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Abstract

Genome-wide association studies (GWASs) discovered a number of SNPs and genes asso-

ciated with Alzheimer’s disease (AD). However, how these SNPs and genes influence the

liability to AD is not fully understood. We deployed computational approaches to explore the

function and action mechanisms of AD -related SNPs and genes identified by GWASs,

including the effects of 195 GWAS lead SNPs and 338 proxy SNPs on miRNAs binding and

protein phosphorylation, their RegulomeDB and 3DSNP scores, and gene ontology, path-

way enrichment and protein-protein interaction network of 126 AD-associated genes. Our

computational analysis identified 6 lead SNPs (rs10119, rs1048699, rs148763909,

rs610932, rs6857 and rs714948) and 2 proxy SNPs (rs12539172 and rs2847655) that

potentially impacted the miRNA binding. Lead SNP rs2296160 and proxy SNPs rs679620

and rs2228145 were identified as PhosSNPs potentially influencing protein phosphorylation.

AD-associated genes showed enrichment of “regulation of beta-amyloid formation”, “regula-

tion of neurofibrillary tangle assembly”, “leukocyte mediated immunity” and “protein-lipid

complex assembly” signaling pathway. Protein-protein interaction network and functional

module analyses identified highly-interconnected “hub” genes (APOE, PICALM, BIN1,

ABCA7, CD2AP, CLU, CR1, MS4A4E and MS4A6A) and bottleneck genes (APOE,

TOMM40, NME8, PICALM, CD2AP, ZCWPW1, FAM180B, GAB2 and PTK2B) that created

three tight subnetworks. Our results provided the targets for further experimental assess-

ment and further insight on AD pathophysiology.

Introduction

Alzheimer disease (AD), the most common neurodegenerative disease and the leading cause

of dementia, is characterized by progressive loss of memory and deficits in thinking, problem

solving, and communicating. Due to recent improvements in life expectancy, the prevalence of

AD has rapidly grown worldwide and is predicted to affect 1 in 85 people globally by 2050 [1].

No preventative or curative treatments are currently available; therefore, AD has become a

major public health burden [2]. The etiology of AD is poorly understood; however, genetic

factors have shown to play a pivotal role [3]. Since 2005, genome-wide association studies

(GWASs) have successfully identified genetic loci that contribute to susceptibility to many
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complex diseases [4, 5]. At the end of 2015, 126 genes and 195 single nucleotide polymor-

phisms (lead SNPs) have been associated with AD at the threshold for genome-wide signifi-

cance (P< 5 × 10−8) in 38 GWASs and three meta-analyses (http://www.ebi.ac.uk/gwas/

home). Elucidating how these SNPs and genes affect AD liability is the next major challenge

[4]. Computational approaches are useful for post-GWAS studies aimed at prioritizing poten-

tial causal SNPs for experimental investigation. Various computational approaches and tools

have been developed for this purpose [6] and experimentally validated by identifying func-

tional genetic variants and previously unknown molecular mechanisms for various complex

disorders, including type 2 diabetes [7], obesity [8], and AD [9].

As a starting point of guiding functional study design [6], we recently annotated the func-

tion of SNPs and genes for osteoporosis [10] and type 2 diabetes [11] using bioinformatics

methods. Rosenthal et al. [12] previously investigated potential regulatory functions of lead

SNPs and their proxy SNPs identified in five GWASs of late-onset AD using RegulomeDB. In

this study, we predicted the effects of AD GWAS lead SNPs and their proxy SNPs on miRNA

binding and protein phosphorylation, evaluated the functionality of SNPs using RegulomeDB

and 3DSNP scores, and carried out gene ontology, pathway enrichment, and protein–protein

interaction (PPI) network analysis for AD-associated genes (Fig 1). The aims of our study are

to identify potential SNPs for follow-up functional analyses and to offer guidance for future

research with respect to the etiology and pathogenesis of AD.

Methods

Data collection

The National Human Genome Research Institute (NHGRI) catalog of published GWAS pro-

vides a publicly available, manually curated collection of published GWAS assaying at least

100000 SNPs and all SNP-trait associations with P< 1 × 10−5 [5]. The GWASdb provides

information of genetic variants except for that annotated in the NHGRI GWAS Catalog and

manually curated the SNPs that are marginally significant (P< 1.0 × 10−3), collected from sup-

plementary materials of each original publication. Using P< 5 × 10−8 as a significant thresh-

old, we interrogated and downloaded the GWAS association results for AD from the NHGRI

GWAS Catalog (http://www.ebi.ac.uk/gwas/home) and GWASdb (v2.0) (http://jjwanglab.org/

gwasdb) (updated to the end, 2015). We searched the proxy SNPs, which were in strong link-

age disequilibrium (LD) (r2� 0.8) with AD lead SNPs via SNP Annotation and Proxy Search

(http://www.broadinstitute.org/mpg/snap/ldsearch.php) [13], based on genotype data from

the 1000 Genomes Pilot 1 Project [14] and the International HapMap Project (v3) [15] with

the CEU population panel. The analyses were carried out manually, SNP by SNP, with the lim-

its of r2� 0.80 and 500 kb from the query lead SNPs.

Functional annotation of AD-associated SNPs using RegulomeDB and

3DSNP

RegulomeDB (http://regulomedb.org) and 3DSNP (http://biotech.bmi.ac.cn/3dsnp) are two

valuable resources for the annotation of human SNPs. RegulomeBD classifies SNPs into classes

based on the combinatorial presence/absence status of functional categories, including tran-

scription factors binding sites, DNAase hypersensitivity regions, and promoter regions [16,

Table 1]. Each SNP has been assigned a RegulomeDB score (range: 1–6) to indicate the poten-

tial function. In 3DSNP, each SNP is scored based on six functional categories: 3D interacting

genes, enhancer state, promoter state, transcription factor binding sites, altered sequence

motifs, and conservation score [17]. 3DSNP adopts a quantitative scoring system to measure

Functional annotation of AD associated loci
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the functionality of a SNP. All AD-associated lead SNPs and their proxy SNPs (r2� 0.80) have

been scored to evaluate the functional significance of SNPs using RegulomeDB and 3DSNP,

one by one.

Effects of AD-associated SNPs on miRNA binding

MiRNAs are small, non-coding regulatory molecules consisting of approximately 21–25 nucle-

otides. MiRNAs can inhibit mRNA translation or mediate mRNA decay through complemen-

tary binding to the mRNA 30 untranslated region (30UTR) in most cases [18]. SNPs in the

miRNA seed region will influence the miRNA target binding and selection directly [19]. miR-

NASNP v2.0 (http://bioinfo.life.hust.edu.cn/miRNASNP2/) is a solid resource for miRNA-

Fig 1. Workflow for Alzheimer’s disease -associated loci derived from genome-wide association studies.

https://doi.org/10.1371/journal.pone.0179677.g001
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related SNP studies and can narrow down the candidate SNPs to the most promising ones

[20]. Therefore, we predicted the effect of every SNP on miRNA binding using miRNASNP.

Effects of AD-associated SNPs on protein phosphorylation

Protein phosphorylation is a dynamic process involving the action and regulation of protein

kinases (PKs) and protein phosphatases. In the human genome, approximately 70% of nonsy-

nonymous SNPs are potential phosphorylation-related SNPs (phosSNPs) that may affect pro-

tein phosphorylation and play ubiquitous roles in rewiring the biological pathways [21]. In the

present study, the PhosSNP 1.0 database (http://phossnp.biocuckoo.org/) was used to identify

phosSNPs for AD lead SNPs and their proxy SNPs. phosSNPs can be classified into five types:

Type I(+)/(−), change of an amino acid with an S/T/Y residue or change of an S/T/Y residue

with another amino acid to create a new or remove an original phosphorylation site; Type II

(+)/(−), variations to add or remove adjacent phosphorylation sites; Type III(+)/(−), mutations

to change PK types of adjacent phosphorylation sites; Type IV(+)/(−), an amino acid substitu-

tion among S, T, or Y that could change the PK types in the phosphorylated position; Type V,

a variation resulting in a stop codon, which may remove its phosphorylation sites in the pro-

tein C-terminus.

Gene ontology and pathway enrichment analysis of AD-associated

genes

Gene Ontology (GO, http://geneontology.org) is a widely adopted source of gene functional

annotations, including biological process, molecular function, and cellular component. The

Protein ANalysis THrough Evolutionary Relationships (PANTHER, http://www.pantherdb.

org) classification system provides PANTHER GO-slim annotations, which includes all

inferred annotations from the GO Phylogenetic Annotation project that have passed an addi-

tional expert review process beyond the standard GO experimental annotation process [22].

All AD-associated genes were subjected to pathway enrichment analysis in the Search Tool for

the Retrieval of Interacting Genes (STRING, v10.0, http://string-db.org). Statistical enrichment

tests were executed on gene lists within the STRING namespace, covering Gene Ontology and

pathway annotations [23].

Table 1. RegulomeDB score and related functional annotation.

Score Description

1a eQTL + TF binding + matched TF motif + matched DNase Footprint + DNase peak

1b eQTL + TF binding + any motif + DNase Footprint + DNase peak

1c eQTL + TF binding + matched TF motif + DNase peak

1d eQTL + TF binding + any motif + DNase peak

1e eQTL + TF binding + matched TF motif

1f eQTL + TF binding/DNase peak

2a TF binding + matched TF motif + matched DNase Footprint + DNase peak

2b TF binding + any motif + DNase Footprint + DNase peak

2c TF binding + matched TF motif + DNase peak

3a TF binding + any motif + DNase peak

3b TF binding + matched TF motif

4 TF binding + DNase peak

5 TF binding or DNase peak

6 Motif hit

https://doi.org/10.1371/journal.pone.0179677.t001
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Protein–protein interaction network

To put forward a full description of a protein’s function, knowledge about its specific interac-

tion partners is an important prerequisite. STRING is a database of predicted and known pro-

tein interactions that aim to provide a global perspective for as many organisms as feasible [23,

24]. The interactions include direct (physical) and indirect (functional) associations, which are

derived from four sources: genomic context, high-throughput experiments, coexpression

(conserved), and previous knowledge [25].

The PPI network was constructed using PPI pairs with protein interaction scores> 0.4.

The topological properties of the PPI network, such as betweenness and node degree, were

analyzed using the CentiScape v2.1 plug-in within the Cytoscape Desktop v3.4.0 [26, 27]. The

node degree is the number of nodes adjacent to a given node. The degree allows for immediate

evaluation of the regulatory relevance of the node. In signaling networks, for instance, proteins

with high node degrees interact with several other signaling proteins, suggesting a central reg-

ulatory role. The betweenness is a node centrality index and is similar to the stress but provides

a highly elaborated and informative centrality index. The manner of calculating is by consider-

ing couples of nodes (v1, v2) and counting the number of shortest paths that link v1 and v2

and pass through a node n. The value is related to the total number of shortest paths that link

v1 and v2. Thus, a node can be traversed by only one path that links v1 and v2, but if this path

is the only one connecting v1 and v2, the node n will score a higher betweenness value (in the

stress computation would have had a low score). The betweenness of a node in a biological net-

work can indicate the relevance of a protein as functionally capable of holding together com-

municating proteins. To select functional modules, a functional module analysis of the

network was performed by way of CytoCluster plug-in in Cytoscape, with a score > 2.

Hub proteins (genes) have higher node degrees and account for 20% of the total number of

nodes. Bottleneck proteins are defined as proteins (genes) that have high degrees of between-

ness and account for 20% of the total number of nodes and could connect or act as bridges

between subnetworks. Hub genes and bottleneck genes play key roles in the stability.

Results

AD-associated SNPs and genes detected by GWASs

A total of 195 GWAS SNPs and 126 genes are associated with AD, with a significant threshold

of 5 × 10−8 according to NCBI association results. The number of SNPs extends to 533 through

searching for proxy SNPs that are in strong LD (r2� 0.8) with lead SNPs for AD. Among these

SNPs, 366 were mapped to intronic regions, 29 located between genes (intergenic), 11 in

30UTR, 34 in downstream, 93 in upstream, 6 missense (rs2228145, rs2296160, rs2228467,

rs75932628, rs679620, rs429358), and 11 synonymous variants. Detailed information of lead

SNPs and proxy SNPs for AD is presented in S1 Table.

Functional annotation of AD-associated SNPs

Of the 533 AD-associated SNPs examined for possible regulatory functions, 139 had a score of

“7”, which means no data were available (or error) for these SNPs in RegulomeDB, and the

remaining 394 SNPs returned with scores of 1–6 (S1 Table). A RegulomeDB score< 3 indi-

cated that SNPs had a relatively high degree of evidence for potential regulatory function

(‘‘likely to affect binding”). Twenty-six SNPs had a RegulomeDB score of “1”, and 20 returned

a RegulomeDB score of “2”. For 3DSNP, 12 SNPs had scores of> 100, and 16 were in the

range of 60–100 (S1 Table). Remarkably, the highest evidence of regulatory function was

located in the APOE-TOMM40 region. The lead SNP APOE/rs439401 had a RegulomeDB
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score of 1b and 3DSNP score of 152.3. The lead TOMM40/SNP rs157580 had a RegulomeDB

score of 1f and 3DSNP score of 108.56. RegulomeDB revealed that rs439401 affects the binding

of 20 different proteins, including POLR2A, TAL1, MYBL2, SAP30, UBTF, HDAC1, STAT3,

ZNF263, GATA1, BRCA1, CTCF, BHLHE40, GATA2, MAX, MYC, REST, TEAD4, USF1,

EGR1, and JUNB, and falls within VDR binding motifs.

Effects of AD-associated SNPs on miRNA binding

Effects of the lead SNPs and their proxy SNPs for AD on miRNA binding were analyzed using

miRNASNP (v2). Six lead SNPs and two proxy SNPs that potentially influence the recognition

and targeting of miRNA were identified (Table 2).

Effects of AD-associated SNPs on protein phosphorylation

One lead SNP and two proxy SNPs were identified as phosSNPs. Lead SNP rs2296160 located

in CR1was classified into Type I(−) and Type III(+)/(−). The proxy SNP rs679620, mapped to

theMMP3 gene, was classified into Type II(+) and Type III(+)/(−). The proxy SNP rs2228145,

located at IL6R, was classified into Type III(+)/(−).

GO and pathway enrichment analyses of GWAS AD-associated genes

We first mapped the AD-associated genes onto GO databases via PANTHER using three pri-

mary categories: molecular function, cellular component, and biological process (Fig 2). AD-

associated genes were mainly enriched in binding function, cell part, and cellular process.

Pathway enrichment analysis of AD-associated genes using STRING uncovered some evi-

dence of over-representation of “regulation of beta-amyloid formation,” “regulation of neuro-

fibrillary tangle assembly,” “leukocyte-mediated immunity,” and “protein–lipid complex

assembly” signaling pathway (Table 3).

Protein–protein interaction network

PPI network analysis of 126 AD-associated genes showed significant connectivity among pro-

teins using STRING (v10.0) with default settings (observed interaction, 99; expected interac-

tion, 3.58e + 1; P-value, 0; proteins, 103). The significant PPI pairs with a combined

score > 0.4 were selected for constructing the PPI network using Cytoscape. The PPI network

contained 47 nodes and 176 edges (Fig 3). The maximum, mean, and minimum of node

degree were 16, 3.826, and 1, respectively. In all, the nine hub genes with strong connections

were APOE, PICALM, BIN1,ABCA7,CD2AP,CLU, CR1,MS4A4E, andMS4A6A (Table 4).

Table 2. SNPs predicted to potentially affect miRNA binding.

SNPs Gene SNP location miRNA(loss) miRNA(gain)

GWAS SNPs

rs10119(G/A) TOMM40 chr19:44903416 hsa-miR-6128

rs1048699(C/T) PPP1R37 chr19:45147128 hsa-miR-214-3p hsa-miR-761

rs148763909(C/T) SAP30L chr5:154457546 hsa-miR-6084 hsa-miR-3620-3p

rs610932(T/G) MS4A6A chr11:60171834 hsa-miR-626

rs6857(C/T) PVRL2 chr19:44888997 hsa-miR-320e

rs714948 (C/A) PVR chr19:44662645 hsa-miR-432-5p hsa-miR-3198 hsa-miR-4309

Proxy SNP

rs12539172(T/C) NYAP1 chr7:100091794 hsa-let-7g-3p

rs2847655 (T/C) MS4A2 chr11:60098198 hsa-miR-585

https://doi.org/10.1371/journal.pone.0179677.t002
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Fig 2. (a) The molecular function, (b) cellular component and (c) biological process of Alzheimer’s disease-

associated genes identified by genome-wide association studies.

https://doi.org/10.1371/journal.pone.0179677.g002
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Table 3. Significantly enriched pathways of Alzheimer’s disease-associated genes.

Pathway ID Pathway description Observed gene count False discovery rate Matching proteins in your network (labels)

GO.1902003 regulation of beta-amyloid formation 5 8.86E-08 ABCA7,APOE,CLU,PICALM,SORL1

GO.1902996 regulation of neurofibrillary tangle

assembly

3 2.61E-05 APOE,CLU,SORL1

GO.0002443 leukocyte mediated immunity 7 6.26E-05 ACE,BCL3,CLU,CR1,HLA-DRB1,IL6R,

INPP5D

GO.0065005 protein-lipid complex assembly 4 1.59E-04 ABCA7,APOC1,APOE,BIN1

https://doi.org/10.1371/journal.pone.0179677.t003

Fig 3. Protein–protein interaction network of Alzheimer’s disease-associated genes. The nodes and edges represent

the proteins (genes) and their interactions, respectively. Yellow nodes represent the hub genes, blue nodes represent

bottleneck genes, and red nodes represent both types of genes.

https://doi.org/10.1371/journal.pone.0179677.g003

Table 4. Hub genes associated with Alzheimer’s disease and their interactions.

Node1 Node

degree

Node 2

APOE 16 ABCA7, ACE, APOC1, BCAM, BIN1, CD2AP, CLU, CR1, F5, GAB2, MMP3,

MS4A4E, MS4A6A, PICALM, SORL1, TOMM40

PICALM 14 ABCA7, APOE, BIN1, CD2AP, CD33, CLU, CR1, EXOC3L2, MS4A4A, MS4A4E,

MS4A6A, PCDH11X, SORL1, TOMM40

BIN1 11 ABCA7, APOE, CD2AP, CLU, CR1, EXOC3L2, MS4A4A, MS4A4E, MS4A6A,

PICALM, SORL1

ABCA7 10 APOE, BIN1, CD2AP, CD33, CLU, CR1, MS4A4A, MS4A4E, MS4A6A, PICALM

CD2AP 10 ABCA7, APOE, BIN1, CD33, FERMT2, INPP5D, MS4A4E, MS4A6A, PICALM,

PTK2B

CLU 9 ABCA7, APOE, BIN1, CR1, EXOC3L2, F5, MS4A4E, MS4A6A, PICALM

CR1 9 ABCA7, APOE, BIN1, CD33, CLU, EXOC3L3, MS4A4E, MS4A6A, PICALM

MS4A4E 9 ABCA7, APOE, BIN1, CD2AP, CD33, CLU, CR1, MS4A6A, PICALM

MS4A6A 9 ABCA7, APOE, BIN1, CD2AP, CD33, CLU, CR1, MS4A4E, PICALM

https://doi.org/10.1371/journal.pone.0179677.t004
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The maximum, mean, and minimum betweenness values were 557.48, 63.78, and 0.00, respec-

tively. The bottleneck genes in the PPI network were APOE, TOMM40,NME8, PICALM,

CD2AP, ZCWPW1, FAM180B, GAB2, and PTK2B. Moreover, APOE, PICALM, and CD2AP
were both bottleneck genes and hub genes (Fig 4).

Clustering analysis of the PPI network was performed using CytoCluster in Cytoscape to

select functional modules. Three modules with scores of> 2 were identified (Fig 5). Module 1

included 19 genes (APOE, PICALM, CD2AP, BIN1,ABCA7,CLU, CR1,MS4A4E,MS4A6A,

TOMM40, CD33,APOC1,MMP3, SORL1,MS4A4A, EXOC3L2,ACE, F5, and BCAM). Module

2 included nine genes (ZCWPW1,NME8, FAM180B, SLC24A4,MTHFD1L, SUCLG2,

SLC39A13, PLRA, and NYAP1). Module 3 included four genes (GAB2,MS4A2, INPP5D, and

IL6R) (Fig 5).

Discussion

To explore functional mechanisms of AD-associated SNPs and genes, we characterized the

influence of these SNPs on miRNA binding and protein phosphorylation and conducted GO

and pathway enrichment analyses and PPI analysis of AD-associated genes using computa-

tional approaches. Our computational analysis identified six lead SNPs (rs10119, rs1048699,

rs148763909, rs610932, rs6857, and rs714948) and two proxy SNPs (rs12539172 and

rs2847655) that potentially affected miRNA binding. The rs6857 T allele in the 30UTR of

PVRL2was predicted to create a binding site for miR-320e. PVRL2 and miR-320e were

expressed in the brain [28]. Moreover, miR-320e decreased the expression level of PVRL2 and

Fig 4. Hub and bottleneck genes in the protein–protein interaction network.

https://doi.org/10.1371/journal.pone.0179677.g004
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the T allele was associated with a lower expression level of PVRL2 [29], suggesting that rs6857

increases the risk of AD, at least in part, by downregulating PVRL2 expression through miR-

320e. Furthermore, SNPs rs10119, rs610932, and rs2847655 were correlated with differential

expression levels of their host genes in the blood [30]. The effects of rs610932 and rs714948 on

the expression levels ofMS4A6A and PVR in the cerebellum and temporal cortex have been

reported [31]. Delay et al. [32] recently demonstrated that AD-associated rs7143400-T and

rs9909-C alleles regulate FERMT2 and NUP160 expressions through miR-4504 and miR-1185-

1-3p, respectively. Together, these results showed an action mechanism of SNP on AD by

affecting microRNA binding.

Abnormal regulation of protein phosphorylation is known to be related to the pathogene-

sis of various diseases. Neurofibrillary tangles in AD patients are composed of abnormally

phosphorylated tau proteins. Niu et al. [33] reported the associations of IDUA phosSNPs

rs3755955, rs6831280, andWNT16 rs2707466 with bone mineral density in GWAS meta-

analyses. Deng et al. [34] demonstrated that phosSNP rs6265 influences hip bone mineral

density by regulating BDNF protein phosphorylation and osteoblast differentiation. In the

present study, we identified one lead SNP, rs2296160, and two proxy SNPs, rs679620 and

rs2228145, that may affect protein phosphorylation status, thereby suggesting a similar mech-

anism for AD.

Fig 5. Modules in the protein–protein interaction network. There are 19, 9 and 4 nodes in Modules 1 (a), 2 (b) and 3 (c), respectively.

Yellow nodes represent hub genes, blue nodes represent bottleneck genes, green nodes represent neither hub nor bottleneck genes, and

red nodes represent both types of genes.

https://doi.org/10.1371/journal.pone.0179677.g005
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The present study identified highly interconnected network “hub” genes and bottleneck

genes. As expected, APOEwas the highest ranked AD gene. APOE encodes a pleiotropic glyco-

protein and has been associated with neuronal repair, nerve generation, activation of lipolytic

enzymes, and immune response. The binding of APOE to hydrophobic Aβ peptide leads to

synaptic dysfunction and neurodegeneration [35]. Notably, the lead SNP APOE/rs439401 had

a RegulomeDB score of 1b and 3DSNP score of 152.3. Furthermore, rs439401 is located in

the promoter of the APOC1 gene and affects the binding of 20 different proteins. APOC1 is

related to neuronal plasticity through the redistribution of lipids to axons and regeneration of

Schwann cells [36]. Moreover, the apoC1 levels are elevated in the hippocampus of Alzheimer

sufferers, and apoC1 is assumed to interact with apoE in the lipid metabolism at the cerebral

level [37]. GO and pathway enrichment analyses suggested that AD pathogenesis is involved in

beta-amyloid formation, neurofibrillary tangle assembly, and immune response. Three hub

genes (CLU, CR1,ABCA7) have putative functions in the immune system. A gene-regulatory

network study from 1647 AD and control brain samples demonstrated that networks involved

in immune specific modules are disrupted in brains with AD [38]. Furthermore, immune

response genes and regulatory regions are upregulated in the hippocampus of an inducible

mouse model of AD-like neurodegeneration [39]. Our data confirmed previous findings that

highlight the importance of the innate immune system in the AD pathophysiology [40]. Three

genes (PICALM, CD2AP, BIN1) are involved in the processes of endocytosis. Endocytosis is

critical for the normal processing of APP central to AD pathogenesis. Our results are in good

agreement with well-known AD pathogenesis [41].

In conclusion, the computational characterization of GWAS AD-associated genes

highlighted genes (proteins) and pathways are crucial to AD pathophysiology, thereby enhanc-

ing our understanding of this condition and providing potential targets of treatment. Our

results revealed the potential functional mechanisms of lead SNPs for AD by influencing

miRNA binding and protein phosphorylation, which may need further experimental tests in

the future.
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