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The role of ferroptosis in tumor progression and metastasis has been

demonstrated. Nonetheless, potential biological function of ferroptosis

regulatory pattern in nasopharyngeal carcinoma (NPC) remains unknown.

Ferroptosis regulatory patterns of nasopharyngeal carcinoma samples were

evaluated based on 113 ferroptosis regulators and three distinct ferroptosis

subtypes were determined by unsupervised clustering. The ferroptosis score

(FEP score) was identified to quantify ferroptosis patterns within individual

tumors by Gaussian finite mixture model and systematically correlated with

representative tumor characteristics. Subtype 1 and subtype 3 were consistent

with immune activated phenotype, while subtype 2 was consistent with

immune suppressed phenotype. High ferroptosis score, characterized by

immune activation and suppression of mRNA based stemness index

(mRNAsi) and Epstein-Barr virus (EBV) genes, indicated an immune activated

tumor microenvironment (TME) phenotype, with better progression free

survival (PFS) and lower risk of recurrence and metastasis. Low ferroptosis

score, characterized by activation of Wnt and NF-κB signaling pathways and

lack of effective immune infiltration, indicated an immune suppressed tumor

microenvironment phenotype and poorer survival. High ferroptosis score was

also correlated to enhanced response to immunotherapy, and was confirmed

to correlate with therapeutic advantages and clinical benefits in an anti-

programmed cell death 1 ligand 1 (PD-L1) immunotherapy cohort. As

ferroptosis played a crucial role in the tumor microenvironment’s diversity,

assessing the ferroptosis pattern within individual tumor with ferroptosis score

could enhance our understanding of tumor microenvironment infiltration

characterization and help develop more effective immunotherapy.
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Introduction

Nasopharyngeal carcinoma (NPC), originating from the

squamous epithelial cells of the nasopharyngeal mucosa, is a

malignancy characterized by a distinct racial and geographical

distribution which is highly prevalent in east and southeast Asia

(Zhang et al., 2015; Huang S. J. et al., 2018; Chen Y. P. et al.,

2019). NPC is etiologically associated with Epstein-Barr virus

(EBV) infection (Kamran et al., 2015), and exhibits considerable

immune cell infiltration in tumor microenvironment (TME)

(Zhang et al., 2010), making immunotherapy a promising

treatment for patients with NPC. However, although

immunotherapy targeting the immune checkpoints have

proven to be effective in multiple tumor types (Hargadon

et al., 2018), the efficacy of immune checkpoint inhibitors

(ICIs) is far from satisfying in NPC patients in early phase

clinical trials (Hsu et al., 2017; Fang et al., 2018). Given the

significant heterogeneity in the EBV status and TME

characteristics (Huang S. C. M. et al., 2018) in NPC, it is

worth studying whether these differences cause distinct

immunotherapy responses. Moreover, biological factors

regulating the TME remains to be elucidated.

Ferroptosis is a recently recognized iron-dependent programmed

cell death involving lethal iron-catalyzed lipid damage, and is

regulated by numerous genes classified as suppressors of

ferroptosis (SOFs), drivers of ferroptosis (DOFs), and markers of

ferroptosis (MOFs) (Dixon et al., 2012; Hassannia et al., 2019).

Dysfunctional ferroptosis is involved in the development of

numerous human diseases including carcinogenesis (Stockwell

et al., 2017). Owing to its key role in tumor inhibition (Yang

et al., 2016; Yang and Stockwell, 2016), ferroptosis has become a

hopeful therapeutic target in cancer treatment (Yamaguchi et al.,

2013; Ooko et al., 2015). Recent studies reported the close interaction

between ferroptosis and immune system, and highlighted ferroptosis

as a promising approach for immunotherapy. For example,

immunotherapy-activated CD8+ T cells could enhance ferroptosis

and further improve the efficacy of immunotherapy by

downregulating two subunits of the glutamate-cystine antiporter

system xc
− (Wang et al., 2019), suggesting that the immune

system might function partly through ferroptosis (Stockwell and

Jiang, 2019). Moreover, the release of immunomodulatory signals

such as oxidized lipid mediators might influence antitumor

immunity, or a small part of cells in the tumor bulk undergoing

ferroptosis might lead to immune evasion (Friedmann Angeli et al.,

2019). Understanding the ferroptosis patterns and its effect on TME

as well as immune response would better help guide the application

of immunotherapy.

Investigations on ferroptosis are limited in NPC. It has been

reported that some drugs triggering ferroptosis could attenuate

the progression and stemness of NPC cells (Li et al., 2020; He

et al., 2021; Huang et al., 2021; Xu et al., 2021). However, these

researches only focused on the function of a single ferroptosis-

related molecule or pathway, nor did they reveal the effect of

ferroptosis on TME and immune response. On the other hand,

recent studies revealed that ferroptosis related gene signatures are

related with both the prognosis and immune cell infiltration

levels in hepatocellular carcinoma (Liu Y. et al., 2020; Du and

Zhang, 2020; Tang et al., 2020). Therefore, the present study aims

to determine the ferroptosis regulatory patterns and related

biological characterizations in NPC. First, the genomic

information as well as clinical traits of patients with NPC

from public database were integrated to synthetically assess

the ferroptosis regulatory patterns and their corresponding

characteristics of TME. Then, the functional network between

ferroptosis regulators and ferroptosis related genes together with

underlying regulatory modifier genes was conducted.

Furthermore, a ferroptosis score (FEP score) was developed

and validated to predict potential responses to immunotherapy.

Materials and methods

Dataset source and data preprocessing

The raw gene expression data were obtained from Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.

gov/geo/)Included datasets were listed in Supplementary Table S1,

among which five NPC datasets (GSE12452, GSE34573, GSE53819,

GSE64634 andGSE68799) were used for further analysis.Microarray

data were obtained as the raw “CEL” files from GEO before

normalization and analysis, while high throughput sequencing

data were directly downloaded. Data on somatic mutation as well

as copy number variation were downloaded directly from

supplementary materials from a genomic analysis of NPC (Zhang

et al., 2017). A cohort of patients with advanced urothelial cancer

treated with atezolizumab, an anti-programmed cell death 1 ligand 1

(PD-L1) antibody (IMvigor210 cohort) was used as the

immunotherapeutic cohort for validation (Mariathasan et al.,

2018), and data on gene expression and clinical annotations was

obtained according to the Creative Commons 3.0 License from

http://research-pub.Gene.com/imvigor210corebiologies. Gene

expression values in the form of fragments per kilobase per

million (FPKM) and clinical data of pan-cancer

including17 cancer types in the Cancer Genome Atlas (TCGA)

database were downloaded from University of California Santa

Cruz (UCSC) XENA database (https://xenabrowser.net/datapages/)

(Goldman et al., 2020).

Differential gene expression analysis and
gene ontology (GO) analysis

Differential gene expression analysis between different

defined groups was conducted using the empirical Bayesian

approach of “limma” R package and the significance criteria

was defined as adjusted p value <0.05 and Log2 fold-change
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(log2FC) > 1. The differentially expressed mRNAs were shown in

heatmap and volcano plot in R using “pheatmap” and “ggplot2”

packages. GO and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses were conducted using the clusterProfiler

package of R software.

Unsupervised clustering for ferroptosis
regulators

A total of 113 ferroptosis regulators with validated confidence

level in Homo sapiens experiment were extracted from an online

website FerrDb (http://www.zhounan.org/ferrdb/), including

49 SOFs, 61 DOFs and 3 MOFs, and the specific information of

these genes were shown in Supplementary Table S2. Unsupervised

clustering analysis was performed according to the expression of the

113 ferroptosis regulators and used to identify distinct ferroptosis

regulatory patterns and classify patients. The number and stability of

clusters were determined with the consensus clustering algorithm. To

guarantee the stability of classification, ConsensuClusterPlus package

was applied and 1,000 repetitions were conducted (Wilkerson and

Hayes, 2010).

Implementation of single sample gene set enrichment

analysis (ssGSEA).

The gene set enrichment analysis (GSEA) program was used to

calculate the absolute enrichment scores of validated gene signatures

of a single sample. In brief, the enrichment score of both biological

process and infiltration immune cells were quantified by ssGSEA in R

package “gene set variation analysis (GSVA)”, a non-parametric and

unsupervisedmethod for estimating variation of gene set enrichment

of a single sample (Hänzelmann et al., 2013). Both the gene set of “c5.

all.v6.2. Symbols” downloaded from the Molecular Signatures

Database (MSigDB) and another published gene set storing genes

associated with some biological processes (Mariathasan et al., 2018)

were utilized to run GSVA for underlying biological function

prediction. Additionally, the relative abundance of infiltration of

each kind of immune cell in the TME of NPC was calculated using

ssGSEA algorithm with a set of immune cell markers published in

articles, containing 23 types of immune cells (Charoentong et al.,

2017). To roughly assess EBV gene expression, genes notably

correlated with EBV genes (Pearson coefficient >0.3) (Zhang

et al., 2017) instead of EBV genes were extracted for ssGSEA

analysis because the profile of EBV gene expression was not

uploaded. The above gene sets and immune cell markers were

shown in Supplementary Table S3–5.

Calculation of ferroptosis index and
ferroptosis score

To represent the ferroptosis level, a ferroptosis index (FPI)

was established based on the expression data of genes in

ferroptosis with positive components including LPCAT3,

ACSL4, NCOA4, ALOX15, GPX4, SLC3A2, SLC7A11,

NFE2L2, NOX1, NOX3, NOX4, NOX5 and negative

components including FDFT1, HMGCR, COQ10A, COQ10B.

The enrichment score (ES) of gene set positively or negatively

regulating ferroptosis was calculated using ssGSEA, and the FPI

was calculated as follows:

FPI = ES (positive)—ES (negative) (Liu Z. et al., 2020).

To quantify the ferroptosis regulatory patterns, FEP score

was calculated using principal component analysis (PCA).

Principal component 1 (PC1) and principal component 2

(PC2) of each sample were calculated using the expression

matrix of genes with prognostic significance (gene i) (Zhang

et al., 2020). The FEP score was calculated as follows:

FEP score � ∑(PC1i + PC2i)

Prediction of immunotherapy response
for patients

Tumor Immune Dysfunction and Exclusion (TIDE) database

(http://tide.dfci.harvard.edu/) was used to predict patients’

response to immunotherapy (Jiang et al., 2018). The

calculated TIDE value was used to assess the probability of

immunotherapy response with a cutoff value defaulted as 0.

As the input data needs to be normalized and melanoma as well

as non-small cell lung cancer (NSCLC) were the suggested tumor

types, the results could only be auxiliary.

Calculation of gene expression based
stemness index (mRNAsi) for patients

To evaluate the stemness of cancer cells, the mRNAsi was

calculated with a one-class logistic regression algorithm in each

NPC sample (Malta et al., 2018). The mRNA expression-based

signature consisted a gene expression profile including11

774 genes, and the workflow to generate the stemness index

was from established database (https://bioinformaticsfmrp.

github.io/PanCanStem_Web/). We applied the mRNAsi to

score the NPC samples using Spearman correlation and the

stemness index was mapped to the (0,1) range afterward via a

linear transformation as reported (Malta et al., 2018).

Construction of the network among ferroptosis and N6-

methyladenosine (m6A) modification genes.

A total of 26 RNA m6A regulators were obtained from

articles which identified different m6A modification patterns

in NPC (Li et al., 2019; Lu et al., 2020; Zhang et al., 2020),

including 10 writers (KIAA1429, WTAP, RBM15, RBM15B,

ZC3H13, METTL3, METTL5, METTL14, METTL16, CBLL1),

14 readers (ELAVL1, FMR1, HNRNPA2B1, HNRNPC,

IGF2BP1, IGF2BP2, IGF2BP3, LRPPRC, RBMX, YTHDC1,
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YTHDC2, YTHDF1, YTHDF2, YTHDF3) and two erasers

(ALKBH5, FTO). Protein-protein interaction network was

constructed in STRING database with median confidence and

visualized in Cytoscape software.

Gaussian mixture and logistic regression
model construction

Clustering was conducted based on the Gaussian finite

mixture model (GFMM) (Hong H. C. et al., 2020). The

ferroptosis regulators clusters were classified by GFMM.

Logistic regression analysis was then used to construct

combined models to predict FEP score groups. Furthermore, a

nomogram made up of the seven ferroptosis regulators was built

through the R package “rms” to predict the progression free

survival (PFS) probability.

Statistical analysis

Correlation coefficients and p values among groups were

obtained using Spearman correlation analysis. Comparisons

among three or more groups were conducted using

Kruskal–Wallis tests, and comparisons between two groups

were performed using Wilcoxon tests. The “surv-cutpoint”

function was utilized to decide the optimal separation cutoff

value in survival analysis using the “survminer” R package.

Survival curves were generated using the Kaplan-Meier

method and compared between groups via the log-rank tests.

Least Absolute Shrinkage and Selector Operation (LASSO)

algorithm was used to select candidate ferroptosis genes and

ferroptosis related genes. Waterfall function of “maftools”

package was used to visualize the mutation landscape of

samples in patients with NPC. All data processing was

performed in R 4.0.3 software, with two-side p values <
0.05 considered statistically significant.

Results

Ferroptosis regulatory patterns mediated
by ferroptosis regulators

In total, 113 ferroptosis regulators (49 SOFs, 61 DOFs and

3 MOFs) were involved in this study, and the main workflow was

shown in Supplementary Figure S1. To explore the regulatory

patterns of the ferroptosis regulators in NPC, patients were

classified with qualitatively different ferroptosis regulatory

patterns based on the expression of 113 ferroptosis regulators

using the R package of ConsensusClusterPlus, and three distinct

patterns were identified using unsupervised clustering, including

39, 44 and 30 cases in subtype 1, subtype 2 and subtype 3,

respectively (Supplementary Figure S2). The expression of

ferroptosis regulators were significantly different among three

subtypes, as shown in the PCA and heatmap (Figures 1A,B). The

survival curves of three ferroptosis subtypes were distinctive, and

the prognosis of patients in subtype 2 seemed to be worst,

although without statistical differences (Figure 1C). To explore

the underlying mechanism of ferroptosis subtypes, gene set

enrichment analysis (GSEA) with distinct enriched gene sets

was conducted among above subtypes (Figure 1D). The immune

related pathways were highly activated in subtype 1 and 3, while

these pathways were not enriched in subtype 2, which might be

the reason for the poor prognosis in subtype 2. To validate the

biological function variation among subtypes, GSVA was

performed. As shown in Figure 1E, ferroptosis subtype 1 and

subtype 3 were markedly enriched in immunophenotype

including interferon-α/γ, IL-2/STAT5, complement and

apoptosis pathways, while ferroptosis subtype 2 presented

enrichment in pathways associated with E2F, G2M, MYC and

DNA repair. The above results indicated that ferroptosis

regulatory patterns might be associated with regulation of

immune and cell proliferation related phenotypes.

Immune cell infiltration characteristics in
distinct ferroptosis subtypes

SsGSEA was applied to calculate relative expression level of

immune cells with specific immune cell signatures, and the

results showed that subtype 1 and subtype 3 were notably rich

in immune cells including activated CD4 + and CD8 + T cells,

activated dendritic cells (DCs) and B cells, except type 2 T helper

cells, which was highly enriched in subtype 2 (Figure 2A). These

results reflected there were both activated immune pathways and

enriched immune cells in ferroptosis subtype1 and subtype 3.

With Estimation of Stromal and Immune cells in malignant

tumors using Expression data (ESTIMATE) method, it is found

that stromal and immune scores were higher in tumor samples in

subtype 1 and subtype 3, which was consistent with TME

infiltration analysis (Figure 2B). The percentage of tumor

infiltration lymphocytes was also compared as defined in

previous study (Zhang et al., 2017). Although there was no

significant difference in the average percentage of stromal

lymphocytes among three subtypes, the average percentage of

intra-tumoral lymphocytes were significantly higher in subtype

1 and subtype 3 (Figure 2C). To further investigate whether the

immune cell infiltration would affect PFS, survival analysis was

performed and found that only the infiltration level of type 2 T

helper cell was significantly a risk factor for PFS, while other

types of immune cells were protective factors (Figure 2D).

Therefore, we analyzed the levels of immune infiltration

between NPC and normal samples in five NPC datasets to

investigate the dominant cells in the TME of NPC.

Surprisingly, the infiltration levels of type 2 and type 17 T
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FIGURE 1
Identification of ferroptosis regulatory patterns and biological function analysis. (A) The transcriptome profiles of ferroptosis subtypes using
principal component analysis. (B) Heatmap of ferroptosis regulators among ferroptosis subtypes. Morphology, clinical stage, survival, and TME
subtype were used as patient annotations. (C) Survival analysis among ferroptosis subtypes in GSE102349. (D) GSEA revealed distinct enriched gene
sets among subtypes. Rows were defined by gene sets, and columns by consensus scores for each subtype. (E) The GSVA enrichment score in
pathways. Each box spans the interquartile range with the upper and lower end of the boxes representing the 25th and 75th percentile values. The
horizontal lines in the boxes represented the median values. The black dots showed outliers. The asterisks represented p values (**p < 0.01; ***p <
0.001) and ns represented no significance.
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helper cells were significantly higher in NPC samples, while

activated and immature B cells, the main target cells of EBV

in the initiation of NPC, were consistently lower in NPC samples

(Figure 2E). This promoted the analysis of relative expression of

EBV genes using ssGSEA in GES102349 dataset. Interestingly,

there were indeed some differences in the expression of EBV

genes among ferroptosis subtypes, although the differences were

somewhat inconsistent among these genes (Figure 2F). The

FIGURE 2
Immune cell infiltration characteristics in distinct ferroptosis subtypes. (A) Immune cell infiltration levels in TME among ferroptosis subtypes. (B)
Immune and stromal scores via ESTIMATE among ferroptosis subtypes. (C) Intratumor and stromal tumor infiltration lymphocytes provided in
GSE102349 among ferroptosis subtypes. (D) The prognostic analyses for tumor-infiltrating immune cells in TME in GSE102349 cohort, and hazard
ratio >1 and <1 represented risk and protective factor for survival, respectively. (E) Differential expression analysis of TME infiltration in five
independent datasets. Black dots in the left column represented p < 0.05. (F) The GSVA enrichment score of EBV genes among ferroptosis subtypes.
(G) The mRNAsi among ferroptosis subtypes. (H) FPI among ferroptosis subtypes. The asterisks represented p values (*p < 0.05; **p < 0.01; ***p <
0.001; ****p < 0.0001) and ns represented no significance.
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enrichment of pathways highly associated with tumor initiation

and metastasis in subtype 2 sparked the interest in studying the

mRNA based stemness index (mRNAsi), and the result showed

that the mRNAsi was higher in subtype 2 than in the other two

subtypes, indicating that subtype 2 possessed higher capability of

invasion and metastasis (Figure 2G). Ferroptosis index (FPI), a

FIGURE 3
Generation of FEP score and functional annotation. (A)Differences of FPI in NPC samples in comparison with normal tissue in five independent
NPC datasets in GEO database, including GSE12452, GSE34573, GSE53819, GSE64634 and GSE68799. (B–F) Principal component analysis for the
ferroptosis regulators in five independent datasets, showing a remarkable difference in mRNA expression between normal tissues and NPC. (G)
Survival analysis for patients stratified by FEP score in GSE102349. (H) Correlation analysis between FPI and FEP score. (I) Alluvial diagram
visualizing the changes of ferroptosis subtypes, TME subtypes, FPI and FEP score. (J) FEP score among different ferroptosis subtypes, FPI and FEP
score groups. (K) Clinical characterization in high and low FEP score groups. The chi-square test was used to calculate statistical differences. (L) FEP
score among different clinical stages, TME subtypes and morphologies. The asterisks represented p values (*p < 0.05; ***p < 0.001; ****p < 0.0001)
and ns represented no significance.
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calculated method published before (Liu Z. et al., 2020), was used

to assess ferroptosis levels among ferroptosis subtypes, and found

that the FPI was significantly higher in subtype 1 and subtype 3

(Figure 2H). These results displayed that ferroptosis might be

associated with immune cell infiltration, EBV infection, and

metastasis phenotypes.

Generation of ferroptosis score and
functional annotation

To investigate the ferroptosis level between NPC and normal

tissue, we found that FPI was significantly higher in NPC than

normal tissue (Figure 3A), which was consistent with the results in

pan-cancer in previous study (Liu Z. et al., 2020), suggesting that

ferroptosis might be critical in the progression of NPC. Principal

component analysis revealed that the expression of ferroptosis

regulators could well reflect the differences between NPC and

normal samples (Figures 3B–F). Considering the individual

heterogeneity and complexity in the regulatory patterns of

ferroptosis, FEP score, a set of scoring system, was generated with

ferroptosis regulators to quantify the ferroptosis regulatory level in

individual patients with NPC. Patients were classified into high or

low FEP score group by “survminer” package, and those with high

FEP score demonstrated a prominent survival benefit (Figure 3G).

Correlation analysis showed that FEP score might retain part of

characteristics of FPI, and FEP score was positively correlated with

FPI (Figure 3H), which might mean that FEP score was a novel

scoring system different from FPI to assess the biological function of

ferroptosis. The alluvial diagramwas applied to visualize the attribute

changes of individual patients (Figure 3I), and indicated that FEP

score might be the best way to present ferroptosis regulatory patterns

at the individual level. Indeed, FEP score could reflect the grouping of

ferroptosis subtypes and FEP score groups well, while no statistical

difference in FEP score was shown between FPI groups (Figure 3J).

To better illustrate the characteristics of FEP score, the correlations

between clinical traits and the FEP score were examined, and the

result showed that high FEP score was significantly correlated with

disease free status, mixed and undifferentiated morphology, and

immune activated TME subtypes (Figure 3K). In terms of clinical

characteristics, FEP score was higher in TME subtype II and III as

well as mixed and undifferentiated morphology (Figure 3L), which

were groups with better prognosis and lower progression risk.

Characteristics and biological function of
ferroptosis score in nasopharyngeal
carcinoma

GSVA showed that in immune related pathways such as IL-2/

STAT5, IL-6/JAK/STAT3 and interferon response pathways

were enriched in high FEP score group, while E2F, G2M and

MYC related pathways were enriched in low FEP score group

(Figure 4A). To further verify the above underlying biological

function, previously known pathway signatures was used to

clarify the correlation between FEP score and the enrichment

score of specific pathways (Figure 4B). The results indicated that

FEP score positively correlated with immune related pathways

and negatively correlated with Wnt, cell cycle, DNA damage

repair and homologous recombination pathways. Correlation

analysis was conducted between FPI, FEP score and mRNA

expression in GSE102349 to explore ferroptosis related genes.

A total of 414 genes were found to be positively correlated with

FPI and FEP score and 146 genes were negatively correlated with

FPI and FEP score simultaneously (Figures 4C,D). GO analysis

showed that the positively correlated genes were enriched in

T cell activation and cell-cell adhesion biological function and the

negatively correlated genes were enriched in mitotic nuclear

division and chromosome segregation (Figures 4E,F).

Role of ferroptosis score in
immunotherapy for nasopharyngeal
carcinoma

SsGSEA showed that the infiltration levels of most immune

cells were highly positively associated with FEP score, except type

2 T helper cell (Figure 5A). Considering the potential function of

FEP score in immune response, FEP scores were calculated, and

the correlation between FEP score and infiltration levels of

immune cells were enriched by ssGSEA in six NPC datasets

(Figure 5B). The results revealed that FEP score was positively

correlated with most immune cells. Further verification using

ESTIMATE algorithm also found that both immune and stromal

scores were higher in high FEP score group (Figure 5C). Previous

study showed that the activation of dendritic cells (DCs), the key

antigen-presenting cells responsible for activation of naive

T cells, depended on the high expression of costimulatory

molecules, major histocompatibility complex (MHC)

molecules, and adhesion molecules (Qian and Cao, 2018). All

the three categories of molecules were mostly highly expressed in

high FEP score group (Figure 5D). Interestingly, the expression

of EBV genes such as A73, EBNA1 and PRMS1 were significantly

higher in low FEP score group (Figure 5E), suggesting a possible

correlation between worse prognosis as well as lower immune cell

infiltration level and EBV infection. Correlation analysis further

confirmed had a strong negative correlation between FEP score

with mRNAsi, which could well reflect the stemness of cancer

cells (Figure 5F). Furthermore, the correlation between FEP score

and expression level of immunological checkpoint molecules

were tested (Figure 5G). Studies have reported that activation

of NF-κB pathway and cell cycle inhibitors played an important

role in NPC (Zheng et al., 2016; Li et al., 2017; Wang et al., 2017)

and deletion of several NF-κB and cell cycle inhibitors were

found such as CDKN2A, CDKN2B, CYLD and TRAF3 (Zhang

et al., 2017). Reanalyzing the copy number and mutations data in
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FIGURE 4
Characteristics and biological function of FEP score in NPC. (A)GSVA score for pathways in low and high FEP score groups. The orange and blue
columns represented pathways enriched in high and low FEP score group, respectively. (B) Correlations between FEP score and known gene
signatures in NPC using Spearman analysis. Positive and negative correlations were marked with orange and blue, respectively. (C) Venn plot of
candidate ferroptosis related genes and the red fonts represented the intersection genes correlated with FPI and FEP score simultaneously. (D)
Heatmap of candidate ferroptosis related genes among ferroptosis subtypes. Morphology, clinical stage, survival, and TME subtypes were adopted as
annotations. (E–F) GO analysis of candidate ferroptosis genes positively or negatively correlated with FPI and FEP score.
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FIGURE 5
Role of FEP score in immunotherapy for NPC. (A) Correlations between FEP score and the immune cell infiltrations in NPC using Spearman
analysis. Positive and negative correlations were marked with orange and blue, respectively. (B) Correlations between FEP score and TME infiltration
in six independent NPC datasets using Spearman analysis. (C) ESTIMATE ps. (D) The relative expression of costimulatory, MHC, and adhesion
molecules in different FEP score groups. (E) EBV gene enrichment score by GSVA in different FEP score groups. (F)Correlation analysis between
FEP score and mRNAsi using Spearman analysis. (G) Correlation analysis between FEP score and immune checkpoint inhibitors in GSE102349 using
Spearman analysis. (H) Somatic copy number variations and mutations in the paired NPC cohort in GSE102349 were shown in different FEP score
groups. (I) TIDE value of NPC samples in GSE102349 in different FEP score groups. The chi-square test was used to calculate statistical differences.
The asterisks represented p values (*p < 0.05; **p < 0.01; ***p < 0.001) and ns represented no significance.
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FIGURE 6
FEP regulatory patterns in pan-cancer and the role in immunotherapy. (A) Subgroup analyses evaluating prognostic value of FEP score in various
types of cancer from TCGA datasets. HR > 1.0 indicated high FEP score as a protective prognostic factor. (B) Survival analysis for FEP score in
IMvigor210 cohort. (C) Distribution of FEP score in groups with distinct clinical responses to anti-PD-L1 treatment. (D) Correlation analysis between
FEP score and infiltration levels of immune cell in IMvigor210 cohort. The asterisks represented the p values (*p < 0.05; **p < 0.01).
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GSE102349, it was confirmed that the deletion frequencies of NF-

κB and cell cycle inhibitors were higher in low FEP score group,

but the mutations were not common in cell cycle, NF-κB or

PI3K/MAPK pathways (Figure 5H). As expected, FEP score

positively correlated with checkpoint molecules, suggesting a

possibility of better response to immunotherapy in high FEP

score group. Therefore, NPC patients were classified into

response and no response groups with TIDE value to predict

the immune response, and high FEP score group might have

better response to immunotherapy (Figure 5I). Above evidences

illustrated that high FEP score group with low probability of

progression might be associated with more immune cell

infiltration and better response to immunotherapy, while low

FEP score group with high possibility of metastasis might possess

more activated NF-κB pathway and higher mRNAsi.

Considering the possible role of FEP score in predicting

response to immunotherapy, whether the FEP score could

predict patients’ response to ICIs was investigated in an

immunotherapy cohort. Firstly, FEP score was proven a

protective prognostic factor in all the 17 types of independent

cancers in TCGA cohorts (Figure 6A). Thus, we further validated

the predictive role of FEP score in response to ICIs in an anti-PD-

L1 cohort (IMvigor210) in urinary carcinoma instead because of

the lack of cohorts treated with immunotherapy in NPC. Survival

analysis showed patients with high FEP score had better survival

(Figure 6B). FEP score in complete response (CR) group was

significantly higher than those in progressive disease (PD) or

stable disease (SD) groups (Figure 6C). Correlation analysis

indicated that FEP score also positively correlated with

immune cell infiltration (Figure 6D).

Identification of feature ferroptosis genes
and construction of prediction model

To reveal the expression landscape of ferroptosis regulators

between NPC and normal nasopharyngeal tissue, differentially

distribution of mRNA expression of ferroptosis regulators was

investigated by integrated bioinformatics analysis. Differentially

expressed gene analysis was conducted in 5 GEO datasets

(GSE12452, GSE34573, GSE53819, GSE64634 and GSE68799)

between NPC and normal control samples, and the result showed

that the expression of ferroptosis regulators stratified with the

criteria log2FC > 1 and false discovery rate (FDR) < 0.05 were

highly heterogenous in NPC (Figure 7A). Differentially expressed

ferroptosis regulators were defined only if they have the same

tendency of expression in at least three datasets. As a result,

ABCC1, ANO6, IDH1, IREB2, PANX1, SOCS1, TNFAIP3, CBS,

CDKN1A, LAMP2, SRC, FTH1 and PTGS2 were significantly

upregulated, while ALOX15, MAPK3, AKR1C3, MUC1,

NQO1 were significantly downregulated in NPC. Then,

survival analysis was conducted in 88 NPC samples with PFS

data in GSE102349, and found 11 protective and 17 risk

ferroptosis regulators for PFS (Figure 7B). Interestingly, only

ABCC1, TNFAIP3 and ALOX5 stood out when the differential

expression and prognostic value were taken into consideration

simultaneously. The highly heterogeneous expression of

ferroptosis regulators between NPC and normal samples

indicated that ferroptosis regulators might be of considerable

importance in the occurrence and progression of NPC.

Correlation analysis between ferroptosis regulators and

immune cell infiltration levels was conducted to identify the

candidate ferroptosis regulators associated with immune

response (Figure 7C and Supplementary Table S6). We found

that 14 DOFs (ZEB1, SAT1, NCOA4, MAPK3, IFNG, HMOX1,

DPP4, CDO1, ATM, ATG7, ALOX5, ALOX15B, ALOX15,

ACSL4) and 11 SOFs (ZFP36, TMBIM4, SLC7A11, SLC40A1,

RB1, NQO1, MUC1, HIF1A, GCH1, CHMP5, ARNTL) were

highly positively associated with immune cell infiltration, and

14 DOFs (VDAC2, TP53, RPL8, PEBP1, MYB, LONP1, KEAP1,

IDH1, ELAVL1, EGFR, CS, ATP5G3, ACVR1B, ABCC1) and

11 SOFs (PROM2, PRDX6, OTUB1, NFS1, LAMP2, HSF1,

GPX4, CISD2, CBS, CA9, ATF4) were highly negatively

associated with immune cell infiltration. The same result

could be found in correlation analysis between FEP score and

above immune related ferroptosis genes (Figure 7D). To further

identify feature ferroptosis genes, LASSO algorithm was

performed and found seven ferroptosis regulators between two

FEP score groups (Figures 8A,B). The seven ferroptosis genes

signature, containing CDO1, TP63, STAT3, ELAVL1, CS,

CISD2, ABCC1, showed a highest accuracy of 0.983 by the

GFMM classifier in one of the 127 formulas, as shown in

Figure 8C. The coefficients of genes involved in the signature

was shown in Figure 8D, and the formula score was named

simplified FEP (sFEP) score: sFEP score = CDO1 × 6.802 +

TP63 × −1.681 + STAT3 × −1.752 + ELAVL1 × −3.525 +

CS × −3.83 + CISD2 × −1.276 + ABCC1 ×−1.445.

Interestingly, sFEP score showed slightly better function than

FEP in prediction of PFS in NPC (Figure 8E), and we could find

that the number of patients with disease progression decreased as

sFEP score increased (Figure 8F). We developed a nomogram

based on the Cox regression model to predict the 1- and 3-years

PFS probability for NPC patients (Figure 8G). The calibration

plots for the 1- and 3-years PFS showed an optimal agreement

between the nomogram-predicted and observed PFS, which was

used to evaluate the accuracy of the prediction signature

(Figure 8H).

Regulatory network between ferroptosis
and m6A modification genes

Given the similar ability of sFEP score with FEP score in

terms of prognostic value, correlation analysis was performed

and the result showed that sFEP score was also positively

correlated with immune cell infiltration levels in NPC
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FIGURE 7
Identification of candidate ferroptosis genes. (A) Differentially expressed ferroptosis regulators in NPC samples in comparison with normal
tissue in five independent NPC datasets including GSE12452, GSE34573, GSE53819, GSE64634 and GSE68799 in GEO database. (B) The prognostic
analyses of 113 ferroptosis regulators in GSE102349 cohorts. Hazard ratio >1 and <1 represented risk factor and protective factor for survival,
respectively. (C) Correlation analysis between ferroptosis regulators and tumor-infiltrating immune cells in TME using Spearman analysis in
GSE102349. (D) Correlation analysis between FEP score and ferroptosis regulators.
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FIGURE 8
Construction of prediction model. (A) LASSO coefficient profiles of ferroptosis regulators. (B) Ten-time cross-validation for tuning parameter
selection in the LASSOmodel for ferroptosis regulators. (C) The pattern of the logistic regressionmodel correlated with the AUC scores identified by
aGaussianmixture. There are 3 clusters of 127 combinations. (D) The coefficients of seven genes involved in sFEP score signature. (E) Survival analysis
for sFEP score in GSE102349. (F) The sFEP score distribution in the patients with NPC and the progression status of NPC from different groups of
sFEP scores. (G) The nomogram to predict one-year and three-year PFS outcomes of NPC patients. (H) The calibration curve to evaluate the
accuracy of the nomogram constructed based on sFEP signature.
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FIGURE 9
Construction of network among m6A regulators and ferroptosis regulators. (A) Correlation analysis between sFEP score and the immune cells
infiltration levels. (B) Correlation analysis between seven ferroptosis genes and mRNAsi, FPI, FEP score and pathways. (C) The relative expression of
m6A regulators in different FEP score groups. (D) Protein-protein interaction network among m6A regulators and ferroptosis regulators. The
asterisks represented p values (*p < 0.05; **p < 0.01; ***p < 0.001) and ns represented no significance.
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(Figure 9A). To further validate the biological function of these

candidate ferroptosis related genes, correlation analysis showed

that six signature genes (ABCC1, CISD2, CS, ELAVL1, STAT3,

TP63) were positively correlated with mRNAsi, cell cycle and

WNT signaling pathways and three genes (ABCC1, CS,

ELAVL1) were negatively correlated with immune checkpoint

and CD8 T cell effector (Figure 9B). As ELAVL1 is also a famous

m6A regulatory gene (Chen Y. et al., 2019) and m6A

modification could interplay with immune system and

influence the infiltration of immune cells (Chen Y. G. et al.,

2019), we speculated whether m6A regulators could interact with

ferroptosis regulators and further be the underlying decipher for

differentially expression of ferroptosis regulators. The result

showed that m6A regulators were differentially expressed in

FEP score groups with most of m6A regulators being low

expressed in high FEP score group (Figure 9C). Protein-

protein interaction network was employed to depict the

landscape of m6A regulators and ferroptosis regulators, and

ELAVL1 had dual identities among the network, which was

not only a m6A reader but also a validated ferroptosis driver

(Figure 9D). Correlation analysis further validated a high

association between the expression of m6A regulators and the

expression of ferroptosis regulators (Supplementary Figure S3).

Taken together, the study strongly indicated that ferroptosis

related genes were significantly correlated with tumor immune

infiltrations and might be regulated by m6A modification.

Discussion

Increasing evidence demonstrated the crucial role of

ferroptosis in antitumor immunity as well as cross talk with

various immune cells including cytotoxic T cells and

macrophages (Dai et al., 2020; Shen et al., 2021). Different

from most studies focusing on limited cell types or ferroptosis

regulators, the present study comprehensively recognized the

overall infiltration characterizations of immune cells mediated by

integrative roles of multiple ferroptosis regulators. The study

firstly revealed three distinct ferroptosis regulatory subtypes in

NPC with distinct TME cell infiltration characterizations.

Subsequently, FEP score system was further identified, and the

Associations between FEP score and immune cell infiltration,

EBV infection and cancer stemness index were analyzed. Subtype

1 and subtype 3, as well as high FEP score groups were

characterized by immune activation, corresponding to

immune activated phenotype (Gajewski et al., 2013; Turley

et al., 2015; Chen and Mellman, 2017), while subtype 2 and

low FEP score groups were characterized by immune

suppression, corresponding to immune suppressed phenotype

(Kim and Chen, 2016). FEP score significantly positively

correlated with immune checkpoint, CD8 T cell effector and

antigen processing machinery, and higher FEP score was highly

correlated with better immune therapy response.

Although NPC is a malignant tumor with relatively good

prognosis under standard treatment, distant metastasis remains

the main cause of treatment failure and death (Hong X. et al.,

2020). The FEP score could well predict the risk of metastasis and

reflect the clinical stage and previously defined TME subtype

(Zhang et al., 2017). It is true that TME subtype could also reflect

the TME infiltration and predict PFS in NPC (Zhang et al., 2017),

but the construction of TME subtype differed completely and the

function of TME subtype was partially distinctive from that of the

FEP score. The PCA algorithm used in the present study

advantages in retaining the most characterization of

ferroptosis regulators in NPC, and that was why FEP score

displayed high association with most of ferroptosis regulators.

In terms of function, FEP score could well reflect the mRNAsi,

TME infiltration and EBV genes. FEP score was negatively

correlated with mRNAsi, an index to assess the stemness of

cancer cells, which could explain why FEP score was a protective

factor for metastasis, as cancer stem-like cells (CSCs) are

supposed to participate in cancer metastasis and recurrence

(Wei et al., 2014). Moreover, copy number alteration,

including both deletion of inhibitors and amplification of

activators in NF-κB signaling pathway could also be related

with CSCs and poor prognosis. Immunotherapy has been

suggested to contribute to developing more effective and safer

treatment modalities in NPC in future (Hong et al., 2018; Chow

et al., 2019; Masterson et al., 2020). According to our analysis,

FEP score was apparently positively correlated with most of

immune checkpoints such as TIM3, TIGIT, PD1, CTLA4 and

LAG3, and the expression of ferroptosis regulators were highly

associated with immune cell infiltrations. In combination with

the results of TME infiltration, the prediction role of FEP score

and ferroptosis regulators in efficacy of immunotherapy could be

reasonable and obvious. EBV infection are assumed to activate

the initiation of NPC through multiple pathways (Tsao et al.,

2017). Although the expression of EBV genes could not be

obtained, the EBV gene expression for NPC was robustly

assessed based on GSVA analysis in GSE102349. EBV gene

expression was also found to be correlated with “cold” TME

infiltration negatively and h mRNAsi positively. However, the

relationship between ferroptosis and EBV infection remained

uncertain, which might be a novel research topic.

As NPC has some unique features, the role of ferroptosis in NPC

also differs from other cancers. NPC was closely related with EBV,

the first oncogenic virus identified in humans. Compared with those

in other cancers, the role of EBV in tumorigenesis of NPC was quite

clearer. Recent study has reported that EBV infection could reduce

the sensitivity of NPC cells to ferroptosis by upregulating the

expression of SLC7A11 and GPX4 expression, and high

GPX4 expression was correlated with poor clinical outcomes,

suggesting a novel target in the treatment of NPC (Yuan et al.,

2022). This was consistent with our finding that EBV infection level

was associated with ferroptosis levels and might be related with

infiltration levels of immune cells. In addition, radiotherapy is the
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main effective treatment modality in NPC, which is different from

many solid tumors that require surgery. The cross-link between

ferroptosis and radio-sensitization of NPC are generally being

studied, hoping that linking the mechanism of ferroptosis with

radiotherapy strategies could accelerate the development of novel

ferroptosis-based treatment in NPC (Li et al., 2021).

The biological function of ferroptosis varied among different

types of tumors and could be seen in the field of drug resistance,

immune evasion, antitumor effect or progression andmetastasis. The

differential expression analysis and survival analysis showed that the

truly differentially expressed ferroptosis regulators with significant

prognostic value were not abundant. Isocitrate dehydrogenase 1 and

2 (IDH1 and IDH2) are key catalytic enzymes that convert isocitrate

to α-ketoglutarate, and small molecule inhibitors of mutant IDH1/

2 enzymes represent a novel class of drug for targeted therapy for

patients harboring IDH1/2 mutations (Mondesir et al., 2016). The

well-known multidrug resistance-associated protein 1 (ABCC1) is a

major player in cancer relatedmultidrug resistance and has been well

investigated in the management of drug-resistant tumors (Wiese and

Stefan, 2019). TNFAIP3, an inflammation-related gene, could inhibit

migration and invasion in NPC by suppressing epithelial-

mesenchymal transition (EMT) (Huang et al., 2017), and EBV

infection could decrease the expression of TNFAIP3 in NPC

tumors (Xu et al., 2019). Moreover, arachidonate 5-lipoxygenases

(ALOX5) could enhance the function of macrophages in the

changing tumor environment (Weigert et al., 2018). Even though

all these genes have been supposed to be associated with ferroptosis

recently in other types of cancer, none of them have been investigated

in NPC regarding ferroptosis or immune infiltration, needing further

validation with basic experiments. Usingmachine learning algorithm

LASSO, we also identified candidate ferroptosis related genes, which

might be related with candidate ferroptosis regulators. Furthermore,

the study made a novel attempt to investigate the relationship

between m6A modification and ferroptosis regulators to uncover

the underlying regulatory mechanisms of ferroptosis in NPC.

In conclusion, the FEP score could be used to

comprehensively evaluate the ferroptosis regulatory patterns

and their corresponding characterization of immune cell

infiltration in TME within individual patient, and further to

decide the immune phenotypes of tumors and predict patients’

response to immunotherapy to guide more effective clinical

practice. This study has also provided new insight into cancer

immunotherapy that targeting ferroptosis regulators or FEP

phenotype-related genes to change the ferroptosis regulatory

patterns and further reverse the adverse TME cell infiltration

characterization, contributing to the development of novel

immunotherapeutic agents or combination therapy.
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