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The anti-proliferative and anti-angiogenic properties of the endogenous oestrogen metabolite, 2-methoxyoestradiol (2-MeOE2), are
enhanced in a series of sulphamoylated derivatives of 2-MeOE2. To investigate possible mechanisms of resistance to these
compounds, a cell line, A2780.140, eightfold less sensitive to the 3,17-O,O-bis-sulphamoylated derivative, STX140, was derived from
the A2780 ovarian cancer cell line by dose escalation. Other cell lines tested did not develop STX140 resistance. RT–PCR and
immunoblot analysis demonstrated that breast cancer resistance protein (BCRP) expression is dramatically increased in A2780.140
cells. The cells are cross-resistant to the most structurally similar bis-sulphamates, and to BCRP substrates, mitoxantrone and
doxorubicin; but they remain sensitive to taxol, an MDR1 substrate, and to all other sulphamates tested. Sensitivity can be restored
using a BCRP inhibitor, and this pattern of resistance is also seen in a BCRP-expressing MCF-7-derived cell line, MCF-7.MR. In mice
bearing wild-type (wt) and BCRP-expressing tumours on either flank, both STX140 and mitoxantrone inhibited the growth of the
MCF-7wt xenografts, but only STX140 inhibited growth of the MCF-7.MR tumours. In conclusion, STX140, a promising orally
bioavailable anti-cancer agent in pre-clinical development, is highly efficacious in BCRP-expressing xenografts. This is despite an
increase in BCRP expression in A2780 cells in vitro after chronic dosing with STX140.
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The human endogenous metabolite, 2-methoxyoestradiol (2-
MeOE2), has been shown to inhibit the proliferation of many
cancer cell types in vitro (Zhu and Conney, 1998) and in vivo
(Klauber et al, 1997), and to inhibit angiogenesis (Fotsis et al,
1994). 2-MeOE2 binds to the colchicine binding site of tubulin
(D’Amato et al, 1994) inhibiting tubulin polymerisation. This
results in the arrest of the cells in the G2/M phase of the cell cycle
and leads to subsequent apoptosis (Qadan et al, 2001).

The anti-proliferative properties of 2-MeOE2 are enhanced in a
series of 2-substituted sulphamoylated oestradiol derivatives
(Raobaikady et al, 2003; Ireson et al, 2004; Newman et al, 2004;
Leese et al, 2005a, b). As with 2-MeOE2, the sulphamoylated
compounds interact with tubulin, leading to G2/M phase cell cycle
arrest and apoptosis (MacCarthy-Morrogh et al, 2000). One of the
most efficacious of these compounds is 2-methoxyoestradiol-3,17-
O,O-bis-sulphamate (STX140). It is highly anti-proliferative and
anti-angiogenic in vitro (Raobaikady et al, 2003; Newman et al,
2004), and is orally bioavailable (Ireson et al, 2004; Newman et al,

2006), potently inhibiting tumour growth (Utsumi et al, 2005;
Foster et al, 2008) and angiogenesis (Chander et al, 2007) in vivo.
STX140 is currently in pre-clinical development as a novel anti-
cancer therapy (Newman et al, 2007).

The development of drug resistance is a major hurdle in the
treatment of cancer. Although many tumours initially respond to
therapy, a large number become resistant over time. Mechanisms
of resistance range from changes in accumulation of the drug
within the cell, and mutations in enzymes and targets, to induction
of cellular compensation mechanisms. These changes can result in
the cells becoming resistant to more than one drug, a phenomenon
known as multi-drug resistance. A common mechanism of multi-
drug resistance is the enhanced expression of various ATP-binding
cassette (ABC) membrane transporter proteins, including the well-
studied P(170)-glycoprotein/multidrug resistance protein 1/MDR1
(Juliano and Ling, 1976; Ambudkar et al, 2003), the multi-drug
resistance-related protein/MRP/MOAT family (Kruh and Belinsky,
2003), and breast cancer resistance protein/BCRP/ABCG2/MXR
(Doyle and Ross, 2003). These membrane-based proteins have
different substrate specificities, but all decrease drug accumulation
within cells by rapid energy-dependent drug efflux.

Previous work from our group has established that STX140 is
efficacious in P-glycoprotein-expressing tumours derived from
MCF-7 breast cancer cells, MCF-7DOX, both in vitro (Suzuki et al,
2003) and in vivo (Newman et al, 2008). We have also looked at the
effects of STX140 and other sulphamoylated 2-MeOE2 derivatives
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on two drug-resistant sub-lines derived from the ovarian cell line,
A2780. These include an adriamycin (DOX)-resistant sub-line,
A2780adr (Hamilton et al, 1984), which also over-expresses
P-glycoprotein (Van der Bliek et al, 1988), and a cisplatin-resistant
A2780-derived cell line, A2780cis (Behrens et al, 1987), whose
suggested mechanisms of resistance include loss of the DNA
mismatch repair pathway (Aird et al, 2002), changes in glutathione
content (Godwin et al, 1992), and intracellular sequestration of
cisplatin (Kalayda et al, 2004), amongst others (Siddik, 2003). The
potency of the sulphamates is unchanged in the cisplatin-resistant
sub-line in comparison to the A2780wt cell line. The efficacy is
only 2–3 times lower in the P-glycoprotein-expressing A2780adr
cell line than in the parental line (Day et al, 2003), and this is
similar to the 1.5-fold change in efficacy seen between the P-
glycoprotein-expressing MCF-7DOX cells and the MCF-7wt cells
(Newman et al, 2008). These values compare very favourably to the
effects of P-glycoprotein on agents such as Taxol and DOX, whose
efficacies are 4150-fold lower in P-glycoprotein-expressing MCF-
7 cells (Newman et al, 2008). STX140 is also efficacious in
xenografts derived from patient tumours which are drug-resistant
but which do not express P-glycoprotein (Newman et al, 2008).
This suggests that the sulphamoylated compounds overcome many
cellular multi-drug resistance mechanisms and may be effective
against tumours, which are already resistant to conventional
chemotherapeutic regimens.

In this study we describe the in vitro derivation and
characterisation of an A2780-based cell line resistant to STX140,
designated A2780.140. We demonstrate that although the resis-
tance of the A2780.140 cells appears to be due to the increased
expression of BCRP, this only causes an eightfold decrease in the
potency of STX140 in vitro, and does not affect the efficacy of
STX140 in vivo.

MATERIALS AND METHODS

Drug synthesis

The syntheses of the 2-MeOE2 derivatives have been reported
previously: 2-MeOE2 (STX66; Figure 1, 1), 2-methoxyoestradiol-3-
O-sulphamate (STX68; Figure 1, 2) and 2-ethyloestradiol-3-O-
sulphamate (STX138; Figure 1, 3), by Leese et al (2005b); the
bis-sulphamoylated oestradiol derivatives, 2-methoxyoestradiol-

3,17-O,O-bis-sulphamate (STX140; Figure 1, 4), 2-ethyloestradiol-
3,17-O,O-bis-sulphamate (STX243; Figure 1, 5) and 2-methyl-
sulphanyloestradiol-3,17-O,O-bis-sulphamate (STX260; Figure 1,
6), by Leese et al (2006); and the 2-methoxy- and 2-ethyl-
3-hydroxy-17b-cyanomethyl-estra-1,3,5(10)-triene derivatives, STX640
(Figure 1, 7), STX641 (Figure 1, 8) and STX564 (Figure 1, 9), by
Leese et al (2008).

Cell culture

Cell culture medium and supplements were purchased from the
Sigma-Aldrich Company Ltd. (Dorset, UK). The A2780 (A2780wt)
ovarian carcinoma cancer cell line was purchased from the
European Collection of Cell Cultures (ECACC, Wiltshire, UK),
and the MCF-7 (MCF-7wt) breast cancer cell line from the
American Tissue Culture Collection (ATCC, Middlesex, UK), and
both were grown in RPMI supplemented with 10% FBS, 2 mM

L-glutamine, 1% non-essential amino acids and 0.075% sodium
bicarbonate. The cells were maintained at 371C in a humidified
atmosphere at 5% CO2. The MCF-7.MR cell line, an MCF-7
derivative resistant to mitoxantrone (MXR), was a kind gift from
Dr GL Scheffer (Department of Pathology, Free University
Hospital, Amsterdam, the Netherlands). To maintain the resistance
of the MCF-7.MR cells, they were cultured in 80 nM MXR (MXR
dihydrochloride in PBS; M6545; Sigma).

Derivation of an STX140-resistant sub-line of ovarian
A2780 cells

The STX140-resistant sub-line, A2780.140, was derived by
exposure of the A2780wt cell line to increasing concentrations of
STX140 over 3 months, with non-treatment recovery periods, from
100 nM to a final constant concentration of 1 mM. Stock A2780.140
cells were then maintained in 1 mM STX140. At least 72 h before
each experiment STX140 was removed from the medium, and the
cells were washed and cultured in fresh untreated medium.

Proliferation assay

Logarithmically growing cells were plated onto 96-well plates
(Falcon, Marathon Lab Supplies, London, UK) at a density of
5–6� 103 cells per well four hours before treatment with a range of
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Figure 1 The structures of the 2-methoxyoestradiol derivatives. (1) 2-MeOE2 (STX66; 2-methoxyoestradiol); (2) STX68 (2-methoxyoestradiol-3-O-
sulphamate); (3) STX138 (2-ethyloestradiol-3-O-sulphamate); (4) STX140 (2-methoxyoestradiol-3,17-O,O-bis-sulphamate); (5) STX243 (2-ethyloestradiol-
3,17-O,O-bis-sulphamate); (6) STX260 (2-methylsulphanyloestradiol-3,17-O,O-bis-sulphamate); (7) STX640 (2-methoxy-3-hydroxy-17b-cyanomethyl-estra-
1,3,5(10)-triene); (8) STX641 (2-methoxy-3-O-sulphamoyl-17b-cyanomethyl-estra-1,3,5(10)-triene); (9) STX564 (2-ethyl-3-O-sulphamoyl-17b-cyano-
methyl-estra-1,3,5(10)-triene).
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concentrations of test compound in tetrahydrofuran (THF; Sigma)
vehicle. Control cells received 0.2% THF, a dose equivalent to
10mM compound. After incubation for 96 h the CellTiter96
Aqueous One assay reagent (Promega, Hampshire, UK) was added
to measure cell proliferation. The cells were incubated for a further
2–4 h at 371C before the absorbance of the wells was measured at
492 nm. The IC50 was calculated for each compound using Prism
software (version 3.02). The relative sensitivity of the resistant cell
line to each compound compared to that of the parent cell line was
calculated as the resistance factor (R.F.¼ IC50 resistant cell line/
IC50 wt cell line).

Cell morphology

Light microscopy Unfixed cells were photographed 72 h after
treatment with 1 mM STX140. The photographs were taken on a
Kodak DC120 digital camera with an Olympus CK2 microscope
(Olympus UK Ltd., Middlesex, UK) and processed with Adobe
Photoshop 5.0LE.

Cell-cycle flow cytometric analysis

Cells were plated at 50–60% confluency in T25 flasks (Triple Red,
Oxfordshire, UK). After 24 h they were treated with 1 mM of STX140
or STX641. After a further 24 or 48 h the cells were harvested by
trypsinisation. All media and washings were collected. The cells
and washings were pelleted by centrifugation at 1100 g, washed
twice with PBS, fixed in cold 70% ethanol, treated with 100 mg ml�1

RNase for 5 min, stained with 50 mg ml�1 propidium iodide and
analysed using a flow cytometer (FACScan; Becton Dickinson,
Oxfordshire, UK).

Clonogenicity assay

Cells were plated in T25 flasks (Triple Red) at low confluency
(B40%). After 24 h they were treated with concentrations of
STX140, STX243 or STX641 that were approximately four times the
IC50 value obtained from the proliferation assay (1mM STX140 or
STX243, or 0.25mM STX641). Control cells were untreated. After 3
days the cells were trypsinised and resuspended in 5 ml medium in
the absence of treatments. The cell suspension was counted using a
haemocytometer and the cells replated in 60mm2 gridded dishes at
5000, 1000, and 200 cells per dish (Corning; Fisher Scientific UK
Ltd., Leicestershire, UK). These were cultured for 8 days. When
colonies became visible and cells became confluent in higher density
dishes, the colonies were fixed in cold methanol for 30 min, stained
in 1 : 10 Giemsa stain in water for 10 min (Accustain: Giemsa stain,
modified; Sigma; GS-500), rinsed twice in water, photographed
(Kodak DC290) and the number of colonies counted (Kodak 1D
version 3.5; Eastman Kodak Company, Stamford, CT, USA).

Immunoblot analysis of cell lysates

A2780, A2780.140, MCF-7 and MCF-7.MR cells were treated with
various doses of STX140 for varying durations. Medium was
removed and treated cells were scraped from the flask, washed
with PBS and lysed with RIPA buffer (250 mM Tris-HCl pH 8.0,
750 mM NaCl, 5% Nonidet P40, 2.5% sodium deoxycholate, 0.5%
SDS) in the presence of protease and phosphatase inhibitors (1 mM

PMSF, 1 mM EDTA, 5 mg ml�1 aprotinin, 5 mg ml�1 leupeptin). The
non-soluble material was removed by centrifugation. Protein
concentration was determined using the Bradford assay (Bio-Rad
Laboratories, Hertfordshire, UK), and 15 mg samples were sepa-
rated by electrophoresis under reducing conditions on 4– 12%
Bis-Tris NuPAGE gels (Invitrogen, Paisley, UK) before being
transferred to nitrocellulose membranes. Equal sample loading and
transfer were confirmed by Ponceau R staining (Sigma). Filters
were immunoblotted with the required monoclonal antibody in

incubation buffer containing 0.1% milk (Marvel; Premier Brands
UK Ltd., Lincolnshire, UK) in PBS. Bound antibody was detected
with horseradish peroxidase-conjugated anti-mouse secondary
antibody and chemiluminescence (SuperSignal West Dura
substrate; Perbio Science UK Ltd., Northumberland, UK).

Real-time RT-PCR

Total mRNA was purified from T75 flasks at approximately 80%
confluency using QIAshredder and RNeasy kits (QIAGEN, West
Sussex, UK) and stored at �801C. A 5 mg aliquot of each mRNA
sample was reverse transcribed in a final volume of 33 ml to
generate cDNA using the ‘First-Strand cDNA Synthesis Kit’
(GE Healthcare Ltd., Buckinghamshire, UK) and stored at
�201C. RT–PCR reactions were performed in a ‘Rotor Gene
2000 Real-Time Cycler’ (Corbett Research, Cambridgeshire, UK)
with 0.5ml cDNA in a final volume of 10 ml, using Taqman
universal PCR master mix and Taqman expression assays
containing primers and probes for BCRP, and for an endogenous
control gene, RPLO (Applied Biosystems, Warrington, UK). The
conditions were as follows: 951C for 10 min, followed by 40 cycles
of denaturation at 951C for 15 s and annealing/amplification at
601C for 60 s in accordance with the recommended conditions for
these primers and probes (Applied Biosystems). The expression of
mRNA for other multi-drug resistance proteins was analysed using
1 ml cDNA in a final volume of 25 ml, in Excite 2� Master Mix
(Biogene, Cambridgeshire, UK) and primers for either MDR1,
MRP1, MRP2, MRP3 (Kawabata et al, 2001), with the endo-
genous gene, GAPDH as an internal control (forward primer
50-TGCCGTCTAGAAAAACCTGC-30; reverse primer 50-ACCCTGT
TGCTGTAGCCAAA-30). The RT– PCR conditions were as follows:
951C for 10 min; followed by 40 cycles of denaturation at 951C for
30 s, annealing at 551C for 45 s, and amplification at 721C for 45 s.
Relative mRNA expression was calculated using the comparative
quantitation algorithm in the Rotor Gene 6 software (Corbett Life
Science, Corbett Research UK, Cambridgeshire, UK).

Substrate accumulation flow cytometric analysis

Cells were plated at 100–150� 103 cells per well in 12-well plates
(Triple Red). After 24 h they were pre-treated, if pre-treatment was
required, with 0 –100mM novobiocin (Nov: sodium salt in DMSO;
N6160; Sigma) for 1 h before treatment with 10 mM MXR in either
the presence or absence of Nov. After a further hour the cells were
harvested by trypsinisation, and placed immediately on ice.
Collected cells were pelleted by centrifugation at 1100 g, resus-
pended in ice-cold PBS with 2.5% fetal calf serum, and the
accumulation of MXR analysed using a flow cytometer (FACScan;
Becton Dickinson) with excitation and emission wavelengths of
633 and 661 nm, respectively. The relative amount of MXR in each
sample was calculated as a percentage of the median linear
fluorescence in the wt þ MXR samples using the wt control (no
MXR) samples as a blank.

BCRP amplification and sequencing

An aliquot of cDNA product from the A2780.140 cell line mRNA
(see section ‘Real-time RT-PCR’) was used for PCR using BCRP
primers (Kawabata et al, 2001). The 0.5 ml cDNA aliquot was
amplified using 35 cycles of: denaturation at 951C for 30 s,
annealing at 58.51C for 45 s, and extension at 721C for 1 min. The
product was separated by electrophoresis on a 1.5% agarose gel
containing ethidium bromide, and the band of 316 bp visualised
under UV light, excised from the gel, purified (QIAquick
gel extraction kit; QIAGEN) and sequenced (PE Biosystems,
Buckinghamshire, UK).
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siRNA studies

MCF-7.MR cells (1� 106) were transfected with 3 mg of BCRP
siRNA (Ambion Inc., Austin, TX, USA) using the AMAXA system
with Nucleofector kit V (AMAXA, Cologne, Germany) according to
the manufacturer’s protocol. The cells were maintained in a 6-well
plate and 48 h post-transfection BCRP mRNA expression and
accumulation of MXR by the cells was assayed.

Xenograft models

Animal experiments were approved by the Imperial College Ethical
Review Committee and were conducted in accordance with the UK
Animals (Scientific Procedures) Act (1986) and the UKCCCR
guidelines for the Welfare of Animals in Experimental Neoplasia
(Workman et al, 1998). All efforts were made to minimise both
suffering and the number of animals used.

Female MF-1 nu/nu mice (Harlan UK Ltd., Oxfordshire, UK)
were injected s.c. in one flank with 5� 106 A2780wt or MCF-7wt
cells and in the other with 5� 106 A2780.140 or MCF-7.MR cells
respectively in ice-cold Matrigel (0.1 ml), resulting in a single
tumour per flank. Daily oral administration of STX140
(20 mg kg�1) in 0.1 ml 10% THF/90% propylene glycol or twice
weekly i.v. administration of 1 or 2.5 mg kg�1 MXR in 0.1 ml saline
was initiated when the tumours reached 50–150 mm3 in volume
(n¼ 4 –6 per group). Control animals were dosed orally with 10%
THF/90% propylene glycol. Animal weights and tumour measure-
ments were recorded every 7 days. Tumour volume (V), in mm3,
was determined using the following equation: V¼ length�width2/
2. Results are expressed as a percentage of the tumour volume at
day of measurement (Vn) over the volume at day 0 (Vo). At the
end of study, the animals were sacrificed and tumour tissue (20–
40 mg) was excised and transferred to RNAlater solution (Ambion)
for subsequent RNA purification.

Statistical analysis

In vitro experiments were carried out in triplicate and data
presented are representative of one of three such experiments.

Errors shown are the mean±s.d. ANOVA was used to assess the
significance in in vivo data. In vivo study data are represented as
mean±s.e.m.

RESULTS

A2780.140, a cell line resistant to STX140 (Figure 1, 4), was derived
from A2780 ovarian cancer cells. After 3 months of increasing the
dose of STX140 from 100 nM to 1 mM, allowing time for recovery
after each dose escalation, the cells could be cultured constantly
in 1 mM STX140. Parallel attempts to establish STX140-resistant
sub-lines from other cell types, including MCF-7, PC-3 and LNCaP
cells, all with a similar sensitivity to STX140 as the parental A2780
cells, were unsuccessful.

The sensitivity of the A2780wt and A2780.140 cells to
various compounds, both sulphamates and other chemotherapeu-
tic agents, was measured using a tetrazolium dye assay, and the
IC50 values and resistance factors (R.F.) were calculated (Table 1).
The A2780wt is eight times more sensitive to STX140 than the
resistant line. The A2780.140 cell line is also cross-resistant to
two structurally similar bis-sulphamoylated derivatives, STX260
(2-methylsulphanyloestradiol-3,17-O,O-bis-sulphamate; Figure 1, 6)
and STX243 (2-ethyloestradiol-3,17-O,O-bis-sulphamate; Figure 1,
5) although with a lower resistance factor (R.F. of 5.0 and 3.2,
respectively). These compounds differ from STX140 only in the
substitution at their 2-positions. There is no difference in
sensitivity to all other sulphamoylated compounds in the series
between the two cell lines, or to colchicine or the P-glycoprotein
substrate, taxol. However, the A2780.140 line is resistant to
MXR, with an R.F. of 6.5, and to some extent to DOX, with an
R.F. of 3.0.

The morphology of the A2780 and A2780.140 cells is shown in
Figure 2A. After 72 h of treatment with 1 mM STX140, the A2780wt
cells became detached and rounded, displaying the characteristic
appearance of cells undergoing apoptosis, whereas the morphology
of the A2780.140 line was unaffected by the treatment. Flow
cytometry was used to assess the effects of 1 mM STX140 and
another sulphamoylated derivative, STX641 (2-methoxy-3-O-sul-
phamoyl-17b-cyanomethyl-estra-1,3,5(10)-triene), on the cell cycle
of the cell lines over 48 h (Figure 2B). In the A2780wt cells there
was a marked increase in the G2/M peak after 24 h of treatment
with either compound when compared to untreated cells, with a
subsequent rise in the sub-G1 population over the following 24 h.
These effects were also apparent in the A2780.140 cells after
treatment with STX641, but not after treatment with 1 mM STX140:
in A2780.140 cells treated with STX140 there was no change in cell-
cycle distribution when compared to untreated A2780.140 cells.

To confirm that the A2780.140 cells are resistant to the long-
term growth inhibitory effects of STX140, we studied the effect of
STX140, STX243 and STX641 on the clonogenic potential of
A2780.140 and A2780wt cells. Figure 2C shows the Giemsa-stained
colonies formed by cells which were replated and allowed to grow
in untreated complete medium after prior 72 h treatment with the
compounds at concentrations of approximately four times their
IC50. The wild-type cell line was very susceptible to the long-term
effects of these compounds, with all treatments resulting in no
more than 1 colony per plate, although the untreated control
plates, at plating dilutions of 5000, 1000 and 200 cells, contained
1184, 212 and 27 colonies, respectively. However, in the resistant
cell line, the cells treated with STX140 grew at least as well as the
untreated cells, indicating that these cells are resistant to the long-
term effects of STX140 at 1 mM. There was also some resistance to
STX243, but not to STX641, with no colonies forming even after
treatment at 0.25mM, in agreement with the results of the
proliferation assays.

Anti-BCRP mAb (MAB4146 at 1 : 200; CHEMICON Inter-
national, Inc., Hampshire, UK) immunoblot analysis of cell lysates

Table 1 The effect of various compounds on the proliferation of
A2780wt and A2780.140 cells in the presence and absence of novobiocin,
a BCRP inhibitor

IC50 (nM)

Compound A2780wt A2780.140
R.F. (no BCRP

inhibitor)
R.F. (+60 lM

novobiocin)

STX66 500 590 1.2 nd
STX68 410 380 0.9 nd
STX138 400 400 1.0 nd
STX140 240 1930 7.9 1.5
STX243 260 830 3.2 nd
STX260 230 1170 5.0 1.9
STX640 320 320 1.0 nd
STX641 40 50 1.2 1.2
STX564 180 170 0.9 nd
Taxol 6 4 0.7 nd
Colchicine 4 5 1.1 nd
MXR 150 940 6.5 2.4
DOX 170 570 3.3 1.2

Cells were treated in triplicate with a range of concentrations of the compounds in
the presence or absence of 60 mM novobiocin. After 4 days proliferation was
measured using the CellTiter96 Aqueous One assay (Promega) and the IC50 values
were calculated. Results are representative of at least two separate experiments
(IC50¼ nM; R.F.¼ resistance factor (¼ IC50 A2780.140/IC50 A2780wt); nd¼ not
determined).
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prepared from A2780 cells during derivation of the A2780.140 cell
line indicated that there is significant expression of BCRP in all
cells resistant to X500 nM STX140 (Figure 3A), but that there is no
BCRP band visible in the A2780wt lanes. No change in expression
of other multi-drug resistance proteins, including P-glycoprotein
(MDR1), multi-drug resistance-associated protein (MRP1) and
lung resistance protein (LRP) could be detected by immunoblot-
ting (results not shown). Real-time RT-PCR of mRNA from
A2780wt and A2780.140 cell lines confirmed that BCRP mRNA
expression is negligible in A2780wt cells, but is upregulated
approximately 700-fold (calculated from triplicate RT–PCR
experiments) in the A2780.140 cells (Figure 3B). There was no
change in mRNA expression of other multi-drug resistance

proteins including MDR1, MRP1, MRP2 and MRP3 (results not
shown).

The effect of 60 mM Nov, a specific inhibitor of BCRP (Shiozawa
et al, 2004), on the sensitivities of the two cell lines to various
compounds is shown in the last column of Table 1. In the presence
of Nov the sensitivity of the A2780.140 cell line to STX140, STX260,
MXR and DOX was restored almost to that of the A2780wt cell line
whereas the sensitivity of A2780.140 cells to STX641 was
unaffected. This suggests that BCRP is the only major mechanism
of resistance in the resistant cell line. To confirm the activity of
BCRP in these cells, FACS analysis was used to study the effect of
Nov on the accumulation of MXR, a fluorescent BCRP substrate, in
the A2780.140 cells (Figure 3C). The fluorescence of the cells is low
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Figure 2 A2780wt and A2780.140 cells after treatment with 1 mM sulphamoylated oestradiol derivatives. (A). Light microscopy of A2780wt and
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STX140 or STX641 for 24 or 48 h: cells harvested by trypsinisation were pelleted, washed twice with PBS, fixed in cold 70% ethanol, treated with
100 mg ml�1 RNase for 5 min, stained with 50mg ml�1 propidium iodide and analysed using a flow cytometer (FACScan; Becton Dickinson). (C) The effect of
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treated with 1 mM STX140, 1 mM STX243 or 0.25 mM STX641. After 72 h, cells were washed thoroughly, replated at 5000, 1000 or 200 cells per 60 mm2 dish
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after incubation with MXR alone; however, in the presence of
increasing concentrations of Nov, the fluorescence of the cells
increases from 25 to 73% of the level in the MXR-incubated
A2780wt cells, due to the inhibition of BCRP-mediated MXR efflux.

The substrate specificity of BCRP is dependent on the amino
acid which is present at position 482; in the wild-type this is an
arginine, but BCRP can also be expressed with either a threonine
or a glycine residue at this position (Lee et al, 1997; Miyake et al,
1999). To establish which form of BCRP is being over-expressed by
the A2780.140 cell line, a 316 bp fragment of BCRP was amplified
by RT–PCR, purified and sequenced (Figure 3D). This sequence
established that the wild-type form of BCRP, R482, is expressed by
the A2780.140 cells.

As further confirmation that BCRP expression is the major
method of resistance in the derived cell line, the A2780.140 cell line
was compared to a known BCRP over-expressing cell line, MCF-
7.MR. RT– PCR analysis (Figure 4A) indicated that, as expected,
BCRP mRNA is highly expressed in the MCF-7.MR cells, at an
approximately 10-fold higher level than in MCF-7wt cells, and

at a similar level to the A2780.140 cells. The A2780wt cells have
the lowest BCRP mRNA expression of all four cell lines.
Immunoblot analysis of BCRP protein expression across the
four cell lines (Figure 4B) confirmed that BCRP expression in
the A2780wt cells is negligible (lanes 5 and 6), with some
expression apparent in the MCF-7wt cell line (lanes 1 and 2),
whereas both A2780.140 (lanes 7 and 8) and MCF-7.MR (lanes 3
and 4) express a similarly high level of BCRP. The high level of
BCRP expression is maintained in A2780.140 cells cultured for
eight weeks in the absence of STX140 (lanes 9 and 10). This was
confirmed by RT–PCR of mRNA samples taken from these cells
(results not shown).

Substrate accumulation flow cytometric analysis of the effect of
Nov on the accumulation of MXR in MCF-7.MR cells (Figure 4C)
indicated that the established functionality and inhibition of BCRP
in this line is very similar to that in A2780.140 cells, with the
presence of 100mM Nov resulting in 90% of the MXR accumulation
of the wild-type cells. Transfection of the MCF-7.MR cells with
BCRP siRNA caused a 4-fold decrease in the expression of BCRP
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Figure 3 Analysis of BCRP expression and functionality in A2780.140 cells. (A) Expression of BCRP in A2780 cells during the development of resistance
to STX140: cells were harvested and solubilised using RIPA buffer. Cell extracts (15 mg) separated by electrophoresis on 4–12% NuPAGE gels (Invitrogen)
and transferred to nitrocellulose were immunoblotted with anti-BCRP mAb (MAB4146; CHEMICON International Inc.) at 1 : 200. Lane 1: A2780wt cells
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Markers¼MultiMark (Invitrogen). (B) Expression of BCRP mRNA in A2780wt and A2780.140 cells: RT–PCR analysis of mRNA from untreated A2780wt
and A2780.140 cells using Taqman expression assays (Applied Biosystems) containing primers and probes for BCRP, and for an endogenous control gene,
RPLO. (C) The effect of Nov on the accumulation of mitoxantrone (MXR) in A2780wt and A2780.140 cells: cells pre-treated with Nov were treated with
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right hand side of the gel.

BCRP expression does not affect STX140 efficacy in vivo

JM Day et al

481

British Journal of Cancer (2009) 100(3), 476 – 486& 2009 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s



mRNA (Figure 4D), which was reflected in an increase in
accumulation of MXR, from 31 to 59% of that in MCF-7wt cells
when assayed using the substrate accumulation flow cytometric
assay (Figure 4E). The sensitivity of the MCF-7.MR and MCF-7wt
cell lines to several of the sulphamoylated compounds, and to
MXR, was determined (Table 2). The pattern of resistance to the
compounds is the same as in the A2780.140 cell line, with the MCF-

7.MR cell line having increased resistance to STX140 (R.F. 6.4),
MXR (R.F. 5.4), STX243 (R.F. 2.1) and STX260 (R.F. 2.6), and not
to 2-MeOE2 (STX66; R.F. 1.1) or STX641 (R.F. 0.9), in comparison
to MCF-7wt cells.

To establish whether BCRP has an effect on the efficacy of
STX140 in vivo, dual tumour xenograft studies were set up. Nude
mice were inoculated on one flank with the parental cell line, and
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Figure 4 Analysis of BCRP expression and functionality in MCF-7.MR cells. (A) Expression of BCRP mRNA in MCF-7wt and A2780wt cells, and in the
derivatives, MCF-7.MR and A2780.140: RT–PCR analysis of mRNA from untreated cells using Taqman expression assays (Applied Biosystems) containing
primers and probes for BCRP, and for an endogenous control gene, RPLO. (B) Expression of BCRP protein in MCF-7wt and A2780wt cells, and in the
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transfection on the accumulation of MXR in MCF-7.MR cells: 48 h after transfection with 3 mg BCRP siRNA (Ambion, UK), MCF-7wt and MCF-7.MR cells
were treated with 10mM MXR þ /� Nov, harvested by trypsinisation and resuspended in ice-cold PBS with 2.5% fetal calf serum. MXR accumulation was
analysed using a flow cytometer (FACScan; Becton Dickinson) as in Figure 3C (wt¼MCF-7wt; MR¼MCF-7.MR; representative of two separate
experiments).
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on the other with the BCRP-expressing derivative to ensure that a
direct comparison was achieved. In the first instance, use of an
A2780wt/A2780.140 model was explored. An initial study using the
A2780wt and A2780.140 cells as dual xenografts was unsuccessful
as the ovarian cells had a variable take rate, and those of the
control group grew very rapidly, forming ulcerated tumours.
Despite this, it could be seen that both STX140 and MXR were
highly efficacious in the A2780wt tumours (Supplementary Data
A), whereas in the A2780.140 tumours, there was an indication that
the efficacy of MXR may be lower than that of STX140
(Supplementary Data B). RT–PCR analysis of mRNA from
tumours taken at the end of study indicated that none of the
treatments affected the amount of BCRP expressed by either
tumour type (Supplementary Data C).

The dual tumour model was repeated using the MCF-7wt and
MCF-7.MR cells (Figure 5). Both the MCF-7wt and MCF-7.MR
control tumours grew at similar rates over the 35 day treatment
period, to around 400% of their starting volume. Treatment with
STX140 at 20 mg kg�1/day completely inhibited the growth of the
MCF-7wt tumours (Po0.001), and treatment with either 1 or
2.5 mg kg�1 MXR twice weekly also significantly inhibited the
growth of the MCF-7wt tumours (Po0.05), although to only
B50% of the volume of the control tumours (Figure 5A). In
contrast, neither dose of MXR had any effect on tumour growth in
the BCRP-expressing tumours (Figure 5B), whereas STX140 again
completely inhibited growth (Po0.001), and by day 35 resulted in
tumour regression to 78% of the original starting volume. No
significant weight loss was seen in any of the animals over the
duration of the study (data not shown).

To ascertain whether either transfer of the cells to the in vivo
setting or treatment with the compounds had affected the
expression of BCRP in either the MCF-7wt or MCF-7.MR cells,
tumours were removed at the end of the study for RT–PCR
analysis (Figure 5C). In all cases, expression remained low in the
MCF-7wt tumours and was comparable to that in the MCF-7wt
cells cultured in vitro, whereas expression of BCRP in the MCF-
7.MR tumours was several-fold higher. Although BCRP mRNA
expression in the MCF-7.MR tumours in vivo is apparently lower
than that in MCF-7.MR cells in vitro, this decrease may be due to
the infiltration of other cell types, such as those forming visible
blood vessels, into the MCF-7.MR tumour over the duration the
study.

DISCUSSION

STX140 and other 2-substituted oestrogen sulphamates are highly
effective at inhibiting the growth of cancer cells and angiogenesis,

both in vitro and in vivo (Chander et al, 2007; Newman et al, 2007;
Foster et al, 2008). Previous work has indicated that these
compounds are also active against cell lines and tumours resistant
to other chemotherapeutic regimens, including those which
express P-glycoprotein (Day et al, 2003; Suzuki et al, 2003;
Newman et al, 2008). To investigate possible mechanisms of
resistance to the 2-substituted oestrogen sulphamates, and to

Table 2 The effect of various compounds on the proliferation of MCF-
7wt and MCF-7.MR cells

IC50 (nM)

Compound MCF-7wt MCF-7.MR R.F.

STX66 2980 3360 1.1
STX68 230 280 1.2
STX140 240 1530 6.4
STX243 210 440 2.1
STX260 300 780 2.6
STX640 200 160 0.8
STX641 70 60 0.9
MXR 180 970 5.4

Cells were treated in triplicate with a range of concentrations of the compounds.
After 4 days proliferation was measured using the CellTiter96 Aqueous One assay
(Promega) and the IC50 values were calculated. Results are representative of at least
two separate experiments (IC50¼ nM; R.F.¼ resistance factor (¼ IC50 MCF-7.MR/
IC50 MCF-7wt)).
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Figure 5 Dual tumour MCF-7wt and MCF-7.MR xenograft model.
Female MF-1 nu/nu mice were injected s.c. in one flank with 5� 106 MCF-
7wt cells and in the other with 5� 106 MCF-7.MR cells in ice-cold Matrigel
(n¼ 6 per group). Daily oral administration of STX140 vehicle (0.1 ml 10%
THF/90% propylene glycol), STX140 (20 mg kg�1), or twice weekly i.v.
administration of MXR (1.0 and 2.5 mg kg�1 in saline) was initiated when
the tumours reached 50–150 mm3 in volume (day 0). (A) MCF-7wt
tumour growth: dosing with STX140 or either dose of MXR caused
significant inhibition of tumour growth (***Po0.001 and *Po0.05,
respectively) compared to control. (B) MCF-7.MR tumour growth: dosing
with STX140 caused significant inhibition of tumour growth (***Po0.001)
compared to control, whereas dosing with MXR at either dose did not
affect tumour growth (ns, P40.05). (C) BCRP mRNA expression: RT–
PCR analysis, using Taqman expression assays for BCRP, and for an
endogenous control gene, RPLO, of mRNA extracted from MCF-7wt and
MCF-7.MR tumours at the end of the study.
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elucidate further the mechanism of action of these compounds,
long-term dose escalation was used to derive a sub-line of A2780
ovarian cancer cells, A2780.140, resistant to STX140.

A2780 cells are frequently used in resistance studies. Their
susceptibility to resistance development has been attributed to a
0.01% subpopulation of mismatch repair defective A2780 cells
(McLaughlin et al, 1991; Aquilina et al, 2000). A2780 sub-lines
have been derived with resistance to many chemotherapeutic
compounds including cisplatin (Behrens et al, 1987), taxol (Ferlini
et al, 2003), both cisplatin and taxol (Pratesi et al, 2003) and DOX
(Hamilton et al, 1984). STX140-resistant sub-lines could not be
derived from MCF-7, PC-3 and LNCaP cells, all which have similar
sensitivities to STX140 as A2780 cells.

Immunoblot and RT–PCR analyses demonstrated that BCRP
expression is dramatically increased in the A2780.140 cells. BCRP
is a transmembrane ABC transporter protein expressed, apparently
as a protective mechanism, in many healthy tissues including the
placenta, testes, gut and blood brain barrier (Maliepaard et al,
2001; Dietrich et al, 2003), as well as in stem cells (Zhou et al, 2001,
2002). It is able to transport porphyrins, such as haem, and is
upregulated in hypoxic conditions, suggesting that it is essential
for the survival of stem cells under low-oxygen conditions
(Krishnamurthy and Schuetz, 2006). In healthy breast tissue it
appears to concentrate both vitamins and xenobiotics into breast
milk (van Herwaarden et al, 2007).

The high level of BCRP expression in the A2780.140 sub-line
appears to be relatively stable, as it is sustained when the cells are
cultured in the absence of STX140 for over eight weeks. Its activity
was demonstrated by the use of substrate accumulation FACS
analysis, using MXR, a BCRP substrate, in the presence and
absence of a BCRP inhibitor, novobiocin. However, the resistance
of the A2780.140 cells to STX140 is low, only increasing by eight
times compared to the A2780wt cells, and they remain sensitive to
STX140 at higher doses. This compares with resistance factors of
4100 for many cell lines resistant to other compounds (for
example, A2780 cells resistant to gemcitabine have an R.F. of
150 000; Ruiz van Haperen et al, 1994). The cells are partially
resistant to DOX, as reported for the MCF-7.MR cell line which
also over-expresses BCRP (Taylor et al, 1991).

The substrate profile of BCRP, encompassing chemotherapeutic
agents, xenobiotics and steroids, is continuing to expand and has
been confused by the discovery of several variants of BCRP. A
mutation at amino acid 482 is known to alter the specificity of
BCRP for its substrates (Honjo et al, 2001). In wild-type BCRP,
derived from normal tissues, an arginine is present at 482, and this
form can also be found in cancer cell lines selected for resistance to
chemotherapeutic agents. However, R482T and R482G mutations
are found in the BCRP expressed by two well-characterised
resistant cancer cell lines, MCF-7/AdrVp3000 (Lee et al, 1997) and
S1-M1-80 (Miyake et al, 1999), respectively, selected by DOX and
MXR treatment. Several polymorphisms in the ABCG2 gene may
have further impact on BCRP substrate specificity, cellular
localisation, and expression levels (Lemos et al, 2008). Sequencing
confirmed that the form expressed by A2780.140 cells carries the
wild-type arginine residue at position 482.

Of a large panel of other 2-substituted oestrogen sulphamates,
the A2780.140 sub-line is cross-resistant only to the two most
similar compounds. These compounds, STX243 and STX260, differ
from STX140 in their 2-position substituents. Use of a well-
characterised BCRP-expressing cell line, MCF-7.MR, further
confirmed that the resistance of the A2780.140 cell line is BCRP-
mediated, as the two cell lines have the same profile of sensitivity
to MXR and the 2-substituted oestrogen sulphamates.

Immunoblot and RT-PCR analyses indicated that A2780.140 and
MCF-7.MR cell lines have similar high expression of BCRP, despite
MCF-7wt cells expressing low but measureable levels of BCRP, as
previously noted (Robey et al, 2007), and A2780wt cells having no
detectable BCRP expression. BCRP is a glycosylated protein, and

the appearance of the BCRP immunoblot bands from the two cell
lines is slightly different, suggesting a change in the glycosylation
of the BCRP from the two sources. However, as the authors have
demonstrated in these studies, this possible difference in
glycosylation does not appear to affect the function of this protein.
It has previously been shown that altered glycosylation of BCRP
does not affect its localisation at the plasma membrane
(Mohrmann et al, 2005).

As the expression of BCRP only alters the sensitivity of the cells
to the 2-substituted oestrogen sulphamates which have a
sulphamate group at the 17-position of the steroid D-ring, this
suggests that the presence of this group is necessary for
recognition of this class of compounds by BCRP. However, the
sulphamates studied in this paper are derivatives of oestradiol, and
many steroids, both unconjugated and conjugated to sulphate or
glucuronide, including oestrogens, phytoestrogens and androgens,
are substrates of BCRP (Imai et al, 2003; Velamakanni et al, 2007).
Studies have also shown that steroids and cholesterol, and steroid
agonists and antagonists such as tamoxifen and diethylstilboestrol,
can modulate the expression of BCRP without themselves being
substrates (Imai et al, 2002; Janvilisri et al, 2003; Sugimoto et al,
2003; Morita et al, 2005; Pavek et al, 2005). A novel oestrogen
response element (ERE) has been found in the human BCRP
promoter (Ee et al, 2004a, b), although it has also been suggested
that oestradiol post-transcriptionally downregulates BCRP (Imai
et al, 2005). Despite these observations, in this study the increased
expression of BCRP in A2780.140 cells after long-term exposure to
STX140 cannot be mediated by the ER as the A2780 cell line is ER
negative and STX140 is non-oestrogenic (Chander et al, 2007).

To study the effect that the expression of BCRP has on the efficacy
of STX140 in vivo, we used a dual xenograft tumour mouse model
similar to that established in our laboratory to study the effect of P-
glycoprotein expression on STX140 efficacy (Newman et al, 2008).
Wild-type and resistant cells were inoculated in Matrigel on opposite
flanks, allowing direct comparison of the treatment effects on the two
xenografts whilst reducing the number of animals required for each
study. An initial study using the A2780wt and A2780.140 cells as dual
xenografts was unsuccessful as the ovarian cells had a variable take
rate, and grew very rapidly forming ulcerated tumours. However, in
a repeat study using an MCF-7wt/MCF-7.MR dual xenograft model,
both tumour types grew steadily at similar rates. Despite the BCRP-
expressing cells having a similar level of resistance to STX140 and
MXR in vitro, STX140 was highly active in vivo in both MCF-7wt
and MCF-7.MR tumours, significantly inhibiting their growth,
whereas MXR, a chemotherapeutic agent in clinical use, inhibited
the growth of the wild-type xenografts, but was inactive in those
which expressed BCRP.

It has previously been shown that the plasma concentration of
STX140, when dosed orally to mice at 10 mg kg�1, is maintained at
1 mM or above for 24 h due to its excellent oral bioavailability, with
peak concentration at B8.5mM 3 h after dosing (Ireson et al, 2004).
In this study the mice were given 20 mg kg�1 per day STX140,
suggesting that the concentration of STX140 would be maintained
at above 1 mM in the plasma. As the IC50 of STX140 in BCRP-
expressing cells in vitro is only 1.5–2 mM, this dose may be
regularly or continuously exceeded in the in vivo model at a
20 mg kg�1 per day dose, resulting in good efficacy of STX140 in
BCRP-expressing tumours in vivo. In addition to its anti-
proliferative properties, the anti-angiogenic qualities of STX140
also contribute to its efficacy in vivo, as STX140 has been shown to
cause significant inhibition of angiogenesis when dosed at
10 mg kg�1 in a Matrigel plug assay (Chander et al, 2007) and at
20 mg kg�1 in xenograft models (Chander et al, 2007; Foster et al,
2008). This property would be unaffected by BCRP expression in
the cancer cells of the tumour, adding to the efficacy of STX140 in
BCRP-expressing tumours.

The sensitivity of the BCRP-expressing tumours to the effects of
STX140 indicates that STX140 would be of therapeutic benefit in
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cancers observed to have BCRP-mediated resistance to chemo-
therapy. BCRP expression has been seen in around 40% of human
tumours pre-treatment, and is most prevalent in tumours of the
digestive tract and in haematological malignancies. In adult
lymphoblastic leukaemia BCRP expression is associated with shorter
disease-free survival, and in acute myeloid leukaemia several studies
have indicated that there is a positive correlation between its
expression and resistance (Krishnamurthy and Schuetz, 2006).

In conclusion, despite long-term dose escalation of STX140 in
A2780 ovarian cancer cells resulting in a sub-line which expresses
high levels of wild-type BCRP, STX140, in contrast to MXR, is
highly efficacious in vivo in both wild-type and BCRP-expressing
tumour xenografts. STX140 has also previously been shown to be
efficacious against tumours which express P-glycoprotein, and
against drug-resistant patient breast cancer xenografts which do

not express P-glycoprotein. The combination of these properties
with its excellent oral bioavailability and lack of toxicity indicate
that STX140, currently in pre-clinical development, is a promising
therapeutic agent for both non-drug-resistant cancers, and for
cancers which have developed resistance to other agents.
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