectly, although correspondence between EP
and MGW is only well established for narrow minor-groove
regions (22).

A/T and C/G bp carry different partial charge distri-
butions in the minor groove (due primarily to the guanine
amino group). These partial charges, in addition to charges
on the phosphates, will affect minor-groove EP (Figure 1).
Therefore, we asked whether we could account for minor-
groove EP directly, rather than using MGW, to capture the
effects of partial charges of bases and to reveal novel base-
specific electrostatic interactions. To address this question,
we developed an approach for the HT prediction of EP in
the minor groove, called DNAphi (Figure 2). We designed
this approach based on the mining of numerical solutions to
the NLPB equation provided by the DelPhi program (17).
DNAphi is a HT method that enables efficient calculation
of minor-groove EP for an unlimited number and length of
DNA sequences, without the requirement of NLPB calcu-
lations on an atomic-level 3D structure.

Using machine-learning (ML) techniques, we can exploit
EP as a biophysical feature to model quantitatively protein–
DNA binding on massive sequencing data. This approach
provides a novel way to investigate how biophysical charac-
teristics of the genome affect the strength of protein bind-
ing, thereby leading to a better understanding of protein–
DNA binding mechanisms. Traditionally, such predictive
ML models were built based on nucleotide sequence (41–
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Figure 2. Overview of DNAphi method. (A) All-atom MC simulations were used to generate seed structures from 2297 DNA fragments. (B) We solved
the NLPB equation to calculate EPs on these seed structures and (C) defined a sphere at the center of the minor groove in the plane of each bp. We
derived the EP values at the center and at 26 points on the surface of each sphere. The average EP value at these points was assigned to be the EP of the
respective pentamer. (D) EP values for all occurrences of the same pentamer were averaged to form a query table of (E) HT predictions of EP as a function
of nucleotide sequence.

46). We previously extended the sequence models by in-
tegrating DNA shape features derived from DNAshape
(12) to build models that integrate structural information
(14,15,37). In these studies, we used MGW as a ‘proxy’ for
EP, based on the observation that MGW correlates closely
with EP when the minor groove is narrow (16,22). Here, we
revisited this assumption and demonstrated that the direct
use of EP in quantitative models of protein–DNA binding
specificities can yield similarly or more accurate models and
potentially reveal new biophysical recognition mechanisms
(Supplementary Figure S1). We tested our new biophysical
models on 239 TFs from 27 different protein families.

MATERIALS AND METHODS

Poisson–Boltzmann calculation of EP

We carried out NLPB calculations for an exhaustive sam-
pling of pentameric conformations of nucleotides. All-atom
MC simulations were used for the structural sampling of
2297 different DNA fragments ranging from 12 to 27 bp
in length. Each simulation was started from a canonical B-
DNA conformation and extended over 2 million MC cycles.
We considered the first 500 000 MC cycles to be the equili-
bration period. We recorded snapshots every 10th MC cycle
along the MC trajectory and generated an average confor-
mation for each DNA fragment (Figure 2A). This dataset

represents an extension of the one used for the DNAshape
method (12) to expand sequence coverage.

We used the DelPhi program (17) to carry out NLPB cal-
culations (see Supplementary Materials and Methods for
details) on all MC-derived average conformations of DNA
fragments (Figure 2B) at a physiological ionic strength of
I = 0.145 M. Partial charges of DNA were derived from
the AMBER force field (47). The dielectric boundary be-
tween solute (internal dielectric ε = 2) and surrounding sol-
vent (ε = 80) was determined by using a probe radius of 1.4
Å (48). Space filling of the solute molecule was increased
in five focusing steps, with a cubic grid size of 165, by fol-
lowing a previously described protocol (16). We verified the
stability of NLPB calculations by comparison with a cu-
bic grid size of 501 using three focusing steps and otherwise
identical DelPhi parameters. In addition, we identified con-
tributions of different chemical groups of a nucleotide (i.e.
phosphate, base and sugar moiety) based on additive lin-
ear Poisson–Boltzmann (LPB) calculations. For each com-
ponent, we solved the LPB equation for 2297 structures by
considering only the partial charges for atoms correspond-
ing to that chemical group.

High-throughput prediction of EP

To define EP as a function of nucleotide sequence, for a
given nucleotide index i, we obtained EP at the midpoint



12568 Nucleic Acids Research, 2017, Vol. 45, No. 21

between O4’ atoms of nucleotides i+1 on the Watson strand
and i–1 on the Crick strand from the DelPhi-calculated po-
tential map (16). This midpoint is approximately located
within the plane of bp i. To capture fluctuations of EP due to
different distances of this midpoint to the dielectric bound-
ary of the DNA segments with various deformations, we de-
rived EP values at 26 points that were equally distributed on
a sphere with 1 Å radius surrounding midpoint i (49) (Fig-
ure 2C). Excluding extreme EP values (due to clashes with
the molecular surface of the solute DNA in certain confor-
mations) and averaging EP values at the remaining points,
we assigned an average value to each sphere. This approach
prevents the inclusion of outlier values in the EP calcula-
tion. Sphere i lies at the approximate center of the minor
groove in the plane of bp i. In this way, EP can be defined
as a function of sequence, with one value per bp.

By mapping EP values of 2297 DNA fragments, we cal-
culated the average value at the central bp of each unique
pentamer and generated a query table of average values
for each occurrence of the 512 possible pentamers in our
dataset (see Supplementary Materials and Methods for de-
tails). Each pentamer occurred in our dataset about 45 times
(Figure 2D). This pentamer lookup table was integrated
in a sliding-window approach to predict minor-groove EP
for any sequence, regardless of length, or for millions of
sequences (Figure 2E). Likewise, we used the pentamer
sliding-window method to generate pentamer query tables
for the HT prediction of deconvolved EP values based on
each chemical group of a nucleotide (phosphate, base and
sugar).

The DNAphi web server facilitates EP prediction on a
HT scale in genome-wide studies and is available at http://
rohslab.usc.edu/DNAphi/. DNAphi was also implemented
in the statistical programming language R and integrated
in the Bioconductor package DNAshapeR (50), available
at http://www.bioconductor.org/packages/devel/bioc/html/
DNAshapeR.html.

EP-augmented protein–DNA binding models

We used DNAshapeR (50) to encode DNA sequence, EP
and shape feature vectors for ML analysis. For the sequence
feature vector, the nucleotide at each position in a given se-
quence of length L was encoded as four binary numbers
(adenine = 1000, cytosine = 0100, guanine = 0010 and
thymine = 0001), resulting in a binary vector of length 4L
(14). EP and shape features included the bp parameters EP,
MGW and propeller twist (ProT), and the bp-step param-
eters Roll and helix twist (HelT). For a sequence of length
L, the length of the nucleotide feature vector was L–4, and
the length of the bp-step feature vector was L–3 (see Sup-
plementary Materials and Methods for details).

We used HT-SELEX data for 215 mammalian TFs from
27 protein families (33), which were re-sequenced with an
average 10-fold increase in sequencing depth (15). Sequenc-
ing data were obtained from the European Nucleotide
Archive (ENA; study identifier PRJEB14744) and pre-
processed following our recently published protocol (15).
We also included SELEX-seq data for eight Drosophila Hox
proteins, including Hox mutants, in the presence of their co-
factor Extradenticle (Exd) (37). The 21 Exd-Hox datasets

can be downloaded from the Gene Expression Omnibus
(GEO; accession number GSE65073). Sequences with mul-
tiple occurrences of the core motif were removed from this
analysis. In addition, we used gcPBM data for three human
basic helix-loop-helix (bHLH) proteins (14). These data
contained 36-bp genomic sequences centered at a putative
TF binding site and can be downloaded from the GEO (ac-
cession number GSE59845).

We trained multiple linear regression (MLR) models on
each dataset to predict the relative binding affinity for every
sequence bound by a given TF. To measure the predictive
power of regression models in an unbiased and robust man-
ner, we adopted a 10-fold cross-validation approach (51).
Each dataset was randomly partitioned into ten equally
sized subsets. One subset was retained as validation data for
testing the model, while the other nine subsets were used for
training. Thus, models were always tested on data that had
been excluded in the training process. The cross-validation
process on each dataset was repeated ten times. Each time,
we calculated the coefficient of determination (R2) between
predicted and observed values of response variables for all
DNA sequences in the validation dataset. R2 values from
the ten tests were averaged to produce a single estimate
to be reported. Because the relative binding affinities were
derived in separate experiments, the MLR models were
trained and assessed for each TF binding dataset individ-
ually. Prediction and validation processes were performed
using the Caret package (http://caret.r-forge.r-project.org).
Source code for the prediction method is available at https:
//github.com/TsuPeiChiu/DNAphi analysis.

To evaluate the predictive power of EP for TF–DNA
recognition, we compared multiple models built from
different combinations of features, including DNA se-
quence and EP (sequence+EP models), sequence and
MGW (sequence+MGW models), sequence and shape (se-
quence+shape models), models that combine sequence with
EP and the three shape features ProT, Roll and HelT (se-
quence+3shapes+EP models), and models that combine se-
quence with EP and all four shape features including MGW
(sequence+shape+EP models).

RESULTS AND DISCUSSION

Validation of EP prediction

To examine whether the advantage of a fast EP calcula-
tion without the requirement of a 3D structure, as pro-
vided by DNAphi, compromises the accuracy of the EP
prediction, we validated DNAphi through direct compar-
ison with NLPB calculations using DelPhi (17) on crystal
structures where protein atoms were removed. We first tar-
geted the minor-groove EP of DNA binding sites from var-
ious crystal structures (22,52–62), for which we previously
established the importance of minor-groove shape readout
(12,16). The DNAphi predictions agreed well with actual
NLPB calculations for DNA binding sites in crystal struc-
tures of protein–DNA complexes, as indicated by Pearson
correlation coefficients (PCCs) ranging from 0.43 to 0.93
(Figure 3 and Supplementary Figures S2 and S3). Stabil-
ity of the DelPhi calculations was shown for the TF bind-
ing sites illustrated in Figure 3 by using different grid spac-
ing (Supplementary Figure S4). Differences in predictions

http://rohslab.usc.edu/DNAphi/
http://www.bioconductor.org/packages/devel/bioc/html/DNAshapeR.html
http://caret.r-forge.r-project.org
https://github.com/TsuPeiChiu/DNAphi_analysis
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Figure 3. Validation of HT EP predictions using TF–DNA binding sites. Minor-groove EP values of binding sites of (A) OCT1-POU (PDB ID 1OCT) (52),
(B) OCT1-PORE (PDB ID 1HF0) (56), (C) Msx-1 (PDB ID 1IG7) (54) and (D) MATa1-MAT�2 (PDB ID 1AKH) (55), whose binding interface includes
an arginine inserted into the minor groove, were predicted using DNAphi (blue) and DelPhi (red), respectively. Pearson correlation coefficients (PCCs)
demonstrate the statistical similarity between EP profiles derived from these two approaches. We highlighted the more negative minor-groove EP values
(≤ –6.505 kT/e, which is the average value in the EP query table) predicted by DNAphi by underlining the respective x-axis labels (red). Corresponding
spheres defined by DNAphi are represented by spheres in each structure, with red indicating below-average EP values ≤ –6.505 kT/e and pink indicating
EP values > –6.505 kT/e. Protein residues of minor-groove contact defined by DNAproDB (21) are shown in each structure.

between DNAphi and DelPhi might result from different
types of input. DelPhi takes DNA structure as input, which
can possibly get deformed by protein binding following the
initial protein–DNA recognition process (63). In contrast,
DNAphi only uses DNA sequence as input and estimates
EP based on population-based statistics rather than indi-
vidual calculations, which can yield more robust results.
Arginine residues tended to be located near positions with

lower minor-groove EP as predicted by DNAphi (Figure 3
and Supplementary Figures S2 and S3). These observations
confirmed our previous finding that the binding of arginine
residues to narrow minor grooves is a commonly used mode
for protein–DNA recognition (16).

In addition to direct validation through comparisons
with NLPB calculations on experimentally solved struc-
tures, we examined the predictive efficiency of the pen-
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Figure 4. Comparison of EP and MGW distributions of 512 unique pentamers categorized by central bp. (A) EP distribution shows two separated peaks,
reflecting bimodal behavior. (B) Pronounced separate peaks are not observed in the MGW distribution. (C) EP distribution forms two subgroups, defined
by the identity of the central bp, which (D) is not the case for the MGW distribution.

tameric sliding-window approach. We applied leave-one-
out cross-validation using a pentameric sliding window to
mine training data derived from NLPB calculations. In each
round of cross-validation, we removed one of the 2297 as-
signed all-atom average conformations derived from MC
simulations. We recompiled the pentamer query table of
our HT approach with the remaining training data and
predicted the EP of the removed structure. These steps
were repeated for each of the 2297 structures. Predictions
were concatenated and compared to the direct NLPB cal-
culations. The results showed a strong correlation (PCC =
0.84), demonstrating that our pentameric sliding-window
approach captures EP derived from direct PB calculations
with high accuracy.

Correlation between EP and MGW

MGW closely correlates with EP due to the shape-
dependent focusing of electric field lines (16,22,64). How-
ever, there is degeneracy in the sequence-to-MGW map-
ping, such that functional groups in the minor groove can
affect EP despite similar MGW. For example, the presence
of the partial positive charge of the guanine amino group
can partially neutralize a negative EP in the minor groove
(Figure 1). This effect was observed in distribution plots of
EP and MGW for the 512 pentamers in the query table. EP
appeared to follow a bimodal distribution with two clear
peaks (Figure 4A), whereas the MGW distribution was es-
sentially unimodal (Figure 4B). The two distinct EP dis-
tributions could be distinguished by classifying pentamers
into categories based on their central bp (A/T or C/G) (Fig-
ure 4C).

We further identified contributions from different chem-
ical components of a nucleotide using additive LPB calcu-
lations (Supplementary Figure S5A). Although EP contri-
butions from the bases separated pentamers with central
A/T versus C/G bp most distinctly (Supplementary Fig-
ure S5B), EP contributions from phosphate groups (Supple-
mentary Figure S5C) and sugar moieties (Supplementary
Figure S5D) also exhibited shifted peaks of overlapping dis-
tributions. These results demonstrate that functional groups
of the bp can strongly affect minor-groove EP, an effect that
cannot be fully captured by MGW (Figure 4D).

Distinct subgroups with a central A/T bp (NN(A/T)NN
pentamer) or central C/G bp (NN(C/G)NN pentamer)
were distinguished when EP was directly plotted against
MGW (Figure 5). EP showed a higher correlation with
MGW in the subgroup of pentamers with a central A/T
bp (PCC = 0.87) than in the subgroup with a central C/G
bp (PCC = 0.75). In particular, the A-tract subgroup (pen-
tamers containing ApA, ApT or TpT steps formed by at
least three bp) showed a narrower MGW and enhanced
negative EP, resulting in a slightly higher correlation with
EP (PCC = 0.86) than the subgroup excluding A-tract pen-
tamers (PCC = 0.85). These results confirm our previous
finding of a high correlation between EP and MGW in AT-
rich sequences (16,22). In some cases, EP is more sensitive
than MGW to chemical signatures (e.g. pentamers AAGTT,
AAAAA and AAAGT in dashed box of Figure 5), suggest-
ing that EP may provide a more sensitive approach to the
prediction of protein–DNA binding affinities.
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Figure 5. Scatter plot for EP and MGW values of all 512 unique pen-
tamers. Two separate groups reflect different correlations between EP and
MGW. The subgroup with a central A/T bp (red) demonstrates a stronger
correlation between EP and MGW than the subgroup with a central C/G
bp (cyan). The A/T subgroup representing A-tracts (large red) exhibits
more negative EP and narrower MGW compared to other groups. EP vari-
ation over an order of magnitude can be seen in narrower MGW (dashed
box).

Correlation of EP and Fis protein binding affinity

Next, we targeted eight DNA binding sites, which exhibit
Escherichia coli Fis protein-binding affinities differing over
three orders of magnitude depending on the DNA sequence
in the central region (23,25) (see Supplementary Materi-
als and Methods for details on datasets). Fis binds non-
specifically to the bacterial genome (65). Using DNAphi
(with DNA sequence as input) and DelPhi (with DNA
structure with proteins removed as input), we predicted
the minor-groove EP values of six DNA binding sites for
which crystal structures of Fis-DNA complexes were avail-
able (Supplementary Table S1). Our HT predictions demon-
strated good agreement with direct NLPB calculations (Fig-
ure 6A and B). The Fis protein binds various DNA se-
quences with an affinity that depends on the MGW in the
central region of its binding site (23). The average MGW
over the five central nucleotides predicted by DNAshapeR
(50) was highly correlated with the logarithm of binding
affinity Kd when we excluded a particular sequence with
a central TpA dinucleotide, representing a flexible ‘hinge’
step (Figure 6C) (12). We calculated the average EP over the
same five central nucleotides and obtained a stronger corre-
lation, even when we included the sequence with the central
TpA step (Figure 6D).

We expanded this analysis to additional groups of se-
quence variants in the Fis protein binding site (25) (Supple-
mentary Figure S6A) and observed similar improvements
in the correlation between EP and the logarithm of bind-
ing affinity. The correlation was either already high (Sup-
plementary Figure S6B) or improved by using EP rather
than MGW due to the removal of outliers (Supplementary
Figure S6C and D). Exception were the sequence variants

that differed solely by A/T versus G/C bp, which caused EP
to change through the addition or removal of the guanine
amino group (Supplementary Figure S6E and F). In flank-
ing regions of Fis binding sites, EP values correlated better
than MGW with the logarithm of binding affinity (Supple-
mentary Figure S6G and H).

To decipher the contribution of individual nucleotide
components, we further deconvolved contributions into
chemical groups (base, sugar moiety and phosphate groups)
by solving the LPB equation for the subset of Fis binding
sites analyzed in Figure 6. The contribution from partial
base charges showed a higher correlation with the logarithm
of binding affinity than the contribution from phosphate
groups, demonstrating the importance of the effects of bases
(Supplementary Figure S7).

EP-based modeling of DNA binding affinity for 27 protein
families

In a HT approach to the modeling of TF binding speci-
ficity, we added EP as an explicit biophysical feature in our
ML approach for quantitative prediction of DNA bind-
ing specificities of TFs (14). We targeted the most exten-
sive mammalian TF binding data available to date derived
from re-sequenced HT-SELEX experiments (15), in addi-
tion to SELEX-seq data for Drosophila Exd-Hox complexes
(37) and gcPBM experiments for human bHLH TFs (8). In
total, these data included 239 TFs from 27 different pro-
tein families (see Supplementary Materials and Methods for
details on datasets). Directly integrating EP as a biophysi-
cal feature in the analysis of HT sequencing data enabled
the testing of its contribution to quantitative binding mod-
els. We used L2-regularized MLR to train predictive mod-
els based on different combinations of EP, sequence and
shape features, to predict binding affinity for all DNA se-
quences in a dataset that can determine TF–DNA binding
specificity. For this purpose, we concatenated feature vec-
tors, as previously introduced (14), which were comprised of
binary features representing sequence combined with DNA
shape and EP features (feature encoding is described in Sup-
plementary Materials and Methods). DNA shape and EP
values were normalized between 0 and 1, as previously de-
scribed (50). We evaluated different models based on the co-
efficient of determination (R2) between measured and pre-
dicted binding affinities using 10-fold cross-validation.

Sequence+EP models outperformed sequence-only mod-
els for 233 of the 239 tested TFs (P < 2.270 × 10−36,
Figure 7A) (statistical testing is described in Supplemen-
tary Materials and Methods). This observation indicates
that EP plays an important role in TF binding specificity,
consistent with our previous conclusion that DNA shape
readout is important for TF binding specificity (18). To
test whether EP has additional predictive power beyond
MGW, we added EP to our sequence+MGW models. The
resulting sequence+MGW+EP models outperformed se-
quence+MGW models (P < 1.549 × 10−34, Figure 7B).
Our interpretation of this observation is that EP and MGW
encode largely overlapping but not identical information.
EP describes base-specific charged groups in the minor
groove in addition to shape-dependent electrostatic focus-
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Figure 6. High-throughput EP predictions for Fis-binding sites. EP as a function of sequence was predicted for (A) high-affinity (Kd = 0.2 nM) and (B) low-
affinity (Kd = 140 nM) binding sites using DNAphi (blue) and DelPhi (red). Pearson correlation coefficients (PCCs) demonstrate the statistical similarity
between EP profiles derived by the two approaches. HT predictions of (C) MGW and (D) EP over five central bp of eight Fis binding sites correlate with
the logarithm of binding affinity. Coefficients of determination (R2) between the logarithm of Kd and (C) MGW and (D) EP, respectively, were calculated
for all eight Fis binding sites (red) compared to seven Fis binding sites without the central TpA ‘hinge’ step (blue).

ing. MGW also includes geometric information on the pos-
sibility of contacts with the sugar and phosphate groups.

Similarly, when we added EP to our sequence+shape
models, which contain information on all four shape fea-
tures, the resulting sequence+shape+EP models outper-
formed sequence+shape models (P < 4.569 × 10−41, Sup-
plementary Figure S8A). Although the relatively small im-
provement was due to overlapping information, this re-
sult nevertheless implies that directly using EP contributes
predictive power to models that are based on DNA se-
quence and shape. When we replaced MGW by EP, the se-
quence+3shapes+EP model slightly outperformed the se-
quence+shape models (P < 6.748 × 10−4, Supplementary
Figure S8B). In contrast, the sequence+EP models did not
outperform sequence+MGW models (Supplementary Fig-
ure S8C), and EP models did not outperform MGW models
(Supplementary Figure S8D). The latter result is not sur-
prising because DNA shape or EP alone does not contain
information on hydrogen bonding opportunities, which are
necessary for TF–DNA readout (4).

Although the performance gain was quite small when
DNA shape was already included in the model, it was highly
significant (P < 1.549 × 10−34 for sequence+MGW+EP
versus sequence+MGW models; P < 4.569 × 10−41 for
sequence+shape+EP versus sequence+shape models; P
< 6.748 × 10−4 for sequence+3shapes+EP versus se-
quence+shape). Nevertheless, our results demonstrate the
added information content of biophysical features com-
pared to purely geometric DNA shape information. The
performance gain for EP-augmented models based on high-

quality gcPBM datasets for human bHLH TFs was higher
than for models based on other datasets (Supplementary
Figure S9). This improvement was probably influenced
by the consideration of genomic flanks comprising 15 bp
5′ and 3′ of the core binding sites (enhancer or E-box),
which likely increases information content derived from the
flanking regions. To investigate whether EP in the flank-
ing region contributes to the binding specificity of differ-
ent TF families, we targeted binding sites of human bHLH
TF dimers Mad1/Max (‘Mad’), Max/Max (‘Max’) and c-
Myc/Max (‘Myc’) derived from gcPBM experiments (66).
Whereas the E-box (CANNTG) as the core-binding motif is
shared among all three TF complexes (Supplementary Fig-
ure S10A), differential DNA binding specificities can be de-
tected through the analysis of EP preferences between TFs
(Supplementary Figure S10B). These differences can be due
to EP variations in the flanking sequences. As protein loops
can contact these flanking regions (8), this result suggests
a mechanism of how the flanks biophysically contribute to
the selection of binding sites in the genome.

Base versus phosphate EP contributions in quantitative mod-
els

To decipher the additional information that EP might con-
tain relative to MGW, we deconvolved the EP originat-
ing from bases versus phosphate groups by using the LPB
equation (due to its additivity) (16). Using the deconvolved
contributions to EP in ML methods to predict TF–DNA
binding specificities, we found that EPs originating from
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Figure 7. Performance comparison of binding specificity predictions for 239 TFs derived from HT-SELEX, SELEX-seq and gcPBM HT binding assays.
Each data point demonstrates performances of two models (denoted by x- and y-axis labels). The model labeled on the y-axis outperforms the model labeled
on the x-axis if the data point is located above the diagonal line. (A) The sequence+EP models outperform the sequence-only models and contribute to
the increased prediction accuracy of DNA binding specificities based on L2-regularized MLR and 10-fold cross validation. (B) The sequence+MGW+EP
models likewise outperform the sequence+MGW models. The P values were calculated by using the t-test hypothesis testing method with performance
increase in terms of R2 as the alternative hypothesis.

bases (Supplementary Figure S11A and B) or phosphate
groups (Supplementary Figure S11C and D) contributed
similarly to the performance of sequence+EP compared to
sequence models and, likewise, to the performance of se-
quence+MGW+EP compared to sequence+MGW models.
This difference in performance increased when the added
EP information was largely from the contributions of phos-
phate groups in bHLH TFs in the gcPBM data. On the
other hand, there was essentially no improvement for EP
contributions from the bases. This observation indicates
that contacts with phosphate groups in the flanking regions
of core binding sites contribute to binding specificity. Con-
tacts of basic side chains in linker regions of bHLH proteins
with phosphates in the regions flanking their core binding
sites have been reported in co-crystal structures for Max
(67) and USF (68).

Our EP dissection combined with quantitative modeling
revealed this readout mechanism without the need of an ex-
perimentally solved structure. Thus, our results suggest that
EP contributes to TF–DNA binding specificity, and that a
direct analysis of EP might reveal the biophysical origin of
DNA shape readout mechanisms.

EP contributions to Hox-DNA binding specificity

The performance gain of SELEX-seq datasets for Exd-Hox
protein complexes was higher than the gain of all HT-
SELEX datasets (Supplementary Figure S9). The improve-
ment difference between the SELEX-seq datasets for Exd-
Hox heterodimers and HT-SELEX datasets for monomeric
homeodomains was likely due to the fact that the minor-
groove readout for SELEX-seq data depends in part on the
linker region between the Hox protein and its Exd cofactor
(37). In contrast, the HT-SELEX data were derived from

the binding of homeodomains in monomeric form (15) and,
therefore, were not influenced by latent specificity (36).

To examine the contributions of EP to Hox-DNA bind-
ing specificity in detail, we used DNAphi to predict minor-
groove EP for sequences derived from SELEX-seq experi-
ments for Drosophila Exd-Hox heterodimers. We averaged
EP predictions at each nucleotide position of the sequences
selected by each Hox protein. This family of TFs uses posi-
tively charged amino acids to recognize the enhanced nega-
tive EP in the minor groove of the Exd-Hox consensus site
GAYNNAY (with Y = C or T) (36). For example, Arg5
within the Hox linker region selects for more negative EP at
A5Y6 positions, whereas Arg3/His–12 preferentially binds
to sequences with more negative EP at A9Y10 positions
(Figure 8).

Although most sequences were predicted to have more
negative EP in the minor groove at A5Y6 positions, the
largest variation among binding sites of different Hox pro-
teins occurred at A9Y10 positions. This characteristic EP
pattern cannot be explained by nucleotide composition
alone and correlates with our previous observations on
DNA shape (22). For example, EP varied gradually at
A9Y10 positions from more negative EP for sites of ante-
rior Hox proteins to less negative EP for sequences selected
by posterior Hox proteins. As a result, anterior Hox pro-
teins (Lab, Pb, Dfd and Scr) selected sequences with two re-
gions of more negative EP, whereas posterior Hox proteins
(Antp, Ubx, AbdA and AbdB) selected sequences with only
one region of more negative EP at A5Y6 positions (Figure
8A). Scr mutants (in which Arg3, His–12 or Arg5 was mu-
tated to alanine) demonstrated the effect of losing a positive
charge on the ability to recognize regions of enhanced nega-
tive EP (Figure 8B). Antp mutants (in which minor groove-
contacting residues from Scr were engineered into the Scr
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Figure 8. Heat map of average EP at each position of 16-mers selected by
each Exd-Hox heterodimer. Dark and light red colors represent regions of
more negative and less negative EP, respectively. Black boxes indicate A5Y6
positions of 16-mers containing the TGAYNNAY core where, in the case
of Scr, Arg5 contacts the minor groove, and A9Y10 positions where Arg3
and His–12 bind to the minor groove. (A) EP profiles for selected sequences
vary between anterior and posterior Hox proteins. (B) EP profiles for se-
quences selected by Scr mutants suggest a loss in the ability to recognize
the EP profile when minor groove-contacting residues are mutated. (C) EP
profiles for sequences selected by Antp mutants, where Scr-linker residues
are inserted into the Antp protein, show the restored ability to recognize a
second minimum of enhanced negative EP.

linker) regained the ability to read two regions of more neg-
ative EP (Figure 8C).

CONCLUSIONS

Multiple determinants, including DNA sequence and
shape, contribute to TF–DNA binding specificity (1). Al-
beit related to shape, EP adds an additional layer––a bio-
physical determinant––to the complexity of protein–DNA
binding. Before the development of our new approach, HT
analysis of EP was not possible for large datasets due to the
limitations of unavailable structures and constrained com-
puting power. Although EP can be inferred indirectly by HT
DNA shape prediction (12) or experiment-based methods
(64), quantitative EP prediction on a genomic scale required
a new approach.

In this study we introduced DNAphi, a HT approach
to derive EP features from massive sequencing data. This
method is based on the data mining of results from Poisson–
Boltzmann calculations on DNA structures obtained from
MC simulations. Validation of DNAphi by using available
data revealed improved prediction accuracy based on a bio-

physical feature of protein–DNA binding. Statistical mod-
els of TF–DNA binding specificity consistently benefited
from EP-augmented models.

Approaches to calculate EP at surfaces of biological
molecules and complexes have been widely and success-
fully applied in many studies of molecular recognition
(18,39,49,69–73). DNAphi, however, is the first methodol-
ogy to enable rapid calculation of EP in the minor groove
of double-stranded DNA as a function of nucleotide se-
quence. The HT approach makes electrostatic information
accessible for whole-genome analysis. By combining knowl-
edge from biophysics and genomics, this work suggests
a new path toward understanding protein–DNA binding
and function, with the possibility of extensions to investi-
gate higher-level effects from, for example, chromatin and
cooperativity. In addition, because EP can be defined at
diverse molecular surfaces, we envision that EP analysis
will be more generally applicable than MGW of double-
helical DNA to, for instance, protein-RNA binding speci-
ficity studies.
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