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Increasing feed efficiency is a key target in ruminant science which requires a better

understanding of rumen microbiota. This study investigated the effect of a shift from a

non-grazing to a grazing diet on the rumen bacterial, methanogenic archaea, fungal,

and protozoal communities. A systems biology approach based on a description of the

community structure, core microbiota, network analysis, and taxon abundance linked

to the rumen fermentation was used to explore the benefits of increasing depth of the

community analysis. A total of 24 sheep were fed ryegrass hay supplemented with

concentrate (CON) and subsequently ryegrass pasture (PAS) following a straight through

experimental design. Results showed that concentrate supplementation in CON-fed

animals (mainly starch) promoted a simplified rumen microbiota in terms of network

density and bacterial, methanogen and fungal species richness which favored the

proliferation of amylolytic microbes and VFA production (+48%), but led to a lower (ca.

4-fold) ammonia concentration making the N availability a limiting factor certain microbes.

The adaptation process from the CON to the PAS diet consisted on an increase in

the microbial concentration (biomass of bacteria, methanogens, and protozoa), diversity

(+221,+3, and+21 OTUs for bacteria, methanogens, and fungi, respectively), microbial

network complexity (+18 nodes and +86 edges) and in the abundance of key microbes

involved in cellulolysis (Ruminococcus, Butyrivibrio, and Orpinomyces), proteolysis

(Prevotella and Entodiniinae), lactate production (Streptococcus and Selenomonas), as

well as methylotrophic archaea (Methanomassiliicoccaceae). This microbial adaptation

indicated that pasture degradation is a complex process which requires a diverse

consortium of microbes working together. The correlations between the abundance of

microbial taxa and rumen fermentation parameters were not consistent across diets

suggesting a metabolic plasticity which allowed microbes to adapt to different substrates

and to shift their fermentation products. The core microbiota was composed of 34, 9,
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and 13 genera for bacteria, methanogens, and fungi, respectively, which were shared by

all sheep, independent of diet. This systems biology approach adds a new dimension

to our understanding of the rumen microbial interactions and may provide new clues to

describe the mode of action of future nutritional interventions.

Keywords: core microbes, grazing, network analysis, rumen microbiota, taxa abundance

INTRODUCTION

Rumen bacteria, archaea, anaerobic fungi, protozoa and phages
make up the complex microbial ecosystem which enables
ruminants to efficiently utilize forage. This multi-kingdom
rumen microbiota has been described as “the most elegant and
highly evolved cellulose-digesting system in nature” (Weimer
et al., 2009). As a result ruminants are among the few livestock
types which potentially do not compete for human edible foods
(Gill et al., 2010). Fresh grass has traditionally been a major
feedstuff for ruminants and grazing systems generally have a
positive perception in society in terms of animal well-being
(Somers et al., 2005). However, in the context of growing demand
for animal products, modern ruminant production systems based
on large scale farms tend to replace fresh pastures with preserved
forages, such as hay, supplemented with concentrate feeds during
certain periods of the year when the grass is unavailable (e.g.,
winter time) or when a greater control of the diet is required (e.g.,
lactation period). However, the decision “to graze or not to graze”
is often arbitrary without taking into consideration the impact on
the rumen microbiota, feed efficiency and on the environment
(Pol-van Dasselaar et al., 2008).

Several studies have described the rumen microbial changes
over the transition from forage to concentrate diets (Fernando
et al., 2010; Zhu et al., 2017) however much less research has
been conducted to explore the microbial adaptation to fresh
forage diets. Differences between fresh grass and grass hay in
terms of rumen fermentation and digestion of nutrients have
been extensively reported (Minson, 1990; Givens et al., 2000).
A recent in vitro study linked the kinetics of feed colonization
with changes in the rumen microbiota and we demonstrated that
a fresh grass diet, in comparison to grass hay, can accelerate
the microbial feed colonization of ingested feed (Belanche
et al., 2017) leading to higher feed digestibility, microbial
protein synthesis and lower methane emissions (Belanche
et al., 2016b). It is well-known that different diets provide
different primary substrates for fermentation in vitro; however
animal physiological features, such as feeding behavior, rumen
temperature, pH or feed retention time may cause different
inter-relationships between the rumen microbial groups in vivo
to those observed in vitro. Moreover, due to the complexity
of the rumen ecosystem, most studies focus on highlighting
properties of individual microbial species in response to dietary
treatments, leaving the interactions within and between the
microbial communities unexplored. Thus, there is a need to
implement new methodological approaches to reveal the impact
of nutritional strategies on the whole rumen microbiota under
farm conditions.

Recent studies across different habitats have demonstrated
that a better picture of the whole function of a microbial

ecosystem can be achieved by combined interpretation of
quantitative (taxon abundance and diversity) and qualitative
approaches, such as core microbiota and network/co-occurrence
analysis. It is likely that similar to human gut (Turnbaugh
et al., 2009), there is a “rumen core microbiota” that remains
stable regardless of difference in diet or host genetics (Petri
et al., 2013; Henderson et al., 2015). However, only few studies
have implemented this concept in ruminants using a limited
number of experimental animals (Taxis et al., 2015; Tapio et al.,
2017a).Microbial networks have successfully been used to predict
the dynamics and structure of oceanic plankton ecosystems
(Lima-Mendez et al., 2015), soil environments (Barberán et al.,
2012) and to identify taxa interactions within the human
gut in health and disease (Baldassano and Bassett, 2016).
Preliminarymulti-kingdom studies of the co-occurrence patterns
of bacteria, archaea and eukaryotic rumen microbes across
different ruminant species (Kittelmann et al., 2013) and diets
(Kumar et al., 2015) have revealed that the rumen microbial
community is shaped by various biotic and abiotic factors which
still need to be better understood (Henderson et al., 2015).

The aim of this study was to implement multi-kingdom
community analyses (including bacteria, methanogens, fungi and
protozoa) in order to investigate the rumen microbial adaptation
when animals face a feeding challenge consisting of a shift
from a conventional non-grazing diet to a grazing situation.
Moreover, the use of a relatively large number of experimental
animals allowed identification of the core rumen microbiota and
generation of robust microbial networks based on co-occurrence
patterns between microbial taxa.

MATERIALS AND METHODS

Animals and Diets
Animal procedures were conducted in accordance with the
HomeOffice Scientific Procedures, Act 1986 and were authorized
by the Aberystwyth University Ethics Committee (PLL 40/3653;
PIL 40/9798). Twenty four Aberdale ewes of an average body
weight of 68 ± 6.7 kg were used in a straight through
experimental design consisting of two 45-days periods. During
the first period all sheep received a diet composed of ryegrass
hay (Lolium perenne) offered ad libitum and supplemented
with 725 g DM of commercial concentrate per animal and
day (Ewemaster Gold 19 Nuts, Wynnstay, Aberystwyth, UK).
Concentrate was divided into two equal meals fed at 09:00
and 17:00 h, respectively. During the second period all sheep
grazed a perennial ryegrass pasture. Ryegrass hay was obtained
from a second cut of a ryegrass monoculture (Lolium perenne
L. cv. AberMagic, Germinal GB Ltd, Lincoln, UK) located in
Aberystwyth, UK (52◦43′N, 4◦02′W) and had a target maturity of
reproductive stage R1-index 3.1 which shows a visible spikelet of
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inflorescence emergence (Moore andMoser, 1995). After cutting,
ryegrass was left to dry on the field for 7 days, tedded and packed
into 20 kg bales. The grazing period took place on the same
ryegrass pasture from which the hay was harvested and both
forages had similar maturity stage. All animals remained together
in the same flock and had free access to fresh water. Feed chemical
composition was determined (Belanche et al., 2013) and reported
in Table 1.

Rumen Sampling and Analyses
At the end of each period, rumen fluid (200ml per sheep) was
withdrawn by orogastric intubation prior to morning feeding
(09:00 h). Rumen fluid was filtered through cheesecloth, pH was
measured and five subsamples were taken: the first subsample
(40ml) was immediately snap-frozen in liquid N for DNA
extraction and microbial characterization. The second (4ml) was
diluted with 1ml deproteinizing solution (20% orthophosphoric
acid containing 10mM of 2-ethylbutyric acid) for volatile fatty
acid (VFA) determination. The third subsample (1ml) was
diluted with 0.6ml of trichloroacetate (25% w:vol) for ammonia
analysis. The fourth subsample (1ml) was snap-frozen for lactate
determination, and the last subsample (1ml) was diluted with
1ml of formalin (9.25% and NaCl 0.9% w:vol) for protozoal
optical counting and classification (Dehority, 1993).

Rumen concentrations of protozoa, ammonia, VFA and
lactate were determined as previously described (Belanche
et al., 2013). Rumen DNA was extracted from freeze-
dried samples (Yu and Morrison, 2004) and quantitative
PCR was used (Table S1). To determine the absolute
concentration of bacteria, methanogens, anaerobic fungi,
and protozoa (Belanche et al., 2015).

Next Generation Sequencing (NGS)
Rumen bacteria, methanogenic archaea, and fungal communities
were analyzed using NGS DNA metabarcoding as previously
described (Belanche et al., 2016a; Detheridge et al., 2016). Briefly,
for bacteria and methanogens sequencing of the V1-V2 and the
V2-V3 hypervariable regions of the 16S rRNA were performed
respectively, while for the fungi the D1 variable region of
the large subunit (28S LSU) of the rRNA locus was amplified
(Table S1). Amplicons were pooled in equimolar concentrations,

TABLE 1 | Feed composition (in % of DM).

Feed Concentrate Ryegrass hay Ryegrass pasture

Dry matter (% FM) 91.4 86.9 17.8

Organic matter 92.1 93.6 90.4

Crude protein 18.9 6.1 11.4

Water soluble carbohydrates 6.7 13.6 17.1

Starch 22.1 – –

Carbon 44.3 44.2 44.6

Carbon/Nitrogen ratio 14.6 45.4 9.3

Neutral detergent fiber 51.5 64.4 51.0

Acid detergent fiber 14.6 34.6 22.1

purified using an E-gel and analyzed and quantified using a
Bioanalyser 2100 (Agilent Technologies, Santa Clara, USA).
Library preparation and sequencing was performed using an
Ion Torrent system and 2 PGM Sequencing 316TM v2chips
were used for bacteria and fungi, respectively (Life Technologies
Ltd, Paisley, UK), while one smaller 314TM v2 chip was used
for methanogens. Sequences were trimmed at 300 bp length
(200 bp for fungi) and Mothur software was used the quality
filtering consisting of: maximum 10 homo-polymers, quality
Q15 average over 30 bp window and no mismatches with the
primer/barcoding were allowed (Schloss et al., 2009). Error rate
was controlled using UParse (error = 1). Chimera checking
was performed using Uchime and sequences were clustered
into OTUs at 97% identity using Uclust (Edgar et al., 2011).
Taxonomic classification was conducted using the Ribosomal
Database Project II classifier containing curated sequences of
the bacterial 16S and fungal LSU sequences (Cole et al., 2013),
while the RIM-DB database was used for methanogens (Seedorf
et al., 2014). Singletons were removed and only taxonomical
annotations with a confidence (bootstrap value) above 80%
were considered, otherwise were considered as unclassified. This
approach allowed methanogens to be mostly classified at the
species level, while bacteria and fungi were mostly classified at
the genus level. To maximize the comparability across samples,
the number of reads per sample was manually normalized to the
sample with the lowest number of reads. Raw sequences reads
were deposited at EBI Short Read Archive (PRJEB27535).

Calculations and Statistical Analyses
Protozoal cell counts, quantitative PCR data and the number
of reads of each microbial taxon were log-transformed to
assume normality. Rumen fermentation and microbial data
were analyzed based on a repeated-measures ANOVA using the
MIXED models of Genstat 18th Edition (VSN International,
Hemel Hempstead, UK) as follows:

Yijk = µ + Di + Aj + eij

where Yijkis the dependent, continuous variable (n= 24),µ is the
overall mean, Di is the fixed effect of the diet (i = CON vs. PAS),
Al is the random effect of the animal (j = 1–24) and eijkl is the
residual error. Significant effects were declared at P < 0.05 and
tendency to difference at P < 0.1.

Sequence data were log-transformed, and the diet and
animal effects were studied: to determine the impact of
the diet on the microbial community structure a non-
parametric permutational multivariate analysis of variance
(PERMANOVA) was conducted based on the Bray-Curtis
dissimilarity (PRIMER-6 Ltd., Plymouth, UK). Statistical
significance was calculated after 999 random permutations
of residuals under the reduced model using the Monte Carlo
test. A heatmap containing the taxonomical information
and the community structure (R statistics, Vegan package)
was performed for graphical interpretation. A canonical
correspondence analysis (CCA) was also conducted to explore
the relationships between the structure of microbial community
and the fermentation pattern. The significance of each variable
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was also calculated after 999 random permutations (R statistics;
Vegan package). For microbial taxa abundance, data were
log-transformed and False Discovery Rate was minimized
using the Bonferroni statistical test. Spearman correlation
coefficients were calculated to assess the relationships between
the ruminal abundance of the main microbial taxa and the
fermentation data.

In order to decipher the structure of the rumen microbial
community and the multi-kingdom interactions, network
analyses were performed under different dietary situations
(Belanche et al., 2017). This approach, based on the co-
occurrence of bacterial, methanogen, fungal and protozoal taxa
described inter-relationships based on their positive and negative
correlations. For eachmicrobial network, only those taxa (mainly
at the genus level) present in more than 50% of the individuals
were included. Spearman correlation analysis was performed
between all microbial taxa using log-transformed data and only
correlation coefficients larger than 0.5 and adjusted P-values
below 0.05 were further included in the correlation network.
Network analysis was generated using R package igraph (Csardi
and Nepusz, 2006). Microbial network complexity was described
in terms of number of nodes (genera), number of edges (positive
or negative correlations), betweenness (measure of centrality in
a graph based on shortest paths) and contribution to the total
community. The core microbiota was calculated as those genera
(or species) present in >95% animals (Turnbaugh et al., 2007).

RESULTS

Rumen Fermentation and Microbial
Diversity
Diet modified most rumen fermentation parameters (Table 1):
the CON diet promoted a high fermentation rate in terms of total
VFA as well as high lactate, H2 production and molar proportion
of acetate (P < 0.001). On the contrary, the shift to the PAS diet
promoted a higher rumen ammonia concentration and higher
molar proportions of propionate, butyrate, branched-chained
VFA (iso-butyrate and iso-valerate) as well as higher ratio of D
to L lactate (P < 0.001).

Quantitative PCR (Table 2) showed a higher ruminal
concentration of bacteria (P< 0.001) and protozoa (P= 0.011) in
sheep fed with the PAS than with the CON diet. On the contrary
the CON diet promoted a higher concentration of anaerobic
fungi per mg of DM (P = 0.027). The absolute concentration
of methanogens was not affected by the diet, but their relative
abundance with respect to bacteria was higher for the PAS diet
(P< 0.001). Next generation sequencing produced 2.46, 0.37, and
1.64 million high quality sequences and samples were normalized
at 12,500, 1,098, and 8,901 reads per sample for bacteria,
methanogens, and fungi, respectively. After this normalization,
Good’s coverage index remained high indicating that sequencing
depth was sufficient and comparable across samples. Sheep fed
on the PAS diet, in comparison to the CON diet, showed higher
bacterial and fungal diversity indexes (P < 0.05). Similarly, PAS
diet also promoted higher methanogen richness (P < 0.001)
but with a lower Evenness than in the CON diet (P = 0.008)

TABLE 2 | Effects of the diet on the rumen fermentation, absolute abundance,

and alpha diversity of the main microbial groups in sheep.

Item CON PAS SED P-value

Body weight (kg) 65.7 70.1 1.038 <0.001

RUMEN FERMENTATION

pH 6.86 6.77 0.052 0.117

Ammonia-N (mg/l) 26.8 105 6.285 <0.001

VFA (mM) 87.7 59.4 3.284 <0.001

Molar proportion (%)

Acetate 71.4 59.4 0.963 <0.001

Propionate 15.4 20.1 1.053 <0.001

Butyrate 9.39 13.5 0.240 <0.001

Iso-butyrate 1.70 2.23 0.106 <0.001

Valerate 0.69 1.36 0.035 <0.001

Iso-valerate 1.14 2.15 0.080 <0.001

Caproate 0.25 0.75 0.096 <0.001

Iso-caproate 0.01 0.44 0.027 <0.001

Lactate (mM) 11.9 5.91 1.561 <0.001

D/L Lactate ratio 0.30 2.25 0.036 <0.001

H2 productiona (mM) 173 117 6.200 <0.001

CONCENTRATIONS (LOG COPIES/MG DM)

Bacteria 8.38 8.91 0.104 <0.001

Methanogens 5.90 6.28 0.702 0.593

Methanogens (103 × 1CT ) 0.31 1.00 0.130 <0.001

Anaerobic fungi 6.90 5.85 0.446 0.027

Protozoa 5.10 8.49 1.226 0.011

BACTERIAL ALPHA DIVERSITY

Richness 1940 2161 73.77 0.006

Shannon 6.10 6.35 0.080 0.006

Evenness 0.81 0.83 0.008 0.015

Simpson 0.99 0.99 0.001 0.077

Good’s 0.93 0.92 0.004 0.040

METHANOGENS ALPHA DIVERSITY

Richness 25.4 28.0 0.668 <0.001

Shannon 2.33 2.27 0.054 0.263

Evenness 0.72 0.68 0.014 0.008

Simpson 0.84 0.83 0.012 0.307

Good’s 0.86 0.79 0.020 0.002

FUNGAL ALPHA DIVERSITY

Richness 66.7 87.6 6.906 0.006

Shannon 1.37 1.97 0.079 <0.001

Evenness 0.33 0.44 0.016 <0.001

Simpson 0.61 0.73 0.025 <0.001

Good’s 0.75 0.76 0.043 0.794

CON, ryegrass hay diet supplemented with concentrate; PAS, ryegrass pasture.
aHydrogen production stoichiometrically calculated (Marty and Demeyer, 1973).

suggesting the co-occurrence of highly abundant methanogen
species together with very low abundant species.

Core Microbiota and Microbial Network
The core microbiota present across the vast majority of
the individuals was affected by the diet, but to different
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magnitudes according to the microbial community considered
(Figure 1A). The core bacterial microbiota was composed of
34 genera across diets and represented ∼20% of the bacterial
community. Moreover, eight (Microbacterium, Olsenella,
Alkalitalea, Porphyromonas, Elusimicrobium, Mogibacterium,
Robinsoniella, and Leptotrichia) and 10 additional genera
(Actinomyces, Barnesiella, Alloprevotella, Sphingobacterium,
Howardella, Hydrogenoanaerobacterium, Mitsuokella, Lawsonia,
Campylobacter, and Endomicrobium), representing 1.2 and 1.6%
of the community respectively, formed the diet-specific core
bacterial community for CON and PAS diets, respectively. The
core methanogen community was composed of nine species
which represented nearly the entire methanogen population
(96%) across diets and there was not a diet-specific core
community. The core fungal community was composed of
13 genera and was the most affected by the diet because this
community represented 91.1% of the fungal community in the
CON diet but only 74.8% in the PAS diet. Moreover, a substantial
diet-specific core community was observed comprising 11 and
10 fungal genera and representing 6.5 and 18.5% for the CON
and the PAS diets, respectively.

Microbial network analysis showed that sheep fed a CON
diet, in comparison to a PAS diet, had a lower microbial
network complexity in terms of nodes, edges, average number of
neighbors and in the abundance of the rumen microbiota taking
part of this network (Figure 1B). Most of the nodes belonged
to bacterial genera (61%) followed by fungi (22%), methanogens
(14%) and protozoa (3%) (Table S3 and Figure S4). These figures
were modulated by the diet with an increase in the number of
fungal nodes and positive edges with the PAS diet.

Bacterial Community Structure and
Taxonomy
PERMANOVA revealed substantial differences in the community
structure between animals for the bacterial community
(P = 0.028), but also for the methanogen (P = 0.001) and fungal
communities (P = 0.020). This animal effect was considered as
random and is not further discussed. The bacterial community
structure was also visibly affected by the diet (Figure 2; Table S2)
to a greater extent than observed for methanogen and fungal
communities, as noted by the lower Pseudo-F values (14.7 vs.
32.8 vs. 33.9) and similarity values (36.6 vs. 70.7 vs. 45.3) for
bacteria, methanogens, and fungi, respectively. As a result,
the CCA (Figure 2A) and the heatmap (Figure S1) of the
bacterial community based on the dissimilarly showed a clear
separation between samples from animals fed the CON and
the PAS diet. CCA analysis showed that the structure of the
bacterial community in sheep fed the CON diet was positively
correlated with the rumen concentration of VFA, total lactate,
L-lactate and acetate molar proportion, while for the PAS diet
the bacterial structure was positively correlated with the rumen
concentration of ammonia, D-lactate, propionate and butyrate
molar proportion as well as to the abundance of bacteria and
protozoa and the bacterial and fungal diversity (richness).

With regard to the abundance of bacterial taxa (Table 3 and
Figure 2B), diet modified the concentration of 55% of the taxa
which were present in abundances above 0.05%. The shift from a
CON to a PAS diet did not promote a change in the proportions
of Firmicutes and Bacteroidetes but led to a greater abundance
of Actinobacteria (mainly Actinomyces), certain Firmicutes
families (Ruminococaceae, Erysipelotrichaceae) and genera (e.g.,

FIGURE 1 | (A) Venn diagrams describing the effect of the diet on the core microbial communities in the rumen. (B) Microbial network data describing the effect of the

diet on the number of nodes, edges and microbial abundance in the rumen of sheep. Networks were generated based on those genera which positively or negatively

correlated (r > 0.5 and adjusted-P < 0.05). CON, ryegrass hay diet supplemented with concentrate; PAS, ryegrass pasture.
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FIGURE 2 | (A) Canonical correspondence analysis illustrating the effect of the diet on the relationship between the structure of the bacterial community and the

rumen fermentation. PERMANOVA indicating the effect of the diet based on the Bray-Curtis dissimilarity. (B) Effect of the diet on the abundance of the main bacterial

taxa in sheep. CON, ryegrass hay supplemented with concentrate; PAS, ryegrass pasture.

Succiniclasticum, Solobacterium, Butyrivibrio, Lachnobacterium,
Syntrochococcus, Pseudoflavonifractor, Ruminococcus, or
Selenomonas) as well as some Bacteroidetes (Phocaeicola and
Paraprevotella) and Proteobacteria genera (Ruminobacter).
On the contrary, CON diets promoted higher levels of the
phyla Saccharibacteria and Fusobacteria, as well as several
genera (e.g., Anaerotronchus, Butyricicoccus, Ethanoligenenes,
Sporobacter, or Succinivibrio). Only the abundance of few genera
showed a consistent and similar correlation with fermentation
parameters under both dietary situations. Examples of this
consistency across diets were the positive correlation of the
lactate-producer Selenomonas with the rumen lactate and
butyrate levels; or the negative correlation between Prevotella
and the BCVFA concentration. However, most microbes showed
correlations with rumen fermentation parameters under only
one dietary treatment.

Methanogens and Protozoa Community
Structure and Taxonomy
Diet promoted a significant change in the structure of the
methanogen community (Table S2; Figure S2). CCA showed a
positive correlation between the structure of the methanogens
community in sheep fed the CON diet (based on the Bray-
Curtis dissimilarity) and the rumen concentration of total
VFA, L-lactate and acetate (Figure 3A). On the other hand, the
methanogen community structure in sheep fed a PAS diet (in
terms of dissimilarity) positively correlated with the ruminal
concentration of ammonia, D-lactate, bacteria and protozoa,
the butyrate and propionate molar proportion and the bacterial,
methanogens and fungal diversities. Similar to bacteria, the
abundances of 55% of the methanogen taxa were significantly
affected by the diet (Table 4). In particular (Figure 3B), the shift
from CON to PAS diet promoted a decrease in the abundance

of Methanobacterium, Methanobrevibacter gottschalkii,
Methanobassiliicocccaceae Group 12 and Methanomicrobium
mobile, along with a decrease in Methanobrevibacter bovis
koreani, Methanobrevibacter ruminantium, Methanosphaera,
and several Methanomassiliicoccaceae species (Groups 9, 10,
and 11). The correlation analysis showed that when animals
were fed the CON diet most Methanobacteriaceae taxa positively
correlated with propionate and negatively with lactate. Two
Methanomassiliicoccaceae taxa (Groups 3 and 8) positively
correlated with acetate and negatively with propionate, while
the opposite was true for the Groups 9 and 11, however these
observations only occurred when sheep were fed a PAS but not
with a CON diet.

All sheep showed an abundant and highly diverse protozoal
population (Table 4). Optical protozoal counting showed higher
protozoal levels with the PAS than with the CON diet. This
protozoal concentration positively correlated with the butyrate
and lactate concentrations but only when sheep were fed the
CON diet. A positively correlation was noted between propionate
and Entodiniinae, while this propionate negatively correlated
with Dasytricha spp. across diets.

Fungal Community Structure and
Taxonomy
The change from a CON to a PAS diet also promoted a
shift in the fungal community structure (Figure S3; Table S2).
CCA showed that the fungal community structure in the
rumen of sheep fed the CON diet (based on the Bray-Curtis
dissimilarity) was positively correlated with the fermentation
rate (total VFA, acetate and L-lactate), while in sheep fed
PAS this community was positively correlated with the
rumen concentration of bacteria, protozoa, ammonia, D-lactate,
propionate and butyrate and methanogen diversity (Figure 4A).
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FIGURE 3 | (A) Canonical correspondence analysis illustrating the effect of the diet on the relationship between the structure of the methanogen community and the

rumen fermentation. PERMANOVA indicating the effect of the diet based on the Bray-Curtis dissimilarity. (B) Effect of the diet on the abundance of the main

methanogen taxa in sheep. CON, ryegrass hay supplemented with concentrate; PAS, ryegrass pasture.

The concentration of most fungal taxa (91%) was affected by
the diet (Table 5 and Figure 4B): sheep fed a CON diet, in
comparison to a PAS diet, had higher levels of anaerobic fungi
(Neocallimastigomycota), notably Neocallimastix, Piromyces,
Anaeromyces, and Buwchfawromyces. Conversely, Ascomycota,
Basidiomycota, and some Neocallimastigomycota (Orpinomyces,
Pecoramyces, and Feramyces) were more abundant in PAS-
fed sheep. Ruminal concentration of total anaerobic fungi was
positively correlated with acetate and BCVFA and negatively
correlated with propionate molar proportion with both diets.
On the contrary, yeast was positively correlated with propionate
and negatively with acetate and BCVFA molar proportions
across diets.

DISCUSSION

Rumen Core Microbiota
This study explored the concept of “core rumen microbiota”
similar to that hypothesized for the human gut (Turnbaugh
et al., 2009). A core bacterial community was identified in
the rumen of sheep across diets. This community was formed
by 35 dominant genera including Prevotella, Sporobacter,
Ruminococcus, Anaeroplasma, Treponema, Ruminobacter,
Succinivibrio, Fibrobacter, Selenomonas, representing 20% of
the bacterial community. These core community members are
mostly similar to those identified in a previous study in which
32 genera were shared across 16 dairy cows fed different diets
(Jami and Mizrahi, 2012). Moreover, most of these genera have
also been found in other culture-dependent studies (Tajima
et al., 2001; Pitta et al., 2010). More interestingly, our study
found that diet-specific core communities were small in size
(<2%) indicating that most of the adaptation processes to the

PAS diet did not rely on the replacement of bacterial genera but
on increasing the bacterial concentration and diversity or on
modifying the taxa abundance and/or their activity.

Methanogenic archaea are the only organisms able to produce
methane (Hook et al., 2010). Our study identified a simple
methanogen community in terms of diversity (26.7 OTUs),
moreover the core community was also limited in diversity
(only nine species comprising M. gottschalkii, M. ruminantium,
Methanosphaera ISO3F5, and Methanomassiliicoccaceae groups
3a, 8, 9, 11, and 12), but large in size (95.5% of the total
methanogen abundance). As a result, no diet-specific core
community was observed. These findings agree with previous
observations (Tapio et al., 2017a) and indicated the presence of
a highly conserved core methanogen community. However, the
diet consumed by the ruminant affected both the overall structure
of the methanogens community and the abundance of 55% of the
methanogens taxa indicating a larger diet adaptation process than
reported for the bacterial community (Popova et al., 2013).

Fungi represent 10–20% of the rumen microbiota (Rezaeian
et al., 2004), we found that the great majority of the fungal species
(81.9%) belonged to anaerobic fungi (Neocallimastigomycota)
including most of the genera described so far in ruminants
(Edwards et al., 2017). Most of these anaerobic fungi formed
the core fungal community composed of 13 genera which were
shared across all sheep, representing over three quarters of
the total fungal abundance. However, this study also detected
a smaller proportion of fungi that were likely to have been
ingested with the feed materials, including plant-pathogens
(5.5%), saprotrophs (2.4%), yeast (0.7%) and other species of
unclassified fungi (9.5%). One example of a plant-pathogenic
fungus was the crown rust Puccinia coronata (Roderick and
Thomas, 1997) which was more abundant in PAS than in CON
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FIGURE 4 | (A) Canonical correspondence analysis illustrating the effect of the diet on the relationship between the structure of the fungal community and the rumen

fermentation. PERMANOVA indicating the effect of the diet based on the Bray-Curtis dissimilarity. (B) Effect of the diet on the abundance of the main fungal taxa in

sheep. CON, ryegrass hay supplemented with concentrate; PAS, ryegrass pasture.

sheep, while the xerophilic basidiomycetous yeast Wallemia was
more abundant in CON sheep because is commonly found
in dried feeds (Zajc and Gunde-Cimerman, 2018). The use of
generic fungal primers has been validated for rumen studies
(Edwards et al., 2017) because although most fungal species
entering the rumen with the feed are obligate aerobes, and thus
considered to be transient and non-functional (Bauchop, 1979),
some of them (e.g., yeast) can have modulatory effects on the
rumen function (Newbold et al., 1996).

Rumen Microbiota in Animals fed
Non-grazing Diets
This section describes the rumen microbiota when animals were
fed conventional diets based on grass hay plus concentrate
in order to further evaluate the adaptation process when
animals were shifted to a grazing diet, which is considered
the main objective of this study. Under our experimental
conditions, ryegrass hay had lower protein (−47%) and soluble
carbohydrates (−21%) and higher neutral (+26%) and acid-
detergent concentrations (+56%) than fresh ryegrass. This
nutrient loss is mainly due to degradation of sugars due to plant
respiration, oxidation of fatty acids and loss of leaves during
raking (Pizarro and James, 1972). As a result of this, under
farm conditions hay is often supplemented with concentrate, as
conducted in this study. This concentrate supplementation in
the CON diet led to high rumen VFA and lactate concentrations
due to the supply of high levels of rumen fermentable
material (mainly as starch). This observation was supported by
the higher proliferation of starch-degrading bacteria, such as
Saccharibacteria, Succinovibrio, and Succinomonas in CON than

in PAS fed sheep, as well as profound differences in the rumen
microbial community structure and fermentation.

CCA revealed that structure of the bacterial community
in the CON diet was positively associated with a higher
VFA concentration and negatively correlated with ammonia
and bacterial richness. According to Shabat et al. (2016) this
situation should indicate a more efficient rumen function based
on the study of the rumen microbiota of 146 milking cows.
However, they also noted that efficient cows had a higher
propionate/acetate ratio, aspect that was not observed in our
CON-fed animals. Firkins et al. (2007) reported that starch
supplementation in the rumen favors the ammonia incorporation
by the rumen bacteria (Firkins et al., 2007) and could explain
the low ammonia-N concentration observed in sheep fed CON
diet (26.8 g N/l). In particular, Oba and Allen (2003) indicated
that increasing the percentage of grain in the ration increased
microbial N flow to the duodenum by about 30%. Recycling
of blood urea N back to the rumen can partially ameliorate
this low ammonia-N availability in the rumen, but increases the
likelihood that amino-N precursors might become more limiting
for some microbes and ultimately limit the microbial protein
synthesis in ruminants feed high amounts of rumen-degradable
starch (Firkins et al., 2007). Rumen protozoa are unable to
use ammonia as N source (Williams and Coleman, 1992),
although anaerobic fungi and bacteria can uptake ammonia N,
presence of amino-N can substantially increase their growth rate
(Dijkerman et al., 1996; Atasoglu et al., 1999). Thus, the low
concentrations of rumen protozoa and bacteria, along with the
low fungal diversity observed in CON-fed sheep may indicate
that amino-N could represent the limiting factor for microbial
growth. Our study identified various microbes which could
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suffer this limitation (Alloprevotella, Butyricicoccus, Fusobacteria,
Bibersteinia, Sphingomonas, or Spirochaetes) because these
bacterial genera are not involved in proteolysis but showed a
positive correlated with the rumen ammonia concentration in
the CON-fed animals (Griswold et al., 2003). These findings
agree with a previous study (Belanche et al., 2012c) in which
a protein shortage (from 110 to 80% of the N requirements)
decreased not only the ruminal concentration of prokaryotes
(bacteria and methanogens) but also the concentration and
diversity of eukaryotes (protozoa and anaerobic fungi) which led
to a decreased feed digestibility in dairy cows.

Methanogenic archaea stabilize the fermentation process in
the rumen by utilizing H2 and reducing H2 partial pressure. The
stoichiometrical calculations based on the VFA concentration
suggested that CON-fed sheep had a high availability H2 in the
rumen for archaeal utilization (Marty and Demeyer, 1973). As a
result, higher abundances of M. gottschalkii, Methanobacterium,
andMethanomicrobium were noted when sheep were fed a CON
rather than PAS diet. All three species are hydrogenotrophic
using CO2 as the electron acceptor and H2 produced by
protozoa, bacteria and fungi as the electron donor (Liu and
Whitman, 2008). Most hydrogenotrophic methanogens can also
utilize formate as electron donor (equivalent to H2 +CO2)
by the activity of formate dehydrogenase (Liu and Whitman,
2008). In our studyMethanomicrobium was negatively correlated
with propionate, which together whit the low propionate
concentration in the rumen suggested that this product was
unlikely to be a substantial H2 sink in the CON diet. It
was described that M. gottschalkii clade is associated with
high methane emissions to a greater extent than the overall
methanogens concentration (Tapio et al., 2017b). However,
other microbiological features, such as low rumen levels of
Proteobacteria and high levels of H2 producing bacteria and
certain rumen protozoa and anaerobic fungi genera have also
been associated with high methane emissions (Tapio et al.,
2017b), aspect that was not noted when sheep were fed the CON
diet. These findings suggest that rumen microbiota analysis can
help to understand the rumen methanogenesis, but not yet in a
predictive manner.

Anaerobic fungi are among the most potent fiber degrading
organisms known to date due to their extensive set of enzymes
for the degradation of plant structural polymers (Solomon et al.,
2016) Moreover anaerobic fungi possess amylolytic (Gordon and
Phillips, 1998) and proteolytic activity (Gruninger et al., 2014)
which make this community dependent of the nutrient supply as
noted in our study. The high concentration of anaerobic fungi
in the CON-fed sheep was mostly due to increased levels of
Anaeromyces, Neocallimastix, Buwchfawromyces, and Piromyces.
While the substrate preference of the newly described genus
Buwchfawromyces is still unknown (Callaghan et al., 2015),
Anaeromyces and Piromyces have a preference for glucose and
fructose (Solomon et al., 2016). On the contraryNeocallimastix is
a monocentric fungus, able utilize a wider spectrum of substrates
(Edwards et al., 2017), such as cellulose, xylose, glucose, starch,
grass and straw. Despite their different substrate preferences,
all these fungal genera have been associated with increased
production of formate, acetate and lactate (Edwards et al., 2017).

This fungal activity could partially explain the unexpected higher
acetate levels observed in CON than in PAS fed animals as a
positive correlation between the fungal community structure and
acetate was noted in CON-fed sheep.

The correlation analysis also showed a general lack of
agreement between the abundance of bacterial, methanogens,
fungal and protozoal taxa and the rumen fermentation
parameters across diets suggesting a shift in their metabolic
pathways driven by the diet. This observation suggests that
functional diversity may occur even with similar taxonomical
distribution and thus expands a previous hypothesis which stated
that taxonomic differences mask functional similarity (Taxis
et al., 2015). Therefore, the notion that the availability of rumen
degradable energy and protein for microbial protein synthesis
which is commonly used in most feeding systems ignores how
microbial populations change with varying nutrient supply (i.e.,
starch, ammonia-N, peptides) or how these populations can
change their metabolism under different conditions (Firkins
et al., 2007). Our findings suggest that these microbial
adaptations should be revisited if new feeding systems are
developed in the future.

Microbial Adaptation to Grazing Diets
Fresh ryegrass represents a less fibrous and higher quality forage
than ryegrass hay in terms of protein and soluble carbohydrates
contents. The higher rumen protein availability in the PAS diet
led to increased levels of protein degradation products, such as
isobutyrate (+31%), isovalerate (+88%) and ammonia (+3.9-
fold) which seems to indicate a greater protein breakdown than
in the CON diet. Fresh forages are capable of degrading part
of its own protein within the first 2 h of ruminal incubation,
irrespective of the microbial colonization due to the presence of
active plant enzymes (Kingston-Smith et al., 2003). This study
revealed that several microbes seem to be associated with these
proteolytic processes since CCA and correlation analysis showed
that the structure of the bacterial, methanogens and fungal
communities, as well as the protozoal family Entodiniinae were
positively correlated with the ammonia concentration (Hobson
and Stewart, 2012). Moreover, the PAS diet also led to greater
rumen molar concentration of butyrate (+44%) which could
indirectly alter the proteolysis and deamination rates because
presence of butyrate-producing bacteria (mainly Bacteroidetes in
this study) have been described as modulators of the populations
of hyperammonia-producing bacteria (Firkins et al., 2007).

Regarding rumen energy metabolism, the lack of concentrate
supplementation in grazing animals led to lower rumen VFA
(−32%) and lactate concentration (−50%) likely due to a lower
starch supply. Both lactate isomers (D and L) are produced
in the rumen but in presence of soluble sugar most D-lactate,
and some L-lactate, is metabolized into propionate as the
main product (Counotte et al., 1983). Thus, the lower lactate
concentration, together with the high levels of lactate producers,
such as Streptococcus and lactate utilizers, such as Selenomonas
in the PAS diet may suggests that most of the lactate was
transformed into propionate (+31%) in grazing animals, possibly
due to the high availability of soluble carbohydrates (Huws
et al., 2009). Several studies have demonstrated a decrease in
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the Firmicutes/Bacteroidetes ratio and in the bacterial diversity
during the transition from high forage to high grain diets
(Fernando et al., 2010; Tapio et al., 2017a). In our study the
proportions of these two phyla remained constant indicating that
starch supply in the CON diet may be partially compensated in
the PAS diet by the higher water soluble carbohydrates content
and feed digestibility reported for fresh ryegrass in comparison
to ryegrass hay (Belanche et al., 2016b).

The shift from non-grazing to grazing diets caused an increase
in the bacterial concentration and diversity (+221 OTUs)
which has been suggested as an adaptation strategy to digest
forage diets (Belanche et al., 2012b). In this dietary situation
the bacterial community structure was positively correlated
to parameters associated with high microbial complexity,
such as the protozoal concentration or the bacterial, fungal
and methanogens diversities. A similar correlation pattern
was observed for the methanogen and fungal communities
suggesting that rumen microbial adaptation to degradation of
fresh pasture implies a larger number of microbes working
together than for non-grazing diets (McAllister et al., 1994).
The current study supported the concept that amino acids
availability in the rumen stimulates fibrolytic bacteria, especially
those involved in the degradation of hemicelluloses (Griswold
et al., 2003). In particular, the adaptation to the PAS
diet led to increased levels of cellulolytic (Ruminococcus
and Butyrivibrio) and proteolytic bacteria (Prevotella), but
also amylolytic (Ruminobacter, Succiniclasticum) and lactate
producers (Streptococcus and Selenomonas). Microbial network
analysis also showed a higher overall complexity with PAS rather
than CON diets (+18 nodes and +86 edges) mostly due to the
presence of more bacterial nodes (+10). This finding disagrees
with a recent in vitro study in which a similar bacterial network
complexity was observed in rumen liquid incubated with fresh
grass or grass hay (Belanche et al., 2017). This discrepancy may
be due to the different forage to concentrate ratio used in the
two studies.

Regarding methanogen community, the transition from
the CON to the PAS diet increased the methanogen relative
abundance and diversity (+2.6 OTUs). Wallace et al. (2014)
suggested that methane emissions are positively correlated
(R = 0.49) with the Archaea:Bacteria ratio. According to this
observation the PAS diet should promote as much as 2.2-folds
higher methane emissions than the CON diet. However, a
recent publication reported that the prediction of rumen
methanogenesis is a more complex task which requires the study
of the genes involved in the hydrogenotrophic methane synthesis
along with the methylotrophic methanogens and VFA profile
to better predict methane emissions across a range of dietary
conditions (Auffret et al., 2018). Our study revealed that the
adaptation process to the grazing diet was coupled with increases
in the abundance ofM. ruminantium,M. bovis,Methanosphaera
and Methanossiliicoccaceae Groups 9 and 11. Although
Methanobrevibacter is hydrogenotrophic, Methanosphaera, and
most members of the Methanomassiliicoccaceae family are
methylotrophic, reducing methylamines and methanol with
H2 (Paul et al., 2015). In the rumen, methylamines are derived
from glycine betaine and choline, which are present in plant

membranes, while methanol is a product of pectin hydrolysis
by protozoa and the esterase activity of bacteria (Poulsen et al.,
2013). These substrates are highly abundant in fresh forages and
may have favored the proliferation of these species in animals fed
the PAS diet. Moreover, the methanogens community structure
(dissimilarity) in animals fed PAS diet was positively correlated
with propionate molar proportion suggesting that may act as an
alternative H2 sink. Therefore, the increase in the propionate
molar proportion along with a decrease in the VFA concentration
when animals shifted from CON to PAS diet led to lower H2

production (−32%) which could partially reduce the expected
differences in methane emissions based on the methanogen
concentrations (Wallace et al., 2014; Auffret et al., 2018).

Microbial adaptation to the PAS diet also led to an increase
in protozoal cell concentration in which the Entoniniinae family
represented 90.8% of this community. This protozoal population
is actively involved in protein (Belanche et al., 2012a) and
carbohydrate degradation (Ushida et al., 1987), as supported by
the positive correlation with the ammonia and propionate levels
observed in our study. It has been estimated that between 9
and 25% of rumen methanogens are associated with protozoa
(Newbold et al., 1995) and produce ∼37% of the methane
emissions (Finlay et al., 1994). In previous publications we
demonstrated that the presence of rumen protozoa can increase
the methanogen concentration and diversity (Belanche et al.,
2012b, 2014), as noted in the present study, and suggests
a higher interspecies H2 transfer in animals fed the PAS
diet (Morgavi et al., 2010).

The early stages of feed colonization process is challenge
to rumen microbes, particularly when fresh and little damaged
plant material is ingested by the ruminant (Edwards et al.,
2008). Anaerobic fungi can facilitate this colonization process
because their rhizoids have the ability to physically penetrate
plant structural barriers (Callaghan et al., 2015). Thus, fungi
promote other microbes in further plant colonization (Belanche
et al., 2017). Our study agreed with these observations and
revealed that the rumen fungal adaptation from the CON to the
PAS diet was a multi-factorial process consisting of an increase in
diversity (+20.9 OTUs) and a shift in the community structure.
This new fungal community positively correlated with other
microbial groups, such as protozoa, bacteria, and methanogens
highlighting the aforementioned symbiotic relations. Cheng
et al. (2009) demonstrated that the activity of anaerobic fungi
was enhanced by methanogenic archaea which are known to
physically attach to fungal biomass (Li et al., 2017). A highly
complex fungal community has also been shown to improve
feed digestibility, feed efficiency, dairy weight gain, and milk
production (Puniya et al., 2015). In a previous study using
Automated Ribosomal Intergenic Spacer Analysis we observed
an increase in the fungal diversity when a starch-rich diet was
replaced by a fiber-rich diet in dairy cattle (Belanche et al.,
2012c). However, the use of NGS in the present study allowed
identifying the anaerobic fungi favored by the PAS diet, such
as Orpinomyces, Pecoramyces, and Feramyces. This increase
in Orpinomyces may relate to its long life cycle and more
indeterminate (polycentric) mode of growth which favors its
proliferation in animals grazing fresh forage, due to the longer
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rumen retention time (Dey et al., 2004). Orpinomyces has been
shown to be able to utilize various substrates, forming H2, CO2,
formate, acetate, lactate, and ethanol as fermentation products
(Edwards et al., 2017) as noted in the our study. It is also
possible that predation of fungal zoospores by rumen protozoa
(Lee et al., 2001) may lead to shift toward genera, such as
Orpinomyces with lower reliance on sporulation due to their
indeterminate growth, at the expense of monocentric taxa, such
as Neocallimastix with more limited capacity for development of
extensive thalli.

Microbial network analysis revealed that the adaptation to
the PAS diet promoted an increase in the importance of the
fungal community (+8 fungal nodes) which highly interacted
with multiple bacterial and methanogens taxa leading to an
increase in the overall network complexity and the proportion
of positive symbiotic interactions (+5%). Kumar et al. (2015)
also noted an increase in the co-occurrence between anaerobic
fungi, methanogens and bacterial genera when dairy cows were
fed a high forage diet rather than a concentrate diet. However,
this later study also indicated that co-occurrence studies can also
be affected by biotic factors, such as the age of the animal or the
number of lactations suggesting that the rumen microbiota is a
dynamic ecosystem which is still far from been fully understood.

IMPLICATIONS

Here we show that there are various layers of microbial
community analysis currently available, such as taxa abundance,
diversity, core community, network, and correlation analyses
which can provide a wealth of information about the rumen
community adaptation to different dietary situations. In
conventional non-grazing systems supplemented with starch-
rich concentrate the rumen microbiota had low complexity
in terms of diversity and network density suggesting a more
efficient nutrient utilization by the rumen microbes. This

scenario was associated with higher VFA production and lactate
fermentation. However, when animals shifted to a grazing diet
the rumen microbiota experienced an adaptation process in
order to face the challenge of colonizing and digest fresh plant
material. This process consisted on an increase in the microbial
concentration (higher abundance of bacteria, methanogens and
protozoa), diversity and network complexity. This adaptation
originated from a shift in the rumen microbiota promoted a
modification in the multi-kingdom microbial interactions and
fermentative activities (higher proteolysis) which could have
relevant productive implications; however functional genomics
would be required to definitively link these observations with the
feed degradation pathways.
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