
Biol. Cell (2012) 104, 121–138 DOI: 10.1111/boc.201100105 Review

Regulation of the nucleocytoplasmic
trafficking of viral and cellular
proteins by ubiquitin and small
ubiquitin-related modifiers
Yao E. Wang∗, Olivier Pernet∗† and Benhur Lee∗†‡1

∗Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, U.S.A., †Department of Pathology and

Laboratory Medicine, UCLA, Los Angeles, CA 90095, U.S.A., and ‡UCLA AIDS Institute, UCLA, Los Angeles, CA 90095, U.S.A.

Nucleocytoplasmic trafficking of many cellular proteins is regulated by nuclear import/export signals as well as
post-translational modifications such as covalent conjugation of ubiquitin and small ubiquitin-related modifiers
(SUMOs). Ubiquitination and SUMOylation are rapid and reversible ways to modulate the intracellular localisation
and function of substrate proteins. These pathways have been co-opted by some viruses, which depend on
the host cell machinery to transport their proteins in and out of the nucleus. In this review, we will summarise
our current knowledge on the ubiquitin/SUMO-regulated nuclear/subnuclear trafficking of cellular proteins and
describe examples of viral exploitation of these pathways.

Introduction
The replication of many viruses (particularly DNA
viruses and retroviruses) involves nuclear steps
(Griffin et al., 2007). Even for viruses that repli-
cate in the cytoplasm (e.g. many negative-stranded
RNA viruses), it is not uncommon for specific viral
proteins to enter the nucleus during certain stages
of infection to achieve specific functions such as
antagonising the host’s immune activation (Katze
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et al., 2002; Ramachandran and Horvath, 2009;
Goodbourn and Randall, 2009) or global inhibition
of host gene expression (Petersen et al., 2000; von
Kobbe et al., 2000). The nuclear import and export of
viral proteins depend on the host cell machinery and
are subject to regulation by pathways that normally
modulate the trafficking of cellular proteins, includ-
ing post-translational modifications. Conjugation of
modifying groups such as phosphate, acetyl group,
ubiquitin (Ub), and Ub-like molecules is a rapid and
efficient way of modulating the properties of pro-
teins after their synthesis (Ulrich, 2005). Particularly,
Ub and small ubiquitin-related modifiers (SUMOs)
have drawn much attention in recent years due to
their roles in diverse biological functions (Denuc and
Marfany, 2010; Liu and Walters, 2010). Although the
regulatory functions of Ub and SUMO in the nucleo-
cytoplasmic trafficking of cellular proteins have been
extensively studied (Wilson and Rangasamy, 2001;
Pichler and Melchior, 2002; Shcherbik and Haines,
2004), their involvement in viral protein trafficking
has been only recently appreciated. In this review,
we will summarise our current knowledge on Ub-
and SUMO-regulated nucleocytoplasmic trafficking
of cellular proteins and give a few examples of how
these pathways are exploited by viruses.
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Figure 1 Simplified illustration of Ran-dependent nuclear import and export pathways
Steps (1) to (4) illustrate importin α/β-dependent nuclear import; steps (5) and (6) illustrate CRM-1-dependent nuclear export.

(1) Importin α binds to the NLS of the cargo protein and forms a complex with importin β. The complex is transported into the

nucleus through the nuclear pore complex. (2) In the nucleus, binding of RanGTP to importin β results in its dissociation from

importin α and the release of the cargo. (3) RanGTP-bound importin β is exported to the cytoplasm. (4) Importin β is released

upon hydrolysis of RanGTP to RanGDP, allowing for a new cycle of nuclear import. (5) CRM-1 binds to the NES of the cargo

protein and forms a complex with RanGTP. (6) The complex is transported into the cytoplasm, where hydrolysis of RanGTP

results in the release of the cargo.

Nuclear import and export machinery
For proteins larger than 30 kDa, efficient trafficking
across the nuclear membrane requires transporters
and depends on the presence of specific nuclear im-
port/export signals (Güttler and Görlich, 2011; Ja-
mali et al., 2011). In most cases, these signals are
recognised by import or export receptors of the
karyopherin-β family either directly or via an adapter
(Sorokin et al., 2007). The best-characterised nuclear
import pathway involves importin α/β, which medi-
ates the nuclear translocation of nuclear localisation
signal (NLS)-containing cargoes in a Ran-dependent
manner, as illustrated in Figure 1. Similarly, the ex-
port transporter chromosome region maintenance 1
(CRM-1; or exportin 1) mediates the nuclear export
of a large number of cargoes containing nuclear ex-
port signals (NESs) [steps (5) and (6) in Figure 1]. For

a comprehensive review of the nuclear import/export
machinery, readers are referred to Moroianu (1999),
Sorokin et al. (2007) and Jamali et al. (2011). In addi-
tion, the nucleocytoplasmic trafficking of many pro-
teins is also subject to regulation by post-translational
modifications such as phosphorylation, ubiquitina-
tion and SUMOylation (Jans and Hübner, 1996; Wil-
son and Rangasamy, 2001; Shcherbik and Haines,
2004).

Ub and SUMO pathways
Ubiquitin is a small 76-amino-acid protein modi-
fier that is covalently attached to the substrate pro-
tein usually via an acceptor lysine residue. Ub con-
jugation occurs by the sequential action of three
enzymes: (i) a Ub-activating enzyme (E1), (ii) a
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Figure 2 Schematic illustration of p53 nucleocytoplasmic trafficking regulated by Ub and SUMO
(1) p53 polyubiquitination by Mdm2 leads to protein degradation (Li et al., 2003). (2) p53 monoubiquitination by Mdm2 and

SUMOylation by PIASy cooperatively lead to nuclear export (Li et al., 2003, Carter et al., 2007). (3) Demodified p53 translocates

back to the nucleus (Yuan et al., 2010) (see text for details).

Ub-conjugating enzyme (E2) and (iii) a Ub
ligase (E3), which determines substrate speci-
ficity and the type of conjugation (e.g. monoUb
versus polyUb, K48- versus K63-linked Ub).
The ubiquitination machinery has been re-
viewed in Kerscher et al. (2006). Though
initially described as a regulator of protein
degradation (Wilkinson et al., 1980), Ub is now
known to play important roles in a broad spec-
trum of cellular activities such as intracellular protein
trafficking, transcriptional regulation, DNA repair,
cell-cycle progression and apoptosis (Shcherbik and
Haines, 2004; Liu and Walters, 2010).

SUMO’s involvement in nuclear trafficking was
initially suggested by its first known substrate, Ran
GTPase-activating protein 1 (RanGAP1), which is
a part of the nuclear import/export machinery (Cole
and Hammell, 1998; Fried and Kutay, 2003). Un-
modified RanGAP1 is diffused in the cytoplasm,
whereas SUMO conjugation targets it to the nu-
clear pore complex, where it regulates protein/RNA
trafficking across the nuclear membrane (Matunis
et al., 1996; Mahajan et al., 1997; Matunis et al.,
1998). Since then SUMO has been associated with the
nuclear/subnuclear targeting of various cellular pro-
teins (discussed below). The vertebrate genome en-
codes at least four SUMO isoforms, namely SUMO1-
4. Similar to ubiquitination, SUMOylation is a

three-step process involving an E1-activating enzyme
heterodimer Aos/Uba2, an E2-conjugating enzyme
Ubc9 and substrate-specific E3 ligases (reviewed in
Gareau and Lima, 2010).

Given that proteins can be modified by both Ub
and SUMO, sometimes on the same lysine residue,
it is not surprising that these two modification sys-
tems communicate. Indeed, the interaction between
Ub and SUMO pathways is complex and could be
either competitive, cooperative or differential (Ul-
rich, 2005; Denuc and Marfany, 2010). In the fol-
lowing section, we will briefly summarise examples
of cellular proteins whose nucleocytoplasmic traffick-
ing is regulated by Ub and/or SUMO and discuss the
crosstalk between the two pathways so as to provide a
better context when we later review viral exploitation
of these pathways.

Ub/SUMO-regulated nucleocytoplasmic
trafficking of cellular proteins
Ub and nuclear import/export
Ubiquitination is usually associated with cytoplas-
mic localisation via promoting either nuclear ex-
port or cytoplasmic retention. The best-characterised
example is the tumour suppressor gene p53 (re-
viewed in Shcherbik and Haines, 2004; Stehmeier
and Muller, 2009; Lee and Gu, 2010). P53 is
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ubiquitinated on its six C-terminal lysine residues
by the E3 Ub ligase Mdm2 (Honda et al., 1997; Ro-
driguez et al., 2000; Lohrum et al., 2001; Nakamura
et al., 2002). Although polyubiquitination results
in proteasomal degradation, monoubiquitination by
the same E3 ligase leads to nuclear export (Li et al.,
2003) [pathways (1) and (2) in Figure 2]. It has been
postulated that Ub modification induces a confor-
mational change, leading to unmasking of the NES
which resides in the proximity of the Ub sites (Shcher-
bik and Haines, 2004). Once in the cytoplasm,
p53 can be deubiquitinated by the deubiquitinase
USP10, resulting in its translocation back to the
nucleus (Yuan et al., 2010) [pathway (3) in Figure
2]. Polyubiquitination of transcription factors Sma-
and MAD-related protein 3 (Smad3) and hypoxia in-
ducible factor alpha (HIF-α) has also been linked
to their export from the nucleus and termination
of transcriptional activation (Fukuchi et al., 2001;
Groulx and Lee, 2002). Alternatively, ubiquitination
can favour cytoplasmic localisation by inhibiting nu-
clear import, which is exemplified in the case of
CTP–phosphocholine cytidylyltransferase (CCT-α).
The regulatory enzyme CCT-α can switch between
an inactive form in the cytoplasm and an active form
in the nucleus. It possesses an NLS located in close
proximity of the putative ubiquitination site. By us-
ing CCTα–Ub hybrid constructs that vary in the
intermolecular distance between Ub and the NLS,
the authors showed that monoubiquitination masks
the NLS, resulting in the disruption of importin-α
binding and consequently a blockage in the nuclear
import (Chen and Mallampalli, 2009).

There are currently few examples of Ub playing
a direct role in the nuclear import of target pro-
teins. A good example is the tumour suppressor
phosphatase and tensin homolog on chromosome 10
(PTEN) (Trotman et al., 2007). Though no conven-
tional NLSs have been identified in PTEN, the tu-
mour suppressor is able to translocate into the nu-
cleus. Ubiquitination on lysine residue K289 likely
plays a role in the nuclear import of PTEN because
the K289E mutant, associated with Cowden syn-
drome, is defective in nuclear import, monoubiq-
uitination, as well as its tumour suppression ability.
The authors further identified another monoubiqui-
tination site K13, which is also found to be mutated
in spontaneous cancer, as being important for nuclear
import.

A list of cellular proteins whose nuclear im-
port/export is regulated by ubiquitination can be
found in Table 1.

SUMO and nuclear import/export
In contrast to Ub, SUMO is usually associated
with nuclear/subnuclear targeting. The first identi-
fied SUMO substrate RanGAP1 is targeted to the
nuclear pore complex and binds to the nucleoporin
RanBP2/Nup358 upon SUMOylation (Matunis
et al., 1996; Mahajan et al., 1997; Matunis et al.,
1998). Because RanBP2 is part of the nucleocyto-
plasmic transport machinery and itself has SUMO E3
ligase activity (Mattaj and Englmeier, 1998; Görlich
and Kutay, 1999; Pichler et al., 2002), it has been
postulated that SUMOylation might be coupled to
translocation through the nuclear pore (Pichler and
Melchior, 2002).

Examples of proteins whose intracellular distribu-
tion is affected by SUMOylation are listed in Table 1.
In the case of Krüppel-like factor 5 (KLF5), SUMOy-
lation on a site close to the endogenous NES inhibits
the NES function and leads to nuclear retention (Du
et al., 2008). SUMO also enhances the nuclear ac-
cumulation of insulin-like growth factor 1 recep-
tor (IGF-1R) (Sehat et al., 2010), cAMP-response-
element-binding protein (CREB) (Comerford et al.,
2003) and C-terminal binding protein of adenovirus
E1A (CtBP) (Lin et al., 2003b). SUMO site muta-
tion favours cytoplasmic localisation in all three cases;
however, whether this is mediated through promot-
ing nuclear import or inhibiting nuclear export is
not clear. On the other hand, nuclear targeting of
promyelocytic leukaemia protein (PML) per se does
not seem to require SUMOylation, as mutating the
SUMO site does not prevent its nuclear accumula-
tion. However, SUMOylation of PML is important
for its localisation in nuclear bodies (Zhong et al.,
2000; Lallemand-Breitenbach et al., 2001).

The involvement of SUMO in regulating nuclear
export has been suggested by studies of the retinoic
acid receptor alpha (RARA) (Zhu et al., 2009) and
the E-twenty-six family transcriptional repressor TEL
(Wood et al., 2003). In both cases, the putative
SUMO site mutants are restricted to the nucleus.
However, one caveat is that ubiquitination was not
examined in these studies and the observed effect,
therefore, could potentially be due to the lack of
ubiquitination.
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Table 1 Nucleocytoplasmic trafficking of cellular proteins regulated by Ub and/or SUMO

Protein Major functions Ub regulation SUMO regulation References

CCTα Enzyme involved in the
synthesis of
phosphatidylcholine

Ub site is in close proximity of
the NLS. Ub results in
masking of the NLS and
disruption of importin-α
binding, leading to an
inhibition of nuclear import.

Not examined Chen and Mallampalli,
2009

CREB Transcriptional
regulation

Phosphorylation-dependent
ubiquitination results in
proteasomal degradation
in hypoxia

SUMO conjugation on a lysine
residue within the NLS is
important for nuclear import

Taylor et al., 2000;
Comerford et al.,
2003

CtBP Transcription repressor Not examined Mutation of the SUMOylation
site shifts CtBP from the
nucleus to the cytoplasm
and abolishes its
transcriptional repression
activity

Lin et al., 2003b

DdMEK1 Kinase involved in the
chemotaxis of
dictyostelium

Ub contributes to nuclear
targeting

Chemoattractant stimulation
induces SUMOylation of
MEK1, which is required for
its translocation from the
nucleus to the cytosol and
cortex

Sobko et al., 2002

DEDD Apoptosis reguator l Ub induces cytoplasmic
localisation and higher
proapoptotic capacity

Not examined Lee et al., 2005

HIF-α Transcription factor Under hypoxic conditions,
HIF-α disassociates from
the E3 ligase complex and
accumulates in the
nucleus. Upon return to
normaxia, it binds to the
ligase complex and
polyUb leads to nuclear
export and degradation.

SUMOylation increases HIF-α’s
stability and its
transcriptional activity

Groulx and Lee, 2002;
Bae et al., 2004

HIPK2 Transcriptional
regulation

PolyUb leads to protein
degradation

SUMOylation is important for
HIPK2 localisation to nuclear
speckles

Kim et al., 1999; Choi
et al., 2008

IGF-1R Receptor tyrosine
kinase

Phosphorylation-dependent
ubiquitination is important
for downstream signalling

Ligand-dependent
SUMOylation is required for
nuclear translocation

Sehat et al., 2007;
Sehat et al., 2010

IκBα Inhibitor of NF-κB Ub results in proteasomal
degradation, leading to
NF-κB activation

SUMOylation of IκBα results in
its resistance to
Ub-mediated proteasomal
degradation, resulting in the
retention of NF-κB in the
cytoplasm

Desterro et al., 1998

KLF5 Transcription factor Ub leads to rapid
proteasomal degradation

SUMO site is close to the NES.
SUMOylation enhances
nuclear localisation by
inhibiting the NES function.

Chen et al., 2005; Du
et al., 2008

Lef1 Transcription factor Not examined SUMOylation by E3 ligase
PIASy promotes Lef1
localisation to PML bodies
and represses its function

Sachdev et al., 2001

NEMO Regulatory subunit of
the IKK complex

Upon genotoxic stress, sequential modification of NEMO by
SUMO and Ub cooperatively leads to NF-κB activation

Huang et al., 2003

(Continued)
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Table 1 Continued

Protein Major functions Ub regulation SUMO regulation References

p53 Tumor suppressor MonoUb on C-terminal lysine
residues by Mdm2
promotes nuclear export,
whereas polyUb leads to
proteasomal degradation.

SUMOylation by PIASy E3 ligase
promotes its dissociation from
Mdm2 and nuclear export

Honda et al., 1997;
Rodriguez et al.,
2000; Lohrum et al.,
2001; Nakamura
et al., 2002; Li et al.,
2003; Carter et al.,
2007

PML Major component of
the PML nuclear
bodies

SUMO-dependent E3 Ub
ligase RNF4 ubiquitinates
PML and causes its
proteasomal degradation

SUMO modification is important
for nuclear body localisation

Müller et al., 1998;
Duprez et al., 1999;
Tatham et al., 2008

PTEN Tumor suppressor MonoUb by Nedd4 on
residues K13 and K289 is
required for nuclear import.
Nuclear localisation is also
controlled by the
deubiquitinating enzyme
HAUSP.

Not examined Trotman et al., 2007;
Song et al., 2008

RanGAP1 Nucleocytoplasmic
transport

Not examined SUMO modification is required for
its interaction with RanBP2
and targeting to the nuclear
pore complex

Matunis et al., 1996;
Mahajan et al.,
1997; Matunis et al.,
1998

RARA Transcriptional
regulation

Not examined SUMO2 modification is involved
in the nucleocytoplasmic
shuttling of RARA

Zhu et al., 2009

Smad3 Transcription factor PolyUb by ROC1-SCF
complex leads to nuclear
export and degradation,
resulting in the termination
of Smad3-induced
transcriptional activation

PIASy-mediated SUMOylation
stimulates nuclear export

Fukuchi et al., 2001;
Imoto et al., 2008

Smad4 Transcriptional
regulation

MonoUb of Smad4 enhances
its transcriptional activity,
whereas polyUb leads to
proteasomal degradation

SUMOylation is mediated by PIAS
family E3 ligases and occurs in
the nucleus. SUMO enhances
nuclear retention of Smad4
and increases its stability.

Lin et al., 2003a; Lee
et al., 2003; Morén
et al., 2003

Sp3 Transcription factor Not examined SUMO modification by PIAS1 is
required for inactivation of Sp3
and its translocation to nuclear
periphery and nuclear dots

Ross et al., 2002;
Sapetschnig et al.,
2002

TEL Transcriptional
repressor

Not examined SUMOylation is important for
nuclear speckle targeting.
SUMO might also be
important for nuclear export.

Chakrabarti et al.,
2000; Wood et al.,
2003

VHL Tumor suppressor Ub contributes to nuclear
export

SUMOylation by PIASy E3 ligase
promotes nuclear localisation

Cai and Robertson,
2010

Crosstalk between Ub and SUMO systems
Because proteins can be modified by both Ub
and SUMO, the interaction between the two sys-
tems determines the eventual outcome of the
modification.

When the same lysine residue serves as both Ub and
SUMO sites, as seen in the examples of the inhibitor
of NF-κB alpha (IκBα) (Desterro et al., 1998) and

von Hippel–Lindau protein (VHL) (Cai and Robert-
son, 2010), modifications by Ub and SUMO usually
have opposing effects on the localisation and func-
tions of the target protein, although there may be
exceptions (discussed below). For example, although
ubiquitination of IκBα leads to its degradation and
consequently the nuclear translocation of NF-κB
subunits, SUMOylation leads to its resistance to
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Ub-mediated proteasomal degradation, resulting in
retention of NF-κB in the cytoplasm (Desterro et al.,
1998). VHL is SUMOylated by the PIASy E3 lig-
ase, which promotes its nuclear localisation, whereas
ubiquitination on the same lysine residue contributes
to nuclear export (Cai and Robertson, 2010).

However, ubiquitination and SUMOylation occur-
ring on the same lysine residue do not necessarily
lead to antagonistic effects on the function of the
target protein, as exemplified by the sequential mod-
ifications of the NF-κB essential modulator (NEMO)
during genotoxic stress (Huang et al., 2003). After
treatment with DNA-damaging reagents, IκB kinase
(IKK) complex activation requires the passage of the
regulatory subunit NEMO through the nucleus. Al-
though SUMOylation seems to target NEMO to the
nucleus, ubiquitination, which occurs at a later time
point, results in the shuttling of the protein back to
the cytoplasm. In this case, the sequential modifi-
cations by SUMO and Ub cooperatively lead to the
activation of IKK.

Ubiquitin and SUMO also appear to cooperate in
regulating the nuclear export of p53. As discussed
in the section ‘Ub and nuclear import/export,’ p53
nuclear export depends on monoubiquitination on C-
terminal lysine residues (Lohrum et al., 2001; Li et al.,
2003). Carter et al. (2007) have shown that SUMOy-
lation also plays a role in this process. According to
the model proposed by these authors, the attachment
of a single Ub serves as an initiation event, allow-
ing for access to the NES and recognition of p53 by
SUMO E3 ligases such as PIASy, which leads to fur-
ther modification of p53 to release Mdm2 and allow
nuclear export [pathway (2) in Figure 2].

Recent identification and characterisation of
SUMO-targeted ubiquitin ligases (STUbLs) in yeast
(reviewed in Geoffroy and Hay, 2009), fly (Barry
et al., 2011; Abed et al., 2011a) and mammalian
cells (Lallemand-Breitenbach et al., 2008; Tatham
et al., 2008; Mukhopadhyay et al., 2010) have added
yet another layer of complexity to the Ub/SUMO
network. STUbLs selectively ubiquitinate SUMOy-
lated proteins and proteins that contain SUMO-like
domains, resulting in their deSUMOylation and/or
degradation (Prudden et al., 2007). The presence of
STUbLs helps to maintain the delicate balance be-
tween SUMOylation and ubiquitination (Abed et al.,
2011b).

Viral exploitation of the Ub/SUMO pathways
Viruses are obligate parasites. Because of the ex-
tremely limited protein encoding ability of the vi-
ral genome, viruses have evolved ways to utilise the
host cell machinery, including the Ub/SUMO path-
ways. One example of viruses exploiting the Ub path-
way is the involvement of cellular endosomal sorting
complex required for transport (ESCRT) in the bud-
ding of viruses from the multivesicular bodies, which
was initially shown for retroviruses (Martin-Serrano
et al., 2001; Garrus et al., 2001) and then extended
to other viral families (Schmitt et al., 2002; Yasuda
et al., 2003; Wirblich et al., 2008). The interaction
between viral proteins and the ESCRT complexes has
been extensively studied, and there are a few excel-
lent reviews on this subject (Bieniasz, 2006; Martin-
Serrano, 2007; Chen and Lamb, 2008; McDonald and
Martin-Serrano, 2009; Gustin et al., 2011). Here, we
will focus on a much lesser known aspect of viral in-
teraction with the Ub/SUMO system: the regulation
of nucleocytoplasmic trafficking of viral proteins by
Ub and SUMO.

Retrovirus
To date, the best-characterised example of a vi-
ral protein whose nucleocytoplasmic trafficking is
regulated by the Ub/SUMO pathways is the Tax
protein of the human T-cell leukaemia virus type
1 (HTLV-1). HTLV-1 is the etiological agent of
adult T-cell leukaemia/ lymphoma, and tropical spas-
tic paraparesis/HTLV-associated myelopathy (Jeang,
2010; Shembade and Harhaj, 2010). Tax, a 40 kDa
phosphoprotein encoded by the pX region of the
virus, is a multifunctional protein that plays key roles
in viral replication as well as T-cell transformation
(Matsuoka and Jeang, 2011). It promotes cell sur-
vival by constitutively activating the NF-κB family
transcription factors via interactions with the compo-
nents of the pathway at both cytoplasmic and nuclear
steps (Nasr et al., 2006).

Tax shuttles between the nuclear and cytoplasmic
compartments (Burton et al., 2000; Kfoury et al.,
2011). In the nucleus, Tax is predominantly lo-
calised to heterogeneous nuclear foci known as Tax
speckled structures (TSS), which contain a variety
of cellular proteins including transcription factors,
splicing cofactors, and DNA damage recognition
and cell cycle regulatory factors (Semmes et al.,
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Figure 3 Schematic illustration of HTLV-1 Tax nucleocytoplasmic trafficking regulated by Ub and SUMO
(1) UV induces monoubiquitination of Tax, its dissociation from nuclear body proteins and nuclear export (Gatza et al., 2007).

(2) SUMOylation targets Tax to the nuclear bodies (Lamsoul et al., 2005). (3) K63-linked polyubiquitination targets Tax to

microtubule organising center as well as nuclear bodies (Kfoury et al., 2011). Polyubiquitination is also important for targeting

the IKK signalosome to the centrosome and nuclear translocation of RelA (Kfoury et al., 2008, Nasr et al., 2006) (see text for

details).

1996; Bex et al., 1997; Haoudi et al., 2003). In
the cytoplasm, a major fraction of Tax localises to
perinuclear structures colocalising with the centro-
some or microtubule-organising center in close asso-
ciation with the cis-Golgi compartment (Nejmeddine
et al., 2005; Kfoury et al., 2008; Kfoury et al., 2011).
Using a photoconvertible fluorophore (Dendra-2)
coupled with live cell confocal microscopy, Kfoury
et al. (2011) recently showed that the same Tax
molecule can shuttle amongst Tax nuclear bodies
as well as between Tax nuclear bodies and the cen-
trosome. This dynamic shuttling is important for
its function in interaction with NEMO and activa-
tion of NF-κB (Kfoury et al., 2011). Cellular stress
such as UV irradiation induces the translocation of
Tax from TSS to the cytoplasm (Gatza and Mar-
riott, 2006; Gatza et al., 2007). The nucleocytoplas-
mic shuttling of Tax is mediated by a non-canonical
NLS at the N-terminal (Smith and Greene, 1990;
Smith and Greene, 1992; Meertens et al., 2004) and
a leucine-rich NES (Burton et al., 2000; Alefantis
et al., 2003). However, Tax also undergoes differ-
ent forms of post-translational modification, includ-

ing phosphorylation (Bex et al., 1999), acetylation
(Lodewick et al., 2009), ubiquitination (Nasr et al.,
2006; Kfoury et al., 2008) and SUMOylation (Nasr
et al., 2006; Kfoury et al., 2011), all of which are im-
plicated in its functions. Particularly, ubiquitination
and SUMOylation have been shown to be involved in
its nucleocytoplasmic trafficking (Figure 3).

Tax is modified by monoUb as well as K48- and
K63-linked Ub chains (Chiari et al., 2004; Pelo-
ponese et al., 2004; Kfoury et al., 2008). Although
K48 Ub chains lead to Tax degradation, K63 Ub
chains mediate binding to NEMO, recruitment of the
IKK signalosome to the centrosome and activation of
NF-κB (Peloponese et al., 2004; Kfoury et al., 2008).
The ubiquitination sites have been mapped to the C-
terminal lysine residues (K263, K280 and K284).
Mutating these three K residue results in a dramatic
reduction of polyUb and monoUb of Tax, whereas
the three N-terminal K residues have minimal effect
on Tax Ub (Chiari et al., 2004). Several groups have
shown that ubiquitination of Tax is associated with
its cytoplasmic localisation, although whether this
is effectuated through promoting nuclear export or
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cytoplasmic retention is still controversial (discussed
below).

Gatza et al. (2007) showed that monoUb promotes
the nuclear export of Tax in response to DNA damage
[pathway (1) in Figure 3]. Following UV irradiation,
a rapid translocation of Tax from the nucleus to the cy-
toplasm was observed. The UV-induced translocation
correlates with an increase in monoUb of Tax at K280
and K284 residues. The K280/284R double mutant
is not ubiquitinated and does not translocate to the
cytoplasm after UV treatment. Moreover, fusing a
copy of Ub to either the N-terminal or C-terminal
of Tax to mimic monoubiquitination induces nuclear
export. Interestingly, the nuclear export of the Tax–
Ub fusion protein is blocked by leptomycin B (LMB),
an inhibitor of CRM-1-dependent pathway, indicat-
ing that the Ub-induced nuclear export of Tax is still
dependent on a functional NES. The authors pro-
posed that monoUb facilitates the dissociation of Tax
from TSS in the nucleus, promoting its nuclear ex-
port (Gatza et al., 2007). Lamsoul et al. (2005) also
reported that Ub favours cytoplasmic localisation of
Tax. Overexpression of Ub results in increased cy-
toplasmic localisation of Tax, which is phenocopied
by fusing one copy of Ub to the C-terminal of the
protein. Because co-localisation between Tax and ex-
ogenously expressed Ub is observed only in the cyto-
plasm, the authors concluded that ubiquitination is
involved in the cytoplasmic retention of Tax. How-
ever, the absence of detectable co-localisation between
Tax and Ub in the nucleus does not preclude the
possibility that the ubiquitinated species are rapidly
exported out of the nucleus.

Tax is also SUMOylated on lysine residues that
overlap the Ub conjugation sites (Lamsoul et al.,
2005; Nasr et al., 2006). Ub and SUMO seem to
have opposing effects on Tax subcellular distribu-
tion. Although Ub favours cytoplasmic localisation,
as discussed above, SUMO overexpression leads to
predominantly nuclear body localisation. SUMOyla-
tion seems to be required for targeting Tax to nuclear
bodies [pathway (2) in Figure 3] because Ub/SUMO
site mutants fail to localise to nuclear speckles, and
nuclear body formation can be restored by C-terminal
fusion of SUMO but not Ub (Lamsoul et al., 2005).
Kfoury et al. (2011) showed later that Ub fusion
to the same K mutants can restore nuclear body lo-
calisation as well, suggesting that Ub can also tar-
get Tax to nuclear bodies [pathway (3) in Figure

3]. The discrepancy between the two studies pos-
sibly stems from the different cell types used (293T
cells in the Lamsoul paper versus HeLa cells in the
Kfoury paper) because the localisation of Tax is known
to be cell type dependent (Alefantis et al., 2003).
The nuclear retention induced by SUMOylation is
possibly via NES masking, in agreement with an
earlier report suggesting that the Tax NES likely
exists as a conditionally masked signal (Alefantis
et al., 2003).

Despite their opposing effect on Tax localisation,
Ub and SUMO are both required for NF-κB activa-
tion. They control critical cytoplasmic and nuclear
steps of NF-κB activation, respectively. Ubiquiti-
nated Tax binds to the IKK complex and induces
its activation, leading to the degradation of IκB and
nuclear translocation of Rel A, whereas SUMOylated
Tax recruits Rel A to Tax nuclear bodies, promoting
its complete transcriptional activation (Nasr et al.,
2006).

Besides HTLV-1 Tax, the nucleocytoplasmic traf-
ficking of a few other viral proteins has also been
linked to Ub and/or SUMO. Examples are listed in
Table 2 and will be briefly discussed below.

DNA viruses
Adenovirus type 5 E1B-55K protein
The 55 kDa phosphoprotein encoded in early re-
gion 1B (E1B-55K) from adenovirus type 5 (Ad5)
is required for efficient viral DNA replication, se-
lective viral late mRNA nuclear export and inacti-
vation of the tumour suppressor protein p53 (Berk,
2005). E1B-55K shuttles between the nuclear and
cytoplasmic compartments. It possesses a C-terminal
NLS and an N-terminal leucine-rich NES (Krätzer
et al., 2000). In addition, nucleocytoplasmic traf-
ficking may also involve covalent conjugation of
SUMO1, which appears to facilitate efficient nuclear
import and/or subnuclear targeting. Overexpression
of SUMO1 in transformed rat cells expressing E1B-
55K causes the accumulation of E1B-55K at defined
subnuclear structures, whereas arginine substitution
of the major SUMOylation site, K104, results in a
defect in nuclear import and accumulation in cyto-
plasmic inclusions (Endter et al., 2001).

SUMOylation also seems to be involved in reg-
ulating the nuclear export of E1B-55K. The nu-
clear export of E1B-55K is mediated by CRM-1-
dependent and -independent pathways. Inactivation
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Table 2 Nucleocytoplasmic trafficking of viral proteins regulated by Ub and/or SUMO

Protein Major functions Ub regulation SUMO regulation References

Ad5 E1B-55K Viral replication, viral
mRNA export,
inactivation of p53

Not examined SUMO is involved in targeting
E1B-55K to subnuclear
structures. SUMOylation
also negatively regulates
nuclear export by
promoting nuclear
retention.

Endter et al., 2001;
Kindsmüller et al., 2007

BPV E1 Viral replication Free E1 is readily degraded via
Ub-mediated proteasomal
degradation. It is stabilised
when bound to cyclin E/Cdk2.

SUMOylation is potentially
involved in nuclear
import/export

Rangasamy et al., 2000;
Malcles et al., 2002;
Rosas-Acosta and
Wilson, 2008

EBV EBNA3C Viral latent antigen Not examined SUMO-3 modification might
be involved in localisation to
nuclear dots

Rosendorff et al., 2004

HTLV-1 Tax Viral replication, T-cell
transformation

In response to DNA damage, Tax
is monoubiquitinated on K280
and K284, inducing nuclear
export. Ub may also favour
cytoplasmic localisation by
promoting cytoplasmic
retention.

SUMO is important for
targeting Tax to nuclear
bodies, and it promotes its
nuclear retention

Lamsoul et al., 2005;
Gatza et al., 2007;
Kfoury et al., 2011

NiV Matrix Viral assembly and
budding, possible
nuclear functions

Ubiquitination on a lysine residue
within the NLS is important for
nuclear export. Ub might also
be involved in membrane
targeting and budding of NiV
matrix.

Not examined Wang et al., 2010

of CRM-1-dependent pathway by mutating the NES
or LMB treatment causes redistribution of the vi-
ral protein from the cytoplasm to the nucleus and
its accumulation at the viral replication centers, sug-
gesting that CRM-1 is a major export receptor. How-
ever, this nuclear restriction is relieved by concurrent
mutation of the SUMOylation site, suggesting that
deconjugation of SUMO1 allows nuclear export via
CRM-1-independent pathways (Kindsmüller et al.,
2007). The authors proposed that SUMO facilitates
nuclear retention of E1B-55K, thus negatively regu-
lating nuclear export.

Bovine papillomavirus E1 protein
The E1 protein of papillomaviruses (PV) is the major
initiator protein for viral DNA replication and plays
important roles in the establishment of stable episo-
mal viral genomes in the host cell nucleus (Wilson
et al., 2002). Similar to E1B-55K, the E1 protein of
bovine papillomavirus (BPV) has been shown to be
SUMOylated by host cell machinery, although the
role of SUMOylation in the intracellular distribution
of BPV E1 is controversial (see below). SUMOyla-

tion of BPV E1 is possibly mediated through the
host SUMO conjugating enzyme Ubc9 and PIAS
family E3 SUMO ligases (Rangasamy and Wilson,
2000; Rosas-Acosta et al., 2005). SUMOylation on
lysine residue 514 seems to be important for nu-
clear targeting. In transfected COS-1 cells, although
wild-type E1 accumulates in intranuclear foci in ad-
dition to diffused nucleoplasmic distribution with
little or no cytoplasmic staining, the SUMO site mu-
tant K514R as well as the Ubc9-binding defective
mutants are unable to localise to the nucleus (Ran-
gasamy and Wilson, 2000; Rangasamy et al., 2000).
However, Fradet-Turcotte et al. (2009) found that in
C33A cells, the nuclear localisation of the E1 pro-
teins of human papillomavirus (HPV) 11, HPV16
and BPV is independent of SUMOylation. These au-
thors showed that HPV11 E1 binds to Ubc9 similar
to BPV E1, as reported previously, but the nuclear ac-
cumulation of HPV11 E1 is not affected by mutations
that weaken Ubc9 binding and by inhibition of the
SUMO pathway using a SUMO-activating enzyme
inhibitor Gam1, a dominant negative version of Ubc9
or shRNA depletion of Ubc9 (Fradet-Turcotte et al.,
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2009). Quite surprisingly, the authors also found that
contrary to the previous report by Rangasamy et al.
(2000), the SUMOylation site mutants of BPV E1 are
not defective in the nuclear localisation in C33A cells
(Fradet-Turcotte et al., 2009). Interestingly, another
report by Rosas-Acosta et al. (2005) suggested that
SUMOylation might mediate nuclear export of BPV
E1 by enhancing its interaction with CRM-1 (Rosas-
Acosta and Wilson, 2008). According to this report,
the non-SUMOylatable mutant is almost exclusively
nuclear and is more enriched in close proximity to
the nuclear envelope as compared with the wild-type
form, supporting a role for SUMO in the intracellular
distribution of BPV E1 albeit different from the one
previously suggested (Rangasamy et al., 2000).

Epstein–Barr virus proteins
Epstein–Barr virus (EBV) is a human gammaher-
pesvirus that has been associated with a variety of
cancers (de Oliveira et al., 2010). Multiple proteins
encoded by EBV have been shown to be modified
by Ub or SUMO, including Rta, Zta and Epstein–
Barr virus nuclear antigen (EBNA) 3C, but a role for
Ub/SUMO in regulating the cellular localisation of
these proteins has not been established in most cases
(see below).

Rta and Zta are two immediate early proteins that
mediate the switch between the latent and lytic forms
of EBV infection (Speck et al., 1997). SUMO-1 mod-
ification of Rta by the E3 ligases PIAS1 and RanBPM
enhances its transactivation activity, although the ef-
fect of SUMO-1 on the subcellular localisation of Rta
was not examined in these studies (Chang et al., 2004,
2008). Rta can also be modified by SUMO2/3 in the
presence of viral protein LF2. LF2 binding induces
the translocation of Rta from the nucleus to the cyto-
plasm and represses its activity, but this redistribu-
tion of Rta seems to be independent of its SUMOyla-
tion (Calderwood et al., 2008; Heilmann et al., 2010).
Similarly, Zta can be modified by SUMO-1, 2 and 3,
but in contrast to Rta, SUMO-1 modification of Zta
seems to repress its transactivation activity (Adam-
son and Kenney, 2001; Adamson, 2005; Hagemeier
et al., 2010). SUMOylation does not seem to play a
role in the subcellular localisation of Zta because its
localisation pattern remains unaltered when SUMO-
1 is overexpressed or when its SUMO-1 conjugation
site is mutated (Adamson, 2005; Hagemeier et al.,
2010).

EBNA3C is a viral latent antigen involved in pri-
mary B cell transformation by EBV (Saha et al.,
2009). Rosendorff et al. (2004) found that EBNA3C
is modified by SUMO2/3. SUMO-3 modification
might be involved in the subnuclear localisation
of EBNA3C because the wild-type protein localises
to nuclear dots, whereas truncation mutants defec-
tive in SUMO-3 conjugation exhibit diffused lo-
calisation patterns in the nucleus. However, the
SUMOylation site in EBNA3C has not been pin-
pointed and a definitive role for SUMO-3 in the
subnuclear targeting of ENBA3C is yet to be
confirmed.

LMP2A, a transmembrane protein expressed dur-
ing EBV latency, was found to be ubiquitinated
by Nedd4 family ubiquitin E3 ligases on amino
terminal non-lysine residues (Ikeda et al., 2002).
This modification affects protein stability (Ikeda
et al., 2001), but its functional relevance is not
clear.

Immediate early proteins of other herpesviruses
Besides EBV, the immediate early proteins of a few
other human herpesviruses (HHVs) have been shown
to be modified by SUMO, including the K-bZIP
protein of Kaposi’s sarcoma-associated herpesvirus
(KSHV) (Izumiya et al., 2005), the IE1 and IE2
proteins of human cytomegalovirus (HCMV) (Hof-
mann et al., 2000; Ahn et al., 2001, Spengler et al.,
2002; Nevels et al., 2004) and the IE1 protein of
human herpesvirus 6 (HHV-6) (Gravel et al., 2004).
SUMOylation modulates the substrate protein’s tran-
scriptional activation or repression function in some
cases (e.g. KSHV K-bZIP and HCMV IE2); however,
in all cases examined, SUMO does not seem to affect
the subcellular localisation of the substrate protein
(Hofmann et al., 2000; Ahn et al., 2001; Spengler
et al., 2002; Nevels et al., 2004; Gravel et al., 2004;
Izumiya et al., 2005).

Negative-stranded RNA virus
Most negative-stranded RNA viruses replicate in the
cytoplasm, and there is no nuclear stage required to
complete the viral life cycle (Griffin et al., 2007).
However, both non-structural and structural pro-
teins of these cytoplasmic viruses have been shown
to translocate to the nuclear compartment. Examples
include the matrix protein of the vesicular stomati-
tis virus (Petersen et al., 2000), the W proteins of
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Figure 4 Proposed model for NiV matrix protein (NiV M) nucleocytoplasmic trafficking
(1) NiV M translocates to the nucleus in an NLS-dependent manner. (2) NiV M is ubiquitinated via an unknown mechanism. (3)

Ubiquitination of M promotes its nuclear export via an NES-dependent mechanism. Ubiquitination of M may also be important

for its membrane targeting and budding, although the mechanism is currently unclear (Wang et al., 2010).

paramyxoviruses (Shaw et al., 2004) and the matrix
proteins of several paramyxoviruses (Yoshida et al.,
1976; Peeples et al., 1992; Ghildyal et al., 2003). The
nuclear translocation is usually associated with host
antagonistic activities of these viral proteins to facil-
itate viral replication (Petersen et al., 2000; Ghildyal
et al., 2003; Shaw et al., 2005).

We recently demonstrated that the matrix pro-
tein of Nipah virus (NiV), a lethal member of the
family Paramyxoviridae, shuttles between the nuclear
and cytoplasmic compartments (Wang et al., 2010).
During live NiV infection, the matrix protein is first
found in the nucleus of infected cells before it lo-
calises to cytoplasmic and plasma membrane loca-
tions at later time points. The nucleocytoplasmic
trafficking of NiV matrix is regulated by ubiquiti-
nation in addition to its bi-partite NLS and leucine-
rich NES (Figure 4). Ub depletion by proteasome in-
hibitors including MG132 and bortezomib restricts
matrix to the nucleus, which is phenocopied by mu-
tating the putative ubiquitination site (K258) from
lysine to arginine. Moreover, fusing a copy of Ub to
mimic monoubiquitination restores nuclear export to
the K258R mutant, supporting the hypothesis that
monoubiquitination of matrix promotes its nuclear
export. However, our current data are also compati-

ble with an alternative model in which ubiquitination
inhibits nuclear import of the protein, favouring cy-
toplasmic retention. Further investigation is needed
to distinguish between these two possibilities. We
also showed that nuclear translocation of NiV ma-
trix is functionally correlated with matrix-mediated
viral budding. The ubiquitination site mutants are
defective in plasma membrane targeting and viral
budding, implying a potential role of ubiquitination
in these processes.

Very interestingly, sequence alignment of matrix
proteins from viruses across Paramyxoviridae reveals
that the putative Ub site in NiV (K258) is absolutely
conserved in all viruses examined (Table 3). Previous
studies as well as our own research have shown that
NiV matrix is by no means the only paramyxoviral
matrix protein to translocate to the nucleus. The ma-
trix proteins of Sendai virus (Yoshida et al., 1976),
Newcastle disease virus (Peeples, 1988; Peeples et al.,
1992), human respiratory syncytial virus (Ghildyal
et al., 2003), mumps virus, Hendra virus and tupaia
paramyovirus (last three are our unpublished data)
all exhibit nuclear localisation under viral infection
or cell transfection conditions. It would be interest-
ing to test whether the nucleocytoplasmic traffick-
ing of other paramyxoviral matrix proteins might
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Table 3 Sequence alignment of matrix proteins of different paramyxoviruses

Nipah virus              GNFVR--RAGKYYSVDYCRRKIDRMK
Hendra virus             GNFVR--RAGKYYSVEYCKRKIDRMK
Tupaia paramyxovirus     GNFVR--KGGDVYSNSYCKKKIDRMD
Measles virus            GNFRR--KKSEVYSADYCKMKIEKMG
Canine distemper virus   NFCR--KKNQAYSADYCKLKIEKMG
HPIV-1                   GIIRR--KVGKIYSVEYCKNKIEKMK
Sendai virus             GLIRR--KVGKIYSVEYCKSKIERMR
HPIV-3                   GLIKR--KVGRMYSVEYCKQKIEKMR
Mumps virus              CNLCKGRNKLRSYDENYFASKCRKMN
Tioman virus             CNLYRGNKPFKAYDDTYFSQKCRAMQ
Simian virus 41          CNILKNKKIKQRGVDSYFSSKAISMQ
Newcastle Disease virus  LMTTVDRKGKKVTFDKLEKKIRSLD

Henipavirus

Morbillivirus

Respirovirus

Rubulavirus

Avulavirus

Unassigned

Genus Species Matrix  protein 

G

G

The matrix protein sequences of 12 viruses from different genera within the family Paramyxoviridae were aligned using CLUSTAL W (version
1.83). Positively charged amino acid residues that conform to the consensus for bipartite NLSs are coloured green. The red arrow points to
the lysine residue conserved amongst all 12 viruses (Wang et al., 2010).

also be regulated by ubiquitination similar to NiV
matrix.

Conclusions and perspectives
The nucleocytoplasmic trafficking of many cellular
proteins is regulated by post-translational modifi-
cations including ubiquitination and SUMOylation
in addition to their endogenous NLSs and NESs,
as discussed above. However, although the role of
Ub/SUMO in regulating the intracellular localisation
and functions of cellular proteins has been well estab-
lished, to our knowledge, their involvement in viral
protein trafficking remains largely unknown, with
the exception of only a few examples (e.g. HTLV-
1 Tax, Ad5 E1B-55K, BPV E1 and NiV matrix).
Nevertheless, these past few years have witnessed
a fast-growing list of viruses that utilise the host’s
Ub/SUMO system to facilitate various steps of their
life cycle [for a complete review of viral takeover of
the Ub/SUMO system, readers are referred to ref-
erences Boggio and Chiocca (2006); Gustin et al.
(2011)). Therefore, targeting the Ub/SUMO sys-
tem (via either global inhibition of the pathways
or modulating the functions of individual compo-
nents such as Ub/SUMO ligases and deubiquitinat-
ing/deSUMOylating enzymes) can potentially be a
way to develop broad-spectrum antivirals. Indeed, the
US Food and Drug Administration-approved protea-

some inhibitor, bortezomib, has been shown to in-
hibit different families of viruses including Hepatitis
B virus (Hepadnaviridae) (Bandi et al., 2010), HIV
(Retroviridae) (Yu et al., 2009), vesicular stomatitis
virus (Rhabdoviridae) (Neznanov et al., 2008; Dudek
et al., 2010), influenza A virus (Orthomyxoviridae)
(Dudek et al., 2010), NiV (Paramyxoviridae) (Wang
et al., 2010), coronaviruses (Coronaviridae) (Raaben
et al., 2010; Ma et al., 2010) and orthopoxviruses
(Poxviridae) (Teale et al., 2009). However, most of
these studies have been done in in vitro models, and it
is important to evaluate the in vivo efficacy of borte-
zomib and its oral equivalents such as MLN9708
and PR-047 (Zhou et al., 2009; Kupperman et al.,
2010; Dick and Fleming, 2010) as potential broad-
spectrum antivirals.
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N., Doubeikovsky, A., Duprez, E., Pandolfi, P.P., Puvion, E.,
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