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Abstract: In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon 

nanotube (MWCNT)-polypeptide composite sensing device. The MWCNT serves as a 

responsive and conductive layer, and the nonselective polypeptide (40 mer) coating the top 

of the MWCNT acts as a filter into which small molecular gases pass. Instead of using 

selective peptides to sense specific odorants, we propose using nonselective, peptide-based 

sensors to monitor various types of volatile organic compounds. In this study, depending 

on gas interaction and molecular sizes, the randomly selected polypeptide enabled the 

recognition of certain polar volatile chemical vapors, such as amines, and the improved 

discernment of low-concentration gases. The results of our investigation demonstrated that 

the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and 

barely responded to triethylamine. 
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1. Introduction  

In recent years, electronic nose system developers [1–5] have striven to reduce the price and size 

and increase the reproduction levels and reaction rates of the systems, and to construct systems that 

simultaneously monitor multiple gases [6,7]. The sensor materials used to construct chemical resistors 

are divided into two major types: inorganic semiconductors [8,9] and organic polymers [10–12], both 

of which respond to the adsorptive analytes that trigger physical reactions, subsequently changing 

resistivity or the dielectric constant. These sensing materials can be deposited on a thin film to 

fabricate chemical resistors. By measuring the resistance changes, the concentration of analytes can be 

determined. The thin films of functional polymers possess appealing features, such as simple 

manipulation, high selectivity at room temperature, rapid absorption and desorption of tested gases, 

and the ability to couple readily with microstructure sensors [13–16]. To attain a high performance 

level of sensitivity and selectivity, researchers are developing sensing materials in recognizing volatile 

organic compounds (VOCs). To achieve this goal, a variety of materials featuring distinct 

characteristics have been investigated. For example, polymers [17,18] and molecularly imprinted 

polymers [19] have been used to identify various chemical vapors in several studies. 

Using multiple-walled carbon nanotubes (MWCNTs) to detect chemical gases and vapors  

has been an active area of research [20–23]. Several devices have been designed to detect resistance 

changes in the Schottky barriers among nanotubes and metal contacts [24,25]. These devices  

could be used to improve real-time sensing for monitoring combustible gases, gas leakages, and 

environmental pollution. 

Implementing proteins and polypeptides in biosensors has increased the sensitivity and selectivity 

of sensors toward certain targets. In recent studies, a peptide, which is specific to the anthrax 

protective antigen, has been utilized to test the sensitivity and specificity of the biosensor toward 

protein markers when immobilized on a MWCNT [26]. Peptides can also be used to recognize and 

measure gases. A previous study reported that several mammalian species, including humans, can 

recognize gas mixtures comprising thousands of odorants produced by distinct compounds at low 

concentrations [27]. The mammalian olfactory system, which is one of the most effective gas sensing 

systems, uses the receptors attached to the cilia of neurons in detecting various gaseous molecules [28]. By 

studying and understanding the benefits of an olfactory system that can identify and is sensitive to gas 

odorants, innovative methods have been developed that use this natural design in the manufacturing of 

sensing devices that monitor low traces of specific chemical vapors. For example, peptides mimicking 

the binding site of a specific olfactory receptor that is sensitive to a certain gas, such as hexanol, were 

synthesized [29]. Exploiting these biomimetic-specific peptides requires applying comprehensive 

research findings on olfactory receptors and the corresponding ligands. However, separating the 

receptors and ligands individually for study is impractical because of the large amount of olfactory 

receptors and possible targeted odorants. 
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To resolve this problem, we propose a peptide-based, nonselective sensing approach.  

To perform a primitive study, we used a readily available polypeptide, 

DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV. Two volatile organic compounds 

of amines were also tested. The results indicated that the polypeptide-MWCNT film recognized 

ammonia and distinguished the trimethylamine (TEA) vapor from the gases. 

2. Experiment  

2.1. MWCNT-Polypeptide Gas Sensor  

The sensor array chips (Figure 1) were fabricated on a 4-in Si wafer by using a batch process; each 

sensor chip was 34 mm × 20 mm in area. One gas sensor array chip has 12 independent sensing  

areas [30,31]. Each circular membrane sensor was limited to 2 mm in diameter to minimize heat loss 

from the silicon substrate. 

 

Figure 1. Sensor array chip. 

We adopted a two-layer film-making method [32]: the MWCNT-modified electrode layer was 
prepared by drop-casting a methyl ethyl ketone (MEK) solution with 0.1 µL (1 wt%) MWCNT 

(XinNano Materials, Inc.; approximately 8 nm in diameter, 13 µm long, and >90% pure) onto the 

desired part of an interdigitated microelectrode on a chip by using a high-performance liquid 

chromatography syringe. The MEK solvent was evaporated in air at room temperature for 2 h to yield 

the MWCNT film. The 0.1-µL deionized water solution of polypeptide was then drop-casted onto the 

MWCNT layer, and the sensor resistance after each casting step was monitored to control the value 

within a 1 kΩ–100 kΩ range. Finally, the sensor was dried in a vacuum for 24 h to remove the 

remaining solvent and form a gas sensor. 

2.2. Experimental Setup  

Figure 2 shows the experimental setup used to characterize the VOC-sensing properties of the 

sensor devices. The test bench comprised the gas delivery system, sensor test chamber, and the 

computer-controlled electrometer for sensor response acquisition. The gas delivery system included a 

refrigerating air dryer, pressure regulators, and mass-flow controllers to control the flow rate and 

concentration of test gas. To conduct the gas sensing experiments, a test stand with a sensor array chip 
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was placed in a glass vessel. The NH3 gas was prepared using a certified NH3 cylinder (283 ppmv) 

(San Fu Chemical Co., N2 balance) and air. The TEA gas was prepared using a standard gas generator 

that contained a certified permeation tube with known concentrations generated using a standard gas 

generator (KIN-TEK Laboratories, Inc. La Marque, TX, USA). The gas concentration was calibrated 

by measuring the weight loss from the organic solvent solution, and the gas flow rate was controlled 

using a calibrated mass-flow controller (Aalborg, Inc. Orangeburg, SC, USA) with air as the carrier 

gas. We conducted the experiments with pure ammonia and TEA gases separately by changing the gas 

line. For the gas test, after the system was stabilized in dry air, the target gas at a flow rate of  

100 mL/min was infused into the chamber (adsorption), followed by air (desorption). After each test 

run, the chamber was purged with air. All tests were performed in a 3.4 cm3 chamber with a controlled 

temperature (27 °C) and humidity (45% relative humidity). Electrical resistance outputs (△R/R %) 

from each sensor element were measured using a National Instrument data acquisition card (Interface 

card: NI DAQ 6009) with a self-written LabVIEW program [32,33]. 

 

Figure 2. Experimental setup used to characterize the sensing volatile organic compound. 

3. Results and Discussion  

In this study, we developed a conductive MWCNT-polypeptide composite sensing material using a 

two-step approach. The idea of exploiting polypeptides as the outer membrane for gas sensing was 

inspired by the olfactory organ structure. The mucus layer produced by the mucous cells in the nose 

comprises various substances that play different roles in the olfactory system. The secreted mucous 

membrane protects the body by creating a barrier and preventing the inside of the body from losing 

moisture. Furthermore, the mucus membrane facilitates gas exchange and absorption. Working from 

this concept of adopting MWCNT as a responsive and conductive layer and polypeptide as a specific 

filter, we fabricated a polypeptide-based sensor. 

3.1. Performance of Three MWCNT-Assisted Sensing Membranes 

Figure 3 shows the NH3 vapor (283 ppmv) test results of the MWCNT films, MWCNT-poly(ethyl acrylate) 

(PEA) composite films, and MWCNT-polypeptide composite films, the gas response percentage 
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curves of which were approximately 8%, 5%, and 25%, respectively. The sensing behavior of the 

MWCNT films and MWCNT-PEA composite films was similar to that previously  

reported [34–36]. The baseline value of the MWCNT films and MWCNT-PEA composite films  

varied with time and recovered slowly after NH3 gas injection. Compared to the other two sensing 

materials, the MWCNT-polypeptide composite films exhibited higher reactivity, sensitizing, and 

desensitizing behavior. 

 

Figure 3. Gas sensing responses to NH3 gas (283 ppmv) of (a) MWCNT films,  

MWCNT-poly(ethyl acrylate) (PEA) composite films, and MWCNT-polypeptide 

composite films; (b) MWCNT films; (c) MWCNT-PEA composite films; and  

(d) MWCNT-polypeptide composite films. 

3.2. Effect of Polypeptide Ratios on Performance of MWNCT-Polypeptide Sensors 

We compared the performances of the MWNCT-polypeptide sensors, prepared by drop-casting  

1 wt% MWCNT solution as the base layer and various wt% polypeptide (13.0 wt%, 27.0 wt%, and 

41.0 wt%) solutions as the top layer. Figure 4 shows the NH3 gas test results of the three membranes. 

After introducing the NH3 gas, sensor resistances increased gradually, peaking at 30 s. The 13.0 wt% 

polypeptide membrane reached its maximal response with a 10% change in resistance. The 41.0 wt% 
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polypeptide membrane produced a large response, reaching a maximal 30% change in resistance 

within 30 s. To account for the observation, we analyzed the surface morphology of the  

fabricated sensing material by using a scanning electron microscope (SEM). Figure 5 shows the SEM 

surface morphologies of (a) MWCNT; (b) MWCNT-polypeptide composite (13.0 wt%);  

(c) MWCNT-polypeptide composite (27.0 wt%); and (d) MWCNT-polypeptide composite (41.0 wt%) 

sensors. As shown in Figure 4, the top polypeptide layers of 13.0 wt% and 27.0 wt% could not cover 

the MWCNT completely. According to the SEM images, a higher percentage of polypeptide solution 

increased the MWCNT coverage proportion, and a 41.0 wt% concentration yielded the greatest 

coverage. This observation corresponded with the sensing experimental results shown in Figure 4.  

Consequently, because the 41.0 wt% polypeptide membranes produced the largest response among 

the three sample membranes, we used the 41.0 wt% polypeptide formulations to produce  

MWCNT-polypeptide membranes for the sensing experiments described as follows.  

 

Figure 4. Gas sensing responses to NH3 gas (283 ppm) of (a) MWCNT-polypeptide 

composite films with polypeptide concentrations of 13.0 wt%, 27.0 wt%, and 41.0 wt%; 

(b) MWCNT-polypeptide (13.0 wt%) composite films; (c) MWCNT-polypeptide (27.0 wt%) 

composite films; and (d) MWCNT-polypeptide (41.0 wt%) composite films. 
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Figure 5. Scanning electron microscope-captured surface morphologies of (a) MWCNT; 

(b) MWCNT-polypeptide (13.0 wt%) composite films; (c) MWCNT-polypeptide (27.0 wt%) 

composite films; and (d) MWCNT-polypeptide (41.0 wt%) composite films. 

3.3. Sensor Device Response 

The MWCNT-polypeptide composite films (41.0 wt%) were tested using two gases: ammonia and 

TEA. As illustrated in Figure 6a,b, upon exposure to the individual gases, the polypeptide-covered 

MWCNT conductive layer responded to amine gases were tested. As shown in Figure 6, the 40-mer 

polypeptide detected the presence of ammonia (283 ppm) and responded quickly upon exposure to the 

odor. However, although triethylamine was a strong-base VOC, no response from the sensing layer 

was observed, even with a higher concentration of TEA (2166 ppm) than that used in the ammonia 

test. Overall, the results of this study demonstrated the strong analytical potential of the  

polypeptide-based biosensor for detecting and differentiating specific types of VOCs. 
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Figure 6. Gas sensing responses to NH3 gas (283 ppmv) of (a) MWCNT films and 

MWCNT-polypeptide composite films; (b) MWCNT films; and (c) MWCNT-polypeptide 

composite films, and gas sensing responses to triethylamine (2166 ppmv) of (d) MWCNT 

films and MWCNT-polypeptide composite films; (e) MWCNT films; and  

(f) MWCNT-polypeptide composite films. 

3.4. Potential for Long-Term Sensing 

Figure 7 presents the long-term gas sensing responses of the MWCNTs-polypeptide composite 

films to NH3 gas. The films were periodically exposed to NH3 gas to investigate their capacity for 

long-term sensing. The results revealed that the resistance changes reached at least 25%, even after 

eight exposures to NH3 and a testing time of nearly 10 h. The results further indicated that the  

peptide-based biosensor fabricated using our two-step approach could maintain stability and 

reproducibility, and thus, is a feasible candidate for onsite monitoring. 

3.5. Discussion 

The various types of functional groups of amino acid side chains are critical in determining the 

characteristics of a polypeptide. Our data revealed that the polypeptide-based sensing material in this 

study has considerable potential for recognizing polar gaseous chemicals according to size exclusion 

and interaction. Only smaller amine molecules appeared to reach and react with the sensing layer, 

leading to conductivity changes. Because of this encouraging observation, we propose testing various 

polypeptides of different lengths and compositions. Glycopeptides and even different lengths of sugar 

chains can also be used to construct a biosensor. By recording the resistance changes and establishing 

a databank by screening individual vapors, the polypeptide-based sensing films can be used in a wide 

variety of applications, such as to detect diseases or rotting fruit. 
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Figure 7. Long-term gas sensing responses to NH3 gas of four sensor devices fabricated 

with the same sensing materials (41 wt% MWCNT-polypeptide composite film). 

4. Conclusions  

We fabricated a conductive MWCNT-polypeptide two-layer composite material inspired by the 

structure of the olfactory system. Through a combination of conducting MWCNTs and a sensing 

polypeptide, this material provided enhanced sensitivity and is highly suitable for use as a microarray 

gas-sensing element. According to the sensing results, this two-layer polypeptide film exhibits higher 

sensitivity to small molecular vapor. We demonstrated that the polypeptide-coated sensor can detect 

ammonia instead of triethlyamine. 
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