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The role of ferroptosis in tumor progression and metastasis has been
demonstrated. Nonetheless, potential biological function of ferroptosis
regulatory pattern in nasopharyngeal carcinoma (NPC) remains unknown.
Ferroptosis regulatory patterns of nasopharyngeal carcinoma samples were
evaluated based on 113 ferroptosis regulators and three distinct ferroptosis
subtypes were determined by unsupervised clustering. The ferroptosis score
(FEP score) was identified to quantify ferroptosis patterns within individual
tumors by Gaussian finite mixture model and systematically correlated with
representative tumor characteristics. Subtype 1 and subtype 3 were consistent
with immune activated phenotype, while subtype 2 was consistent with
immune suppressed phenotype. High ferroptosis score, characterized by
immune activation and suppression of MRNA based stemness index
(mRNAsi) and Epstein-Barr virus (EBV) genes, indicated an immune activated
tumor microenvironment (TME) phenotype, with better progression free
survival (PFS) and lower risk of recurrence and metastasis. Low ferroptosis
score, characterized by activation of Wnt and NF-«kB signaling pathways and
lack of effective immune infiltration, indicated an immune suppressed tumor
microenvironment phenotype and poorer survival. High ferroptosis score was
also correlated to enhanced response to immunotherapy, and was confirmed
to correlate with therapeutic advantages and clinical benefits in an anti-
programmed cell death 1 ligand 1 (PD-L1) immunotherapy cohort. As
ferroptosis played a crucial role in the tumor microenvironment's diversity,
assessing the ferroptosis pattern within individual tumor with ferroptosis score
could enhance our understanding of tumor microenvironment infiltration
characterization and help develop more effective immunotherapy.
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Introduction

Nasopharyngeal carcinoma (NPC), originating from the
squamous epithelial cells of the nasopharyngeal mucosa, is a
malignancy characterized by a distinct racial and geographical
distribution which is highly prevalent in east and southeast Asia
(Zhang et al,, 2015; Huang S. J. et al,, 2018; Chen Y. P. et al,,
2019). NPC is etiologically associated with Epstein-Barr virus
(EBV) infection (Kamran et al., 2015), and exhibits considerable
immune cell infiltration in tumor microenvironment (TME)
(Zhang et al, 2010), making immunotherapy a promising
with NPC. However, although
immunotherapy targeting the immune checkpoints have

treatment for patients
proven to be effective in multiple tumor types (Hargadon
et al, 2018), the efficacy of immune checkpoint inhibitors
(ICIs) is far from satisfying in NPC patients in early phase
clinical trials (Hsu et al., 2017; Fang et al, 2018). Given the
significant heterogeneity in the EBV status and TME
characteristics (Huang S. C. M. et al, 2018) in NPC, it is
worth studying whether these differences cause distinct
immunotherapy responses. Moreover, biological factors
regulating the TME remains to be elucidated.

Ferroptosis is a recently recognized iron-dependent programmed
cell death involving lethal iron-catalyzed lipid damage, and is
regulated by numerous genes classified as suppressors of
ferroptosis (SOFs), drivers of ferroptosis (DOFs), and markers of
ferroptosis (MOFs) (Dixon et al, 2012; Hassannia et al, 2019).
Dysfunctional ferroptosis is involved in the development of
numerous human diseases including carcinogenesis (Stockwell
et al, 2017). Owing to its key role in tumor inhibition (Yang
et al, 2016; Yang and Stockwell, 2016), ferroptosis has become a
hopeful therapeutic target in cancer treatment (Yamaguchi et al,
2013; Ooko et al,, 2015). Recent studies reported the close interaction
between ferroptosis and immune system, and highlighted ferroptosis
as a promising approach for immunotherapy. For example,
immunotherapy-activated CD8" T cells could enhance ferroptosis
and further improve the efficacy of immunotherapy by
downregulating two subunits of the glutamate-cystine antiporter
system x. (Wang et al, 2019), suggesting that the immune
system might function partly through ferroptosis (Stockwell and
Jiang, 2019). Moreover, the release of immunomodulatory signals
such as oxidized lipid mediators might influence antitumor
immunity, or a small part of cells in the tumor bulk undergoing
ferroptosis might lead to immune evasion (Friedmann Angeli et al,,
2019). Understanding the ferroptosis patterns and its effect on TME
as well as immune response would better help guide the application
of immunotherapy.

Investigations on ferroptosis are limited in NPC. It has been
reported that some drugs triggering ferroptosis could attenuate
the progression and stemness of NPC cells (Li et al., 2020; He
et al,, 2021; Huang et al., 2021; Xu et al., 2021). However, these
researches only focused on the function of a single ferroptosis-

related molecule or pathway, nor did they reveal the effect of
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ferroptosis on TME and immune response. On the other hand,
recent studies revealed that ferroptosis related gene signatures are
related with both the prognosis and immune cell infiltration
levels in hepatocellular carcinoma (Liu Y. et al., 2020; Du and
Zhang, 2020; Tang et al., 2020). Therefore, the present study aims
to determine the ferroptosis regulatory patterns and related
biological characterizations in NPC. First, the genomic
information as well as clinical traits of patients with NPC
from public database were integrated to synthetically assess
the ferroptosis regulatory patterns and their corresponding
characteristics of TME. Then, the functional network between
ferroptosis regulators and ferroptosis related genes together with
underlying regulatory modifier genes was conducted.
Furthermore, a ferroptosis score (FEP score) was developed

and validated to predict potential responses to immunotherapy.

Materials and methods
Dataset source and data preprocessing

The raw gene expression data were obtained from Gene
Expression Omnibus (GEO) database (https://www.ncbinlm.nih.
gov/geo/)Included datasets were listed in Supplementary Table S1,
among which five NPC datasets (GSE12452, GSE34573, GSE53819,
GSE64634 and GSE68799) were used for further analysis. Microarray
data were obtained as the raw “CEL” files from GEO before
normalization and analysis, while high throughput sequencing
data were directly downloaded. Data on somatic mutation as well
as copy number variation were downloaded directly from
supplementary materials from a genomic analysis of NPC (Zhang
et al,, 2017). A cohort of patients with advanced urothelial cancer
treated with atezolizumab, an anti-programmed cell death 1 ligand 1
(PD-L1) antibody (IMvigor210 cohort) was used as the
immunotherapeutic cohort for validation (Mariathasan et al,
2018), and data on gene expression and clinical annotations was
obtained according to the Creative Commons 3.0 License from
http://research-pub.Gene.com/imvigor210corebiologies. Gene
expression values in the form of fragments per kilobase per
(FPKM) data of  pan-cancer
includingl7 cancer types in the Cancer Genome Atlas (TCGA)
database were downloaded from University of California Santa
Cruz (UCSC) XENA database (https://xenabrowser.net/datapages/)
(Goldman et al., 2020).

million and  clinical

Differential gene expression analysis and
gene ontology (GO) analysis

Differential gene expression analysis between different
defined groups was conducted using the empirical Bayesian
approach of “limma” R package and the significance criteria
was defined as adjusted p value <0.05 and Log2 fold-change
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(log,FC) > 1. The differentially expressed mRNAs were shown in
heatmap and volcano plot in R using “pheatmap” and “ggplot2”
packages. GO and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were conducted using the clusterProfiler
package of R software.

Unsupervised clustering for ferroptosis
regulators

A total of 113 ferroptosis regulators with validated confidence
level in Homo sapiens experiment were extracted from an online
website  FerrDb  (http://www.zhounan.org/ferrdb/),  including
49 SOFs, 61 DOFs and 3 MOFs, and the specific information of
these genes were shown in Supplementary Table S2. Unsupervised
clustering analysis was performed according to the expression of the
113 ferroptosis regulators and used to identify distinct ferroptosis
regulatory patterns and classify patients. The number and stability of
clusters were determined with the consensus clustering algorithm. To
guarantee the stability of classification, ConsensuClusterPlus package
was applied and 1,000 repetitions were conducted (Wilkerson and
Hayes, 2010).

Implementation of single sample gene set enrichment
analysis (ssGSEA).

The gene set enrichment analysis (GSEA) program was used to
calculate the absolute enrichment scores of validated gene signatures
of a single sample. In brief, the enrichment score of both biological
process and infiltration immune cells were quantified by ssGSEA in R
package “gene set variation analysis (GSVA)”, a non-parametric and
unsupervised method for estimating variation of gene set enrichment
of a single sample (Hanzelmann et al., 2013). Both the gene set of “c5.
allv6.2. Symbols” downloaded from the Molecular Signatures
Database (MSigDB) and another published gene set storing genes
associated with some biological processes (Mariathasan et al.,, 2018)
were utilized to run GSVA for underlying biological function
prediction. Additionally, the relative abundance of infiltration of
each kind of immune cell in the TME of NPC was calculated using
ssGSEA algorithm with a set of immune cell markers published in
articles, containing 23 types of immune cells (Charoentong et al,
2017). To roughly assess EBV gene expression, genes notably
correlated with EBV genes (Pearson coefficient >0.3) (Zhang
et al, 2017) instead of EBV genes were extracted for ssGSEA
analysis because the profile of EBV gene expression was not
uploaded. The above gene sets and immune cell markers were
shown in Supplementary Table S3-5.

Calculation of ferroptosis index and
ferroptosis score

To represent the ferroptosis level, a ferroptosis index (FPI)

was established based on the expression data of genes in
ferroptosis with positive components including LPCATS3,
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ACSL4, NCOA4, ALOX15, GPX4, SLC3A2, SLC7All,
NFE2L2, NOXI, NOX3, NOX4, NOX5 and negative
components including FDFT1, HMGCR, COQ10A, COQ10B.
The enrichment score (ES) of gene set positively or negatively
regulating ferroptosis was calculated using ssGSEA, and the FPI
was calculated as follows:

FPI = ES (positive)—ES (negative) (Liu Z. et al., 2020).

To quantify the ferroptosis regulatory patterns, FEP score
was calculated using principal component analysis (PCA).
Principal component 1 (PCl) and principal component 2
(PC2) of each sample were calculated using the expression
matrix of genes with prognostic significance (gene i) (Zhang
et al., 2020). The FEP score was calculated as follows:

FEP score = ) (PCI; + PC2)

Prediction of immunotherapy response
for patients

Tumor Immune Dysfunction and Exclusion (TIDE) database
(http://tide.dfciharvard.edu/) was used to predict patients’
2018). The
calculated TIDE value was used to assess the probability of

response to immunotherapy (Jiang et al,
immunotherapy response with a cutoff value defaulted as 0.
As the input data needs to be normalized and melanoma as well
as non-small cell lung cancer (NSCLC) were the suggested tumor

types, the results could only be auxiliary.

Calculation of gene expression based
stemness index (MRNAsi) for patients

To evaluate the stemness of cancer cells, the mRNAsi was
calculated with a one-class logistic regression algorithm in each
NPC sample (Malta et al., 2018). The mRNA expression-based
signature consisted a gene expression profile includingll
774 genes, and the workflow to generate the stemness index
was from established database (https://bioinformaticsfmrp.
github.io/PanCanStem_Web/). We applied the mRNAsi to
score the NPC samples using Spearman correlation and the
stemness index was mapped to the (0,1) range afterward via a
linear transformation as reported (Malta et al., 2018).

Construction of the network among ferroptosis and N6-
methyladenosine (m6A) modification genes.

A total of 26 RNA m6A regulators were obtained from
articles which identified different m6A modification patterns
in NPC (Li et al, 2019; Lu et al,, 2020; Zhang et al., 2020),
including 10 writers (KIAA1429, WTAP, RBM15, RBM15B,
ZC3H13, METTL3, METTL5, METTL14, METTL16, CBLL1),
14 readers (ELAVLI, FMR1, HNRNPA2B1, HNRNPC,
IGF2BP1, IGF2BP2, IGF2BP3, LRPPRC, RBMX, YTHDCI,
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YTHDC2, YTHDF1, YTHDF2, YTHDF3) and two erasers
(ALKBHS5, FTO). Protein-protein interaction network was
constructed in STRING database with median confidence and
visualized in Cytoscape software.

Gaussian mixture and logistic regression
model construction

Clustering was conducted based on the Gaussian finite
mixture model (GFMM) (Hong H. C. et al, 2020). The
ferroptosis regulators clusters were classified by GFMM.
Logistic regression analysis was then used to construct
combined models to predict FEP score groups. Furthermore, a
nomogram made up of the seven ferroptosis regulators was built
through the R package “rms” to predict the progression free
survival (PFS) probability.

Statistical analysis

Correlation coefficients and p values among groups were
obtained using Spearman correlation analysis. Comparisons
three
Kruskal-Wallis tests, and comparisons between two groups

among or more groups were conducted using
were performed using Wilcoxon tests. The “surv-cutpoint”
function was utilized to decide the optimal separation cutoff
value in survival analysis using the “survminer” R package.
Survival curves were generated using the Kaplan-Meier
method and compared between groups via the log-rank tests.
Least Absolute Shrinkage and Selector Operation (LASSO)
algorithm was used to select candidate ferroptosis genes and
ferroptosis related genes. Waterfall function of “maftools”
package was used to visualize the mutation landscape of
samples in patients with NPC. All data processing was
performed in R 4.0.3 software, with two-side p values <

0.05 considered statistically significant.

Results

Ferroptosis regulatory patterns mediated
by ferroptosis regulators

In total, 113 ferroptosis regulators (49 SOFs, 61 DOFs and
3 MOFs) were involved in this study, and the main workflow was
shown in Supplementary Figure S1. To explore the regulatory
patterns of the ferroptosis regulators in NPC, patients were
classified with qualitatively different ferroptosis regulatory
patterns based on the expression of 113 ferroptosis regulators
using the R package of ConsensusClusterPlus, and three distinct
patterns were identified using unsupervised clustering, including
39, 44 and 30 cases in subtype 1, subtype 2 and subtype 3,
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respectively (Supplementary Figure S2). The expression of
ferroptosis regulators were significantly different among three
subtypes, as shown in the PCA and heatmap (Figures 1A,B). The
survival curves of three ferroptosis subtypes were distinctive, and
the prognosis of patients in subtype 2 seemed to be worst,
although without statistical differences (Figure 1C). To explore
the underlying mechanism of ferroptosis subtypes, gene set
enrichment analysis (GSEA) with distinct enriched gene sets
was conducted among above subtypes (Figure 1D). The immune
related pathways were highly activated in subtype 1 and 3, while
these pathways were not enriched in subtype 2, which might be
the reason for the poor prognosis in subtype 2. To validate the
biological function variation among subtypes, GSVA was
performed. As shown in Figure 1E, ferroptosis subtype 1 and
subtype 3 were markedly enriched in immunophenotype
IL-2/STATS,
apoptosis pathways, while ferroptosis subtype 2 presented
enrichment in pathways associated with E2F, G2M, MYC and
DNA repair. The above results indicated that ferroptosis

including interferon-a/y, complement and

regulatory patterns might be associated with regulation of
immune and cell proliferation related phenotypes.

Immune cell infiltration characteristics in
distinct ferroptosis subtypes

SsGSEA was applied to calculate relative expression level of
immune cells with specific immune cell signatures, and the
results showed that subtype 1 and subtype 3 were notably rich
in immune cells including activated CD4 + and CD8 + T cells,
activated dendritic cells (DCs) and B cells, except type 2 T helper
cells, which was highly enriched in subtype 2 (Figure 2A). These
results reflected there were both activated immune pathways and
enriched immune cells in ferroptosis subtypel and subtype 3.
With Estimation of Stromal and Immune cells in malignant
tumors using Expression data (ESTIMATE) method, it is found
that stromal and immune scores were higher in tumor samples in
subtype 1 and subtype 3, which was consistent with TME
infiltration analysis (Figure 2B). The percentage of tumor
infiltration lymphocytes was also compared as defined in
previous study (Zhang et al, 2017). Although there was no
significant difference in the average percentage of stromal
lymphocytes among three subtypes, the average percentage of
intra-tumoral lymphocytes were significantly higher in subtype
1 and subtype 3 (Figure 2C). To further investigate whether the
immune cell infiltration would affect PFS, survival analysis was
performed and found that only the infiltration level of type 2 T
helper cell was significantly a risk factor for PES, while other
types of immune cells were protective factors (Figure 2D).
Therefore, we analyzed the levels of immune infiltration
between NPC and normal samples in five NPC datasets to
in the TME of NPC.
Surprisingly, the infiltration levels of type 2 and type 17T

investigate the dominant cells
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Immune cellinfiltration characteristics in distinct ferroptosis subtypes. (A) Immune cell infiltration levels in TME among ferroptosis subtypes. (B)
Immune and stromal scores via ESTIMATE among ferroptosis subtypes. (C) Intratumor and stromal tumor infiltration lymphocytes provided in
GSE102349 among ferroptosis subtypes. (D) The prognostic analyses for tumor-infiltrating immune cells in TME in GSE102349 cohort, and hazard
ratio >1 and <1 represented risk and protective factor for survival, respectively. (E) Differential expression analysis of TME infiltration in five
independent datasets. Black dots in the left column represented p < 0.05. (F) The GSVA enrichment score of EBV genes among ferroptosis subtypes.
(G) The mRNAsi among ferroptosis subtypes. (H) FPI among ferroptosis subtypes. The asterisks represented p values (*p < 0.05; **p < 0.01; ***p <

0.001; ****p < 0.0001) and ns represented no significance.

helper cells were significantly higher in NPC samples, while
activated and immature B cells, the main target cells of EBV
in the initiation of NPC, were consistently lower in NPC samples
(Figure 2E). This promoted the analysis of relative expression of
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EBV genes using ssGSEA in GES102349 dataset. Interestingly,
there were indeed some differences in the expression of EBV
genes among ferroptosis subtypes, although the differences were
somewhat inconsistent among these genes (Figure 2F). The
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Generation of FEP score and functional annotation. (A) Differences of FPl in NPC samples in comparison with normal tissue in five independent

NPC datasets in GEO database, including GSE12452, GSE34573, GSE53819, GSE64634 and GSE68799. (B—F) Principal component analysis for the
ferroptosis regulators in five independent datasets, showing a remarkable difference in mRNA expression between normal tissues and NPC. (G)
Survival analysis for patients stratified by FEP score in GSE102349. (H) Correlation analysis between FPI and FEP score. () Alluvial diagram
visualizing the changes of ferroptosis subtypes, TME subtypes, FPI and FEP score. (J) FEP score among different ferroptosis subtypes, FPI and FEP
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enrichment of pathways highly associated with tumor initiation
and metastasis in subtype 2 sparked the interest in studying the
mRNA based stemness index (mRNAsi), and the result showed
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that the mRNAsi was higher in subtype 2 than in the other two
subtypes, indicating that subtype 2 possessed higher capability of
invasion and metastasis (Figure 2G). Ferroptosis index (FPI), a
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calculated method published before (Liu Z. et al., 2020), was used
to assess ferroptosis levels among ferroptosis subtypes, and found
that the FPI was significantly higher in subtype 1 and subtype 3
(Figure 2H). These results displayed that ferroptosis might be
associated with immune cell infiltration, EBV infection, and
metastasis phenotypes.

Generation of ferroptosis score and
functional annotation

To investigate the ferroptosis level between NPC and normal
tissue, we found that FPI was significantly higher in NPC than
normal tissue (Figure 3A), which was consistent with the results in
pan-cancer in previous study (Liu Z. et al., 2020), suggesting that
ferroptosis might be critical in the progression of NPC. Principal
component analysis revealed that the expression of ferroptosis
regulators could well reflect the differences between NPC and
normal samples (Figures 3B-F). Considering the individual
heterogeneity and complexity in the regulatory patterns of
ferroptosis, FEP score, a set of scoring system, was generated with
ferroptosis regulators to quantify the ferroptosis regulatory level in
individual patients with NPC. Patients were classified into high or
low FEP score group by “survminer” package, and those with high
FEP score demonstrated a prominent survival benefit (Figure 3G).
Correlation analysis showed that FEP score might retain part of
characteristics of FPI, and FEP score was positively correlated with
FPI (Figure 3H), which might mean that FEP score was a novel
scoring system different from FPI to assess the biological function of
ferroptosis. The alluvial diagram was applied to visualize the attribute
changes of individual patients (Figure 3I), and indicated that FEP
score might be the best way to present ferroptosis regulatory patterns
at the individual level. Indeed, FEP score could reflect the grouping of
ferroptosis subtypes and FEP score groups well, while no statistical
difference in FEP score was shown between FPI groups (Figure 3]).
To better illustrate the characteristics of FEP score, the correlations
between clinical traits and the FEP score were examined, and the
result showed that high FEP score was significantly correlated with
disease free status, mixed and undifferentiated morphology, and
immune activated TME subtypes (Figure 3K). In terms of clinical
characteristics, FEP score was higher in TME subtype II and III as
well as mixed and undifferentiated morphology (Figure 3L), which
were groups with better prognosis and lower progression risk.

Characteristics and biological function of
ferroptosis score in nasopharyngeal
carcinoma

GSVA showed that in immune related pathways such as IL-2/
STATS5, IL-6/JAK/STAT3 and interferon response pathways
were enriched in high FEP score group, while E2F, G2M and
MYC related pathways were enriched in low FEP score group
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(Figure 4A). To further verify the above underlying biological
function, previously known pathway signatures was used to
clarify the correlation between FEP score and the enrichment
score of specific pathways (Figure 4B). The results indicated that
FEP score positively correlated with immune related pathways
and negatively correlated with Wnt, cell cycle, DNA damage
repair and homologous recombination pathways. Correlation
analysis was conducted between FPI, FEP score and mRNA
expression in GSE102349 to explore ferroptosis related genes.
A total of 414 genes were found to be positively correlated with
FPI and FEP score and 146 genes were negatively correlated with
FPI and FEP score simultaneously (Figures 4C,D). GO analysis
showed that the positively correlated genes were enriched in
T cell activation and cell-cell adhesion biological function and the
negatively correlated genes were enriched in mitotic nuclear
division and chromosome segregation (Figures 4E,F).

Role of ferroptosis score in
immunotherapy for nasopharyngeal
carcinoma

SsGSEA showed that the infiltration levels of most immune
cells were highly positively associated with FEP score, except type
2 T helper cell (Figure 5A). Considering the potential function of
FEP score in immune response, FEP scores were calculated, and
the correlation between FEP score and infiltration levels of
immune cells were enriched by ssGSEA in six NPC datasets
(Figure 5B). The results revealed that FEP score was positively
correlated with most immune cells. Further verification using
ESTIMATE algorithm also found that both immune and stromal
scores were higher in high FEP score group (Figure 5C). Previous
study showed that the activation of dendritic cells (DCs), the key
antigen-presenting cells responsible for activation of naive
T cells, depended on the high expression of costimulatory
(MHC)
molecules, and adhesion molecules (Qian and Cao, 2018). All

molecules, major histocompatibility complex
the three categories of molecules were mostly highly expressed in
high FEP score group (Figure 5D). Interestingly, the expression
of EBV genes such as A73, EBNA1 and PRMS1 were significantly
higher in low FEP score group (Figure 5E), suggesting a possible
correlation between worse prognosis as well as lower immune cell
infiltration level and EBV infection. Correlation analysis further
confirmed had a strong negative correlation between FEP score
with mRNAsi, which could well reflect the stemness of cancer
cells (Figure 5F). Furthermore, the correlation between FEP score
and expression level of immunological checkpoint molecules
were tested (Figure 5G). Studies have reported that activation
of NF-«xB pathway and cell cycle inhibitors played an important
role in NPC (Zheng et al., 2016; Li et al., 2017; Wang et al., 2017)
and deletion of several NF-kB and cell cycle inhibitors were
found such as CDKN2A, CDKN2B, CYLD and TRAF3 (Zhang

etal,, 2017). Reanalyzing the copy number and mutations data in
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FIGURE 4

Characteristics and biological function of FEP score in NPC. (A) GSVA score for pathways in low and high FEP score groups. The orange and blue
columns represented pathways enriched in high and low FEP score group, respectively. (B) Correlations between FEP score and known gene
signatures in NPC using Spearman analysis. Positive and negative correlations were marked with orange and blue, respectively. (C) Venn plot of
candidate ferroptosis related genes and the red fonts represented the intersection genes correlated with FPl and FEP score simultaneously. (D)
Heatmap of candidate ferroptosis related genes among ferroptosis subtypes. Morphology, clinical stage, survival, and TME subtypes were adopted as
annotations. (E-F) GO analysis of candidate ferroptosis genes positively or negatively correlated with FPI and FEP score.
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FIGURE 5

Role of FEP score in immunotherapy for NPC. (A) Correlations between FEP score and the immune cell infiltrations in NPC using Spearman
analysis. Positive and negative correlations were marked with orange and blue, respectively. (B) Correlations between FEP score and TME infiltration
in six independent NPC datasets using Spearman analysis. (C) ESTIMATE ps. (D) The relative expression of costimulatory, MHC, and adhesion
molecules in different FEP score groups. (E) EBV gene enrichment score by GSVA in different FEP score groups. (F) Correlation analysis between

FEP score and mRNAsi using Spearman analysis. (G) Correlation analysis between FEP score and immune checkpoint inhibitors in GSE102349 using
Spearman analysis. (H) Somatic copy number variations and mutations in the paired NPC cohort in GSE102349 were shown in different FEP score
groups. (I) TIDE value of NPC samples in GSE102349 in different FEP score groups. The chi-square test was used to calculate statistical differences.

The asterisks represented p values (*p < 0.05; **p < 0.01; ***p < 0.001) and ns represented no significance.
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GSE102349, it was confirmed that the deletion frequencies of NF-
kB and cell cycle inhibitors were higher in low FEP score group,
but the mutations were not common in cell cycle, NF-kB or
PI3K/MAPK pathways (Figure 5H). As expected, FEP score
positively correlated with checkpoint molecules, suggesting a
possibility of better response to immunotherapy in high FEP
score group. Therefore, NPC patients were classified into
response and no response groups with TIDE value to predict
the immune response, and high FEP score group might have
better response to immunotherapy (Figure 5I). Above evidences
illustrated that high FEP score group with low probability of
progression might be associated with more immune cell
infiltration and better response to immunotherapy, while low
FEP score group with high possibility of metastasis might possess
mRNASi.
Considering the possible role of FEP score in predicting

more activated NF-«kB pathway and higher
response to immunotherapy, whether the FEP score could
predict patients’ response to ICIs was investigated in an
immunotherapy cohort. Firstly, FEP score was proven a
protective prognostic factor in all the 17 types of independent
cancers in TCGA cohorts (Figure 6A). Thus, we further validated
the predictive role of FEP score in response to ICIs in an anti-PD-
L1 cohort (IMvigor210) in urinary carcinoma instead because of
the lack of cohorts treated with immunotherapy in NPC. Survival
analysis showed patients with high FEP score had better survival
(Figure 6B). FEP score in complete response (CR) group was
significantly higher than those in progressive disease (PD) or
stable disease (SD) groups (Figure 6C). Correlation analysis
indicated that FEP score also positively correlated with
immune cell infiltration (Figure 6D).

Identification of feature ferroptosis genes
and construction of prediction model

To reveal the expression landscape of ferroptosis regulators
between NPC and normal nasopharyngeal tissue, differentially
distribution of mRNA expression of ferroptosis regulators was
investigated by integrated bioinformatics analysis. Differentially
expressed gene analysis was conducted in 5 GEO datasets
(GSE12452, GSE34573, GSE53819, GSE64634 and GSE68799)
between NPC and normal control samples, and the result showed
that the expression of ferroptosis regulators stratified with the
criteria log,FC > 1 and false discovery rate (FDR) < 0.05 were
highly heterogenous in NPC (Figure 7A). Differentially expressed
ferroptosis regulators were defined only if they have the same
tendency of expression in at least three datasets. As a result,
ABCC1, ANO6, IDH1, IREB2, PANX1, SOCS1, TNFAIP3, CBS,
CDKNI1A, LAMP2, SRC, FTH1 and PTGS2 were significantly
upregulated, while ALOX15 MAPK3, AKRIC3, MUCI,
NQO1 were significantly downregulated in NPC. Then,
survival analysis was conducted in 88 NPC samples with PFS
data in GSE102349, and found 11 protective and 17 risk
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ferroptosis regulators for PFS (Figure 7B). Interestingly, only
ABCCI1, TNFAIP3 and ALOXS5 stood out when the differential
expression and prognostic value were taken into consideration
simultaneously. The highly heterogeneous expression of
ferroptosis regulators between NPC and normal samples
indicated that ferroptosis regulators might be of considerable
importance in the occurrence and progression of NPC.
Correlation analysis between ferroptosis regulators and
immune cell infiltration levels was conducted to identify the
candidate ferroptosis regulators associated with immune
response (Figure 7C and Supplementary Table S6). We found
that 14 DOFs (ZEB1, SAT1, NCOA4, MAPK3, IENG, HMOX1,
DPP4, CDO1, ATM, ATG7, ALOX5, ALOX15B, ALOXI15,
ACSL4) and 11 SOFs (ZFP36, TMBIM4, SLC7A11, SLC40A1,
RB1, NQOI1, MUC1, HIF1A, GCH1, CHMP5, ARNTL) were
highly positively associated with immune cell infiltration, and
14 DOFs (VDAC2, TP53, RPL8, PEBP1, MYB, LONP1, KEAPI,
IDHI1, ELAVLI, EGFR, CS, ATP5G3, ACVR1B, ABCCl) and
11 SOFs (PROM2, PRDX6, OTUB1, NFES1, LAMP2, HSF1,
GPX4, CISD2, CBS, CA9, ATF4) were highly negatively
associated with immune cell infiltration. The same result
could be found in correlation analysis between FEP score and
above immune related ferroptosis genes (Figure 7D). To further
identify feature ferroptosis genes, LASSO algorithm was
performed and found seven ferroptosis regulators between two
FEP score groups (Figures 8A,B). The seven ferroptosis genes
signature, containing CDO1, TP63, STAT3, ELAVLI, CS,
CISD2, ABCCI, showed a highest accuracy of 0.983 by the
GFMM classifier in one of the 127 formulas, as shown in
Figure 8C. The coefficients of genes involved in the signature
was shown in Figure 8D, and the formula score was named
simplified FEP (sFEP) score: sFEP score = CDO1 x 6.802 +
TP63 x -1.681 + STAT3 x -1.752 + ELAVLI x -3.525 +
CS x -383 + CISD2 x -1276 + ABCCl x-1.445.
Interestingly, sFEP score showed slightly better function than
FEP in prediction of PFS in NPC (Figure 8E), and we could find
that the number of patients with disease progression decreased as
SFEP score increased (Figure 8F). We developed a nomogram
based on the Cox regression model to predict the 1- and 3-years
PES probability for NPC patients (Figure 8G). The calibration
plots for the 1- and 3-years PFS showed an optimal agreement
between the nomogram-predicted and observed PES, which was
used to evaluate the accuracy of the prediction signature

(Figure 8H).

Regulatory network between ferroptosis
and m6A modification genes

Given the similar ability of sFEP score with FEP score in
terms of prognostic value, correlation analysis was performed
and the result showed that sFEP score was also positively
infiltration levels in NPC

correlated with immune cell
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(Figure 9A). To further validate the biological function of these
candidate ferroptosis related genes, correlation analysis showed
that six signature genes (ABCCI, CISD2, CS, ELAVLI, STATS3,
TP63) were positively correlated with mRNAsi, cell cycle and
WNT signaling pathways and three genes (ABCCI, CS,
ELAVLI1) were negatively correlated with immune checkpoint
and CD8 T cell effector (Figure 9B). As ELAVLI is also a famous
m6A regulatory gene (Chen Y. et al, 2019) and m6A
modification could interplay with immune system and
influence the infiltration of immune cells (Chen Y. G. et al,
2019), we speculated whether m6A regulators could interact with
ferroptosis regulators and further be the underlying decipher for
differentially expression of ferroptosis regulators. The result
showed that m6A regulators were differentially expressed in
FEP score groups with most of m6A regulators being low
expressed in high FEP score group (Figure 9C). Protein-
protein interaction network was employed to depict the
landscape of m6A regulators and ferroptosis regulators, and
ELAVLI1 had dual identities among the network, which was
not only a m6A reader but also a validated ferroptosis driver
(Figure 9D). Correlation analysis further validated a high
association between the expression of m6A regulators and the
expression of ferroptosis regulators (Supplementary Figure S3).
Taken together, the study strongly indicated that ferroptosis
related genes were significantly correlated with tumor immune
infiltrations and might be regulated by m6A modification.

Discussion

Increasing evidence demonstrated the crucial role of
ferroptosis in antitumor immunity as well as cross talk with
various immune cells including cytotoxic T cells and
macrophages (Dai et al, 2020; Shen et al, 2021). Different
from most studies focusing on limited cell types or ferroptosis
regulators, the present study comprehensively recognized the
overall infiltration characterizations of immune cells mediated by
integrative roles of multiple ferroptosis regulators. The study
firstly revealed three distinct ferroptosis regulatory subtypes in
NPC with distinct TME cell infiltration characterizations.
Subsequently, FEP score system was further identified, and the

Associations between FEP score and immune cell infiltration,
EBV infection and cancer stemness index were analyzed. Subtype
1 and subtype 3, as well as high FEP score groups were
characterized by immune activation, corresponding to
immune activated phenotype (Gajewski et al, 2013; Turley
et al,, 2015; Chen and Mellman, 2017), while subtype 2 and
low FEP score groups were characterized by immune
suppression, corresponding to immune suppressed phenotype
(Kim and Chen, 2016). FEP score significantly positively
correlated with immune checkpoint, CD8 T cell effector and
antigen processing machinery, and higher FEP score was highly

correlated with better immune therapy response.
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Although NPC is a malignant tumor with relatively good
prognosis under standard treatment, distant metastasis remains
the main cause of treatment failure and death (Hong X. et al.,
2020). The FEP score could well predict the risk of metastasis and
reflect the clinical stage and previously defined TME subtype
(Zhang et al., 2017). It is true that TME subtype could also reflect
the TME infiltration and predict PFS in NPC (Zhang et al., 2017),
but the construction of TME subtype differed completely and the
function of TME subtype was partially distinctive from that of the
FEP score. The PCA algorithm used in the present study
the of
ferroptosis regulators in NPC, and that was why FEP score

advantages in retaining most  characterization
displayed high association with most of ferroptosis regulators.
In terms of function, FEP score could well reflect the mRNAsi,
TME infiltration and EBV genes. FEP score was negatively
correlated with mRNAsi, an index to assess the stemness of
cancer cells, which could explain why FEP score was a protective
factor for metastasis, as cancer stem-like cells (CSCs) are
supposed to participate in cancer metastasis and recurrence
(Wei et al, 2014). Moreover, copy number alteration,
including both deletion of inhibitors and amplification of
activators in NF-kB signaling pathway could also be related
with CSCs and poor prognosis. Immunotherapy has been
suggested to contribute to developing more effective and safer
treatment modalities in NPC in future (Hong et al., 2018; Chow
et al., 2019; Masterson et al., 2020). According to our analysis,
FEP score was apparently positively correlated with most of
immune checkpoints such as TIM3, TIGIT, PD1, CTLA4 and
LAG3, and the expression of ferroptosis regulators were highly
associated with immune cell infiltrations. In combination with
the results of TME infiltration, the prediction role of FEP score
and ferroptosis regulators in efficacy of immunotherapy could be
reasonable and obvious. EBV infection are assumed to activate
the initiation of NPC through multiple pathways (Tsao et al.,
2017). Although the expression of EBV genes could not be
obtained, the EBV gene expression for NPC was robustly
assessed based on GSVA analysis in GSE102349. EBV gene
expression was also found to be correlated with “cold” TME
infiltration negatively and h mRNAsi positively. However, the
relationship between ferroptosis and EBV infection remained
uncertain, which might be a novel research topic.

As NPC has some unique features, the role of ferroptosis in NPC
also differs from other cancers. NPC was closely related with EBV,
the first oncogenic virus identified in humans. Compared with those
in other cancers, the role of EBV in tumorigenesis of NPC was quite
clearer. Recent study has reported that EBV infection could reduce
the sensitivity of NPC cells to ferroptosis by upregulating the
expression of SLC7Al1l and GPX4 expression, and high
GPX4 expression was correlated with poor clinical outcomes,
suggesting a novel target in the treatment of NPC (Yuan et al,
2022). This was consistent with our finding that EBV infection level
was associated with ferroptosis levels and might be related with
infiltration levels of immune cells. In addition, radiotherapy is the
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main effective treatment modality in NPC, which is different from
many solid tumors that require surgery. The cross-link between
ferroptosis and radio-sensitization of NPC are generally being
studied, hoping that linking the mechanism of ferroptosis with
radiotherapy strategies could accelerate the development of novel
ferroptosis-based treatment in NPC (Li et al,, 2021).

The biological function of ferroptosis varied among different
types of tumors and could be seen in the field of drug resistance,
immune evasion, antitumor effect or progression and metastasis. The
differential expression analysis and survival analysis showed that the
truly differentially expressed ferroptosis regulators with significant
prognostic value were not abundant. Isocitrate dehydrogenase 1 and
2 (IDHI and IDH2) are key catalytic enzymes that convert isocitrate
to a-ketoglutarate, and small molecule inhibitors of mutant IDH1/
2 enzymes represent a novel class of drug for targeted therapy for
patients harboring IDH1/2 mutations (Mondesir et al., 2016). The
well-known multidrug resistance-associated protein 1 (ABCC1) is a
major player in cancer related multidrug resistance and has been well
investigated in the management of drug-resistant tumors (Wiese and
Stefan, 2019). TNFAIP3, an inflammation-related gene, could inhibit
migration and invasion in NPC by suppressing epithelial-
mesenchymal transition (EMT) (Huang et al, 2017), and EBV
infection could decrease the expression of TNFAIP3 in NPC
tumors (Xu et al, 2019). Moreover, arachidonate 5-lipoxygenases
(ALOX5) could enhance the function of macrophages in the
changing tumor environment (Weigert et al., 2018). Even though
all these genes have been supposed to be associated with ferroptosis
recently in other types of cancer, none of them have been investigated
in NPC regarding ferroptosis or immune infiltration, needing further
validation with basic experiments. Using machine learning algorithm
LASSO, we also identified candidate ferroptosis related genes, which
might be related with candidate ferroptosis regulators. Furthermore,
the study made a novel attempt to investigate the relationship
between m6A modification and ferroptosis regulators to uncover
the underlying regulatory mechanisms of ferroptosis in NPC.
the FEP could be
comprehensively evaluate the ferroptosis regulatory patterns

In conclusion, score used to
and their corresponding characterization of immune cell
infiltration in TME within individual patient, and further to
decide the immune phenotypes of tumors and predict patients’
response to immunotherapy to guide more effective clinical
practice. This study has also provided new insight into cancer
immunotherapy that targeting ferroptosis regulators or FEP
phenotype-related genes to change the ferroptosis regulatory
patterns and further reverse the adverse TME cell infiltration
characterization, contributing to the development of novel
immunotherapeutic agents or combination therapy.
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