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Abstract—This article aimed to systematically review the published results of studies of psychophysiological
mechanisms of posture maintenance and identify the key factors that influence the effectiveness of postural
control. The recommendations of “Preferred Reporting Elements for Systematic Reviews and Meta-Ana-
lyzes” (PRISMA) were followed for the review. The results were classified, taking into account the target psy-
chophysiological mechanisms and factors affecting postural control. The article presents the theoretical and
empirical results of the Russian scientific school of research on the role of support afferentation in the senso-
rimotor mechanisms of cognitive and postural functions. Due to the limited number of randomized studies
found, it was impossible to make meta-analytic comparisons, so the literature analysis was carried out only
qualitatively. Meanwhile, our systematic review provides promising information about possible relationships
between stabilometric and psychological indicators of postural control, which have theoretical significance
and application in the correction and training of posture control. However, more thorough research is needed
to overcome the methodological shortcomings that we have encountered in our qualitative analysis.
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The actual works of Russian researchers aroused
interest in the psychophysiological mechanisms of
postural control. N.A. Bernstein [1] and V.S. Gurfin-
kel [2] define postural control as one of the most com-
mon examples of sensorimotor integration performed
by a feedback mechanism [3]. The very idea of the vital
role of feedback in regulating physiological functions
and psyche also arose at N.A. Bernstein’s and
P.K. Anokhin’s Russian physiological school [4, 5].
Impairment of the feedback mechanism between
afferentation, information processing, and opera-
tional units of sensorimotor integration underlies most
mental disorders [6, 7]. As early as ancient times, the
interrelationship between mental disorders and
impaired postural control [7]. However, empirical
data that would provide evidence for the interrelation-
ship between postural and psychological characteris-
tics of a person under normal conditions is insuffi-
cient, to say nothing of few works devoted to the psy-
chophysiological mechanisms of postural control. In
the meantime, the study of the relationship between
the peculiarities of motor control and psychological
parameters is also of practical relevance to the devel-
opment of brain-computer interfaces and biocontrol
technology, the efficiency of which largely depends on

the personal parameters of motor and cognitive
capacities.

The next surge of interest in the study of postural
control also occurred in the Soviet physiological
school in the 60s of the past century due to the devel-
opment of research into the effects of zero gravity (the
absence of gravitational stimuli) on a human body [8].
The works supervised by I.B. Kozlovskaya have shown
for the first time that the long-term lack of feedback
from foot support zones has dramatic consequences
for all physiological processes [8, 9]. At the same time,
a unique role is given to support afferentation (feeling
underfoot support). The weakening of feedback from
baroreceptors of the foot can cause numerous disor-
ders, beginning from impaired biosynthesis of the
structural proteins of muscle tissue [10] to the pathol-
ogy of the entire musculoskeletal system [11, 12], the
cardiovascular respiratory [9], endocrine [13] and
other vegetative systems [14]. For example, the study
of the organization of the sensorimotor system of pos-
tural control resulted in the appearance of new terms:
“gravitational mechanisms” and “support afferenta-
tion” [8], as well as the development of the concepts of
afferent control of locomotion [8, 12], biomechanical
studies of the system of internal representation in
locomotion control by Yu.A. Levik et al. [15], and the
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theory of “redistribution of attention” (reweighting)
between different types of afferentation in postural
control by R. Peterka [16]. Later on, to overcome the
consequences of deficit of support afferentation, the
prospects of using stimulation of the support areas of
the sole, either instrumentally (with the equipment
designed at the Institute of Biomedical Problems,
Moscow) [17] or by training the feeling of support in
the anterior part of the foot by the targeted techniques
of Aikido [18] or dances [19] have been shown, which
is accompanied by improvement of not only postural
but also cognitive and psychoemotional functions [18,
19].

Investigation of the support afferentation role in
psychophysiological health has gained new relevance
with modern information technologies presupposing
the application of more and more electronic gadgets in
everyday life, which leads to reduced physical activity
and alteration of the pattern of cognitive activity [20].
In addition to the negative consequences of a seden-
tary lifestyle, prolonged sitting per se causes the
impartment of physiological and cognitive [21] and
afferent functions [20—23]. At the same time, it is also
necessary to take into account the adverse effects of
high-frequency electromagnetic waves emitted by
electronic devices and gadgets [24], which are also
associated with cognitive and psychoemotional disor-
ders and even with the appearance of depressive symp-
toms already in childhood and adolescence [24].
Thus, the problem of postural control disorders as a
result of weakened support afferentation of a sedentary
lifestyle gains particular relevance.

The current relevance of studying the psychophys-
iological mechanisms of postural control is also deter-
mined by the necessity to predict the risk of falling and
correct balance in older adults, the relative number of
which has steadily increased over the past 20 years
[25].

Finally, in the years of the COVID-19 pandemic, a
new relevance of studying the interrelationship
between postural control and cognitive/afferent func-
tions has appeared due to, first, social isolation result-
ing in a sedentary lifestyle and, second, the rising
prevalence of depression as a neurophysiological com-
plication of the coronavirus disease [26].

Thus, the relevance of studying the psychophysio-
logical mechanisms of postural control is dictated,
firstly, by the task of identifying stabilometric indices
of cognitive and psychoemotional functions and, sec-
ondly, by the search of instrumental approaches to
prediction, diagnosis, and rehabilitation of mental
disorders via the study of stabilometric measurements
of postural control.

The first part of the review presents the stabilomet-
ric characteristics of postural control, the studies of
the relationship between postural and psychological
factors, where particular attention has been focused on
the role of different inputs in the mechanisms for
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maintaining the equilibrium. The roles of dual pos-
tural—cognitive and postural—psychomotor tasks in
balance maintenance and possible neurobiological
mechanisms of postural stability under normal condi-
tions have been assessed.

Since the works of Russian scientists have made a
weighty contribution to the study of psychophysiolog-
ical correlates of postural control, the present review
will increase the international prestige of the Russian
scientific school.

For reviewing the studies devoted to the psycho-
physiological mechanisms of postural control, litera-
ture data were searched by the following keywords:
“postural control,” “sensorimotor integration,” sed-
entary lifestyle,” “gravitation,” “support,” “vestibu-
lar,” “proprioceptive” and “visual” “afferentation,” in
combination with the keywords such as “cognitive
functions,” “memory,” “attention,” “decision mak-
ing,” “imagination,” “emotions,” “fine motor skills,”
“dual tasks,” “anxiety,” “depression,” “stabilometry,”
“Electroencephalography,” and “Electromyography”
(Table 1). Literature was searched in the Web of Sci-
ence, PubMed, Scopus, and RSCI databases according
to the recommendations of “Preferred Reporting
Items for Systematic Reviews and Meta-Analyses”
(PRISMA) and using the methods described in REL-
ISH (RElevant Llterature SearcH) [27]. The present
review includes the results published in the articles
with a Digital Object Identifier (DOI), completely cor-
responding to the keywords (Table 1), except for those
published only as abstracts.

After removing the repeating references, the lists of
the studies were checked; the summaries of keyword
search results are presented in Tables 2—4, respec-
tively.

Stabilometric Measurements of Postural Control

The weighty contribution of the Russian scientific
school was made at the very beginning of postural
control studies for the objectification of the measure-
ments of postural stability. According to the recom-
mendations of the International Consensus on pos-
tural control measurements [27] established based on
“Research Methods to Evaluate Standing Stability”
developed in 1952 by Russian scientists [28], the effi-
ciency of the balance maintenance system is assessed
by measuring oscillations in the foot plantar center of
pressure (COP) relative to the center of gravity (CG)
[29]. These variations reflect the movements of body
segments or joints, muscle activity, the movements
associated with respiration [30], and the work of the
cardiovascular system [31]. Thus, previous evaluation
of postural stability by the results of clinical tests was
supplemented by instrumental measurements of the
amplitude and frequency of CG and COP oscillations
in the anterior-postural (COP_AP) and medial-lateral
directions (COP_ML) using stabilographic devices
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Table 1. The search strategy for the psychophysiological correlates of stabilometric characteristics of postural control

in the MEDLINE system
Position no. Keywords Number of data sources
1 Posture AND control AND Stabilometry OR posturography 2014
2 Combination #1 AND vestibular 31
3 Combination #2 AND cognitive AND task AND performance
4 Combination #2 AND attention 3
5 Combination #2 AND memory
6 Combination #2 AND affective 10
7 Combination #1 AND visual 102
8 Combination #7 AND cognitive 35
9 Combination #7 AND attention 5
10 Combination #7 AND memory
11 Combination #7 AND affective 2
12 Combination #1 AND gravity 92
13 Combination #12 AND attention
14 Combination #12 AND memory 0
15 Combination #12 AND emotion 0
16 Combination #12 AND cognitive AND task AND performance
17 Combination #1 AND muscles 256
18 Combination #17 AND cognitive task 15
19 Combination #17 AND emotion 5
20 Combination #17 AND memory
21 Combination #1 AND proprioceptive 0

[28, 30]. Later it was established that COP_AP is the
most sensitive index of the fear of falling and situa-
tional anxiety [32].

The spectral analysis of postural fluctuations made
it possible to establish at least two frequency systems of
postural stability, which were named, in the figurative
language of Russian scientists from Gurfinkel’s labo-
ratory, as “conservative” (below 2 Hz) [33] and “oper-
ative” (above 4 Hz) [15]. Later, Yu.S. Levik et al. [15]
showed that the relatively high-frequency COP oscil-
lations did not affect the value of CG variations [15,
29]. COP oscillations with the frequencies below and
above 1 Hz demonstrate the opposite effect on the
reflexes and EMG activity of m. soleus while standing
[34]. The effects of experimental conditions on the
maintenance of upright posture were assessed by ana-
lyzing the changes in the median frequency (MF) and
the root-mean-square value of amplitude spectra
(RMS) in the ranges of 0—0.5 Hz for the CG variable
and 0—3.0 Hz for the COP—CG variable. Thus, the
recent studies by G.V. Kozhina et al. have shown that
COP with frequencies above 0.5 Hz has almost no
effect on the values of CG fluctuations and does
not depend on the anthropometric parameters of sub-
jects [35].

The evidence of the coexistence of the two systems
of balance maintenance was provided by the studies of

HUMAN PHYSIOLOGY  Vol. 48

No.2 2022

zero gravity at the Russian School of Aerospace Med-
icine [29], in the differential diagnostics of vestibular
disorders [36], as well as by using the theoretical
model of B.W. Dijkstra et al. [37]. It has been shown
that the ability to maintain balance persists during the
short-term absence of gravity (zero gravity);. How-
ever, the conservative (tonic) system of balance main-
tenance is immediately impaired, the voluntary pos-
tural control takes effect [29]. This fact indicates two
different types of postural control effective on differ-
ent time scales, which is evidence of the weighty con-
tribution of the cognitive component to postural con-
trol [38]. Later, statistical analysis revealed three types
of COP oscillation dynamics correlating with psycho-
physiological indices [29, 38]. For example, the peak
in the range of 3—5 Hz is a signal for the presence of
Parkinson’s tremor [39]. Inclusion of the center of
mass in analyzing the balance maintenance system
proposed first by Russian [27]. Then Japanese [40, 41]
researchers make it possible to study the dependence
of postural control on the factors such as age [37, 41]
and respiration [41].

Since the system of postural control cannot be
described as a linear system, in recent years, stabilo-
graphic information has been analyzed by the methods
of nonlinear dynamics, in particular, calculations of
correlation dimension, Lyapunov exponents of Shan-
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non—Kolmogorov—Klimontovich entropy, and regu-
larity of COP movement [39, 42, 43]. Such analysis
makes it possible to assess the role of the cognitive
component of postural control [42, 43]. One of such
integral indices, the energy expenditure for COP oscil-
lations developed by French [44] and Russian [45]
researchers, is calculated as a sum of the increments of
kinetic energy (in Joules) (£) determined by the
change in the rate of displacement of the center of
pressure at each discrete section of statokinesiogram
(SKG) during the test. This index quantifies the func-
tional activity required to maintain postural stability
[44, 45]. At present, computer technologies have
been developed to measure postural stability by stabi-
lometric [46] analysis, which can be performed
even with smartphones [47]. Here, it has been shown
that the measurement of the velocity of COP oscilla-
tions is preferable compared to accelerometric param-
eters [48].

Psychophysiological Correlates of Postural Control

Upright posture control is one of the essential evo-
lutionally significant human functions presupposing
the involvement of the higher nervous system [49]; the
latter’s functions are based on the laws of self-regula-
tion with the participation of feedback [I, 35].
Throughout the past 100 years, numerous reviews and
empirical research have been devoted to studying
human postural control’s kinetic and biophysical
mechanisms [50—52]. However, how postural stabilo-
metric characteristics are associated with the psycho-
physiological correlates of cognitive and psycho-emo-
tional activity efficiency has not been sufficiently
investigated. The available works are more often
devoted to discussing neurological consequences of
impaired postural characteristics; the data on the
involvement of higher nervous activity in the biophys-
ical mechanisms of balance maintenance is presented
to a lesser extent [53, 54]. In the meantime, successful
relationships between humans and the environment
are associated not only with the efficient perception of
signals from the visual, vestibular, proprioceptive, and
baroreceptor systems, which determines automatic
stabilization of the body at rest and in motion [55] but
also with the accuracy of the internal representation of
the body position in space, cognitive assessment of the
structure, sizes and movements of objects of the exter-
nal world [35]. Suppose one or several of these systems
are impaired due to aging or neurological disease. In
that case, the postural control system must correct the
relative weight coefficients of input data to maintain
balance [16, 36].

The relationship between psychophysiological and
stabilometric indices of balance maintenance is given
in Table 2 by sections according to the modality of sen-
sory afferentation. Separately, Table 2 presents the
results of studying the paradigms of dual cognitive- or
motor-postural tasks.
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The role of visual afferentation in psychophysiological
mechanisms of postural control. The visual system
involved in the solution of the task of posture stabiliza-
tion, participating in assessing the value, rate, and
direction of COP oscillations [29, 57] (Table 2). It
means that the role of visual afferentation increases in
case of violation of the stationarity of the visible envi-
ronment [29, 57], which, in turn, explains that visual
inputs are more significant for postural control than
postural control vestibular or proprioceptive ones [57,
58]. O.V. Kazennikova et al. [59] show that the balance
maintenance system can ignore the signals bearing
inadequate or ambiguous information. In the case of
the multiple repeated measures with perturbation of
an equilibrium state, the stability parameters
approached the values of regular standing with eyes
open [60]. Therefore, the authors supposed that
improving the quality of standing in case of consecu-
tive repeated measures of the same type results from
training in the more effective use of visual feedback.

The assessment of visual activation in the Romberg
test, which has been used for 150 years, shows abnor-
malities associated with postural control deficits of
neurological [61] and cognitive [62] genesis. On the
one hand, the presence of central vision allows one to
combat fatigue more rapidly [63]; on the other hand,
V. Nougier et al. have shown that it makes no differ-
ence for balance maintenance whether the central or
peripheral vision is used [64]. This contradiction is
compromised by the studies of B.N. Smetanin et al.
have shown that central vision exerts a greater effect on
the control of frontal plane motion under the condi-
tions when somatosensory information is insufficient;
peripheral vision under the same conditions exerts a
greater impact on the power of oscillations in the sag-
ittal plane [56].

It is evident that visual effects, including nonspe-
cific ones, are implemented mainly via the regulation
of musculo-articular stiffness (first of all, in joints of
the lower limbs) [65] and are mediated by changes
either in the tonic contraction of the respective pos-
tural muscles or in the role of vestibular and (or) pro-
prioceptive subsystems of posture regulation, the
impairment of which is also associated with depressive
disorders [66]. However, the results presented in these
works only indirectly confirm the above assumption.
At the same time, R. Peterka [16] has shown that
human response to body oscillations is based on a rel-
atively simple feedback mechanism with the linear
combination of weighted sensor scales. Here, the
quantitative estimates of sensor scales vary depending
on the availability of sensory information from the
visual or proprioceptive system and the amplitude of
perturbations caused by the visual environment or
platform inclinations. The works of B.N. Smetanin
has shown that visual afferentation is not obligatory for
balance maintenance and plays only the modulating
role of the quality of stability, which is of interest in
this context [58]. The explanation of the above lies in
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the feedback mechanism and in the proactive control
determining the capability of a person to assess the
pattern of future changes and to be promptly rear-
ranged [5, 67], which demonstrates an essential con-
tribution of the cognitive component to the depen-
dence of postural control on visual afferentation. Here
we should add the evidence obtained by C. Lions et al.
and by B.N. Smetanin: the amplitude of COP oscilla-
tions under the conditions of visual cognitive task is
much less than under conditions of free viewing of a
picture [68] or does not depend [58] on the complexity
of visual feedback in young, healthy subjects. At the
same time, other studies have established that the
presence of visual feedback about oscillations of the
body had a positive effect on maintaining posture in
the tests with both young and elderly subjects [69]. To
explain the differences between the findings, we
should interpret the process of integration of several
sensory inputs from proprioceptors and baroreceptors
(first of all, from the lower limbs and feet) and vestib-
ular organs, on the one hand, and from eye receptors
and extraocular muscles, on the other hand. In the
opinion of B.N. Smetanin, the key difficulty of such
study is as follows: the proprioceptive signal flux and
support afferentation carry information adequate to
the real spatial position of the body, while the visual
flux, as a result of the considerable contribution of
cognitive modulation, has distorted information [58].

The role of vestibular afferentation in psychophysio-
logical mechanisms of balance maintenance. Most
reviewed studies demonstrate the involvement of the
vestibular system in cognitive and emotional func-
tions, which are seemingly far from the functions such
as spatial orientation or postural control [70]
(Table 3). The answer to the question of how the mod-
ulation of vestibular signals changes the efficiency of
solution of cognitive tasks such as mental spatial imag-
ery or number processing [71], or affective functions,
is provided by the results of studies related to the
change in orientation of the body (rotation of the
body), clinical observations of patients with vestibular
disorders [53], as well as the studies performed under
conditions of microgravity [72]. The effect of descend-
ing cognitive and psychoemotional processes on the
perception of vestibular stimulation, i.e., postural
control disorders, is also investigated [73]. The results
of these studies demonstrate that the changes in ves-
tibular afferentation are accompanied by the shift in
the mental representation of parts of the body [74],
mood [75], tactile and pain perception [70].

Z. Kapoula et al. [76] supposed that external sound
stimulation in the case of tinnitus affects COP oscilla-
tions due to the activation of the attention switch.
Another possibility is the weak integration of senso-
rimotor signals and/or poor interhemispheric com-
munication.

BAZANOVA, KOVALEVA

Thus, the role of cognitive processes in balance
regulation due to the changes in the vestibular input
can be considered proven.

The role of proprioceptive afferentation in psycho-
physiological characteristics of postural control. Various
experimental approaches have demonstrated the
effects of proprioceptive inputs on psychological func-
tions in literature (Table 2). For example, in the case of
voluntary changes in muscle tone caused by a static
posture (e.g., “right side bend”), COP oscillation is
corrected in the frontal and sagittal planes [29, 77].
Yu.P. Ivanenko et al. varied the direction of support
movement. They applied the vibration of lower leg
muscles to subjects standing on a shaking platform
mobile in the sagittal, frontal, or both directions. Pos-
tural responses were present only on the supports that
were stable in the sagittal direction. Thus, it can be
assumed that the direction of postural instability
influences the reaction of proprioceptors of talocrural
muscles only in the sagittal direction [78]. However, it
is unclear whether this disturbance of stability is spe-
cific or nonspecific, targeted at weakening proprio-
ceptive effects of the ankle joint muscles.

Hypodynamia, the work with a computer under
nonergonomic conditions, psychoemotional over-
loads come first among the causes of functional disor-
ganization of muscle tone, as it occurs in case of weak-
ened leg support [79] and, accordingly, impaired pos-
tural control [17]. The role of support afferentation in
the weakening of muscle tone has also been proven by
the studies of dry immersion and experiments with
animals [80].

Despite the well-known interaction between sen-
sory and motor systems in balance maintenance and
the possibility of training postural muscles [81],
the process of triggering muscle reactions opposing
natural postural instability has not been completely
elucidated. Moreover, it is unclear why the perfor-
mance of a cognitive or psychomotor task does not
decrease but even increases postural stability in some
groups of healthy subjects [82] and patients with
depression [83].

The role of tactile sensations in psychophysiological
characteristics of balance maintenance. It is known that
the visual and vestibular inputs demonstrate the ability
to play a dominant role in postural control; however,
the role of tactile signals has recently also raised inter-
est. Some works [84, 85] showed the postural control
mechanism, where COP oscillation parameters
changed without the modulating effect of propriocep-
tive, visual, or vestibular receptors. Therefore, an
additional receptor system has been proposed, which
seems to depend on tactile sensations and to be associ-
ated with disorders of the musculoskeletal system [84,
85]. It has been established that a light (i.e., “unsup-
ported”) touch of a finger or forearm skin reduces pos-
tural fluctuations, even even though the forces of con-
tact were much lower than those necessary for provid-
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ing mechanical support [84—86]. It presupposes that
the tactile signals from finger or forearm skin can be
combined with other sensory information in the CNS,
providing different spatial orientations in posture sta-
bilization [85].

The role of support afferentation in the psychophysio-
logical mechanisms of postural control. It is known that
upright body position results from human evolution in
phylogenesis [87]. Maintaining an upright position
presupposes overcoming the force of gravity and, con-
sequently, postural activity iS an unconscious opera-
tional background for any locomotive and cognitive
acts. It is supposed that walking upright during evolu-
tion resulted first in the transformation of the lower
limbs and caused the formation of a highly specialized
human foot [87], which had lost the grasp function
and turned into one powerful lever. In the upright pos-
ture, the main load falls on the big toe [88], which,
though it had lost its mobility typical of other pri-
mates, began to play the crucial role in support affer-
entation together with the frontal part (pad) of the
foot. Second, the walking on two limbs made it possi-
ble to free the upper limbs and transform them into an
organ of labor—arms with hands that became capable
of precision grasping and complex work activity.
Third, as a consequence of the participation of
humans in work activity, it became necessary to solve
problems and to plan tasks, which caused the develop-
ment of the cerebral cortex, the number of nerve cells
increased, their arrangement changed, and the num-
ber of network architectures also increased [89].

Thus, walking upright became the cause of the for-
mation of a highly developed brain capable of per-
forming, together with the inclusion of evolutionally
new support afferentation into the arrangement of bal-
ance maintenance system, cognitive functions such as
abstract thinking and planning [90]. Based on the
above, it can be supposed that support afferentation is
involved in the balance maintenance system and has
an effect on cognitive functions.

In recent classical works, B.S. Shenkman and
I.B. Kozlovskaya [79, 91] have generalized the data to
assess the relevance of support afferentation studies
using a “dry” immersion model. These studies have
contributed considerably to the study of support affer-
entation in physiology, from cellular responses of pos-
tural muscle to psychological characteristics of human
behavior. It has been established that removing leg
support inactivates the pool of slow motor units, which
leads to selective inactivation and subsequent atony
[11] and the atrophy of muscle fibers expressing the
slow isoform myosin heavy chain (which comprises
most of the soleus muscle fibers). The fibers that have
lost a significant portion of cytoskeleton molecules are
incapable of effective actomyosin motor mobilization,
which leads to low calcium sensitivity [92] and a nar-
row range of maximum tension [93]. The absence of
support also leads to a decrease in the efficiency of
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protective mechanisms (nitrogen oxide synthetase)
and a reduction in the activity of AMP-activated pro-
tein kinase, which triggers regeneration processes [94].
It is essential that the stimulation of support zones
mitigates the effects of weakened support afferentation
by repairing neural progenitor cells in the hippocam-
pus and maintaining the activity of the central extra-
cellular signaling pathway, which regulates prolifera-
tion, differentiation, apoptosis, stress response, and,
ultimately, survivability [95, 96].

The analysis of stabilometric measurements of
COP oscillations has shown that, even though the
COP oscillation amplitude is more significant in the
standing position of the body compared to the sitting
position, COP oscillation trajectories are more regular
(the lower entropy) in the sitting position compared to
the upright position [84]. Based on the above, it can be
supposed that regularity measures can be used to esti-
mate the contribution of the cognitive component
(attention) to postural control [90]. The greater atten-
tion to postural control in the standing position than
the sitting position suggests an answer to the interest-
ing question of why musicians’ quality of musical per-
formance is higher in the upright position than in the
sitting position [97, 98]. It seems to be associated with
the Bernstein principle of achieving automatism with
the fine motor skills of fingers, which releases the
maximum number of degrees of freedom necessary for
musical performance. Suppose the attention resource
is used to maintain balance in the standing position. In
that case, this part of the attention is withdrawn from
the control of finger motion, and it becomes more
automatic. Another answer to the question of why fin-
ger movements of musicians are more “free” in the
standing position than in the sitting place is the theo-
retical concept of reciprocal relationships between the
tonic tension of muscles in the upper and lower halves
of the body [51, 99]: the increased muscle tone of legs
is accompanied by the decreased tone of arm muscles
and, accordingly, by the lower energy expenditure for
balance maintenance in the standing position [97].
Both of these hypotheses suggest that the interactions
between fine motor tasks and postural-motor response
can be effectively used for rehabilitation of motor and
affective disorders [100] as an essential tool for “dis-
traction of attention from pathological dominants” in
clinical studies [44]. Thus, it can be supposed that the
study of the role of attention distribution in postural
control will allow the development of new approaches
to the prevention and rehabilitation of psychogenic
disorders.

The Role of Dual (Cognitive- or Motor- Postural) Tasks
in the Study of Psychophysiological Mechanisms
of Balance Maintenance

The role of cognitive factors, including distribution
of attention in the balance maintenance system, is
assessed using the paradigm of dual cognitive-postural
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tasks [83, 101, 102]. Healthy young people can easily
execute the tasks for maintaining balance in combina-
tion with other types of activity such as conversation or
reading. At the same time, upon addition of the cogni-
tive component, the strategy of postural control can
“contract,” i.e., the spread of COP oscillations can
decrease [103]; in other cases of dual tasks, the effi-
ciency of postural task performance can “extend,” i.e.,
become less automatic than anticipated [66]. An
example of such tasks is rock-climbing, when postural
control is predominant over the accuracy of hand
movements [104]. L. Jakobson and M. Goodale, after
performing the kinematic analysis of highly accurate
movements of hands with maintaining balance, have
come to a conclusion that decentralization between
the limitations of velocity (posed by the posture) and
the limitations of accuracy (posed by finger move-
ments) presupposes the existence of hierarchically
organized movement control center [105]. Some
authors used cognitive tasks to distract attention from
balance control, create an external focus of attention
[83], and/or investigate the direct relationship
between the regularity of COP oscillations and the
amount of attention invested in postural control [42,
43]. Other authors have shown that the training of bal-
ance stability, on the contrary, can influence the speed
of finger movements and the efficiency of cognitive
task performance [106].

It can be altogether concluded that dual (postural-
cognitive and/or postural-motor) task performance
testing is a suitable model for the study of mutual
influence between cognitive abilities and the ability to
maintain balance [83, 102] (Table 4).

Psychophysiological Mechanisms and Factors
Determining the Interrelationship between Postural
and Psychological Functions

Recently, B. Dijkstra has presented a literature
review devoted to the functional neurovisualization
measuring posture-related activity of the nervous sys-
tem in healthy subjects [70]. It is known that the criti-
cal structural nodes of human posture control are the
brainstem, the cerebellum, the basal ganglia, the thal-
amus, and several cortical areas. The meta-analysis of
probability assessment of postural activation has
shown that the anterior lobe of the cerebellum is con-
tinuously activated, modulating the activity of nuclei
of the brainstem [37]. Not only arbitrarily induced
imbalance per se but also the anticipation of body per-
turbation activates the cortex [107]. These data
demonstrate a relationship between postural control
and cortical activity [107]. The analysis of the brain’s
electrical activity (EEG) gives an idea of the func-
tional organization of human postural control. In his
pioneer works, R. Cole showed that verticalization is
accompanied by not only enhanced heart rate and
arterial blood pressure, which has been known previ-
ously, but also by the increased index of high-fre-
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quency (B) and o-2 power of electroencephalogram
(EEG) and the lower 6-amplitude compared to the
sitting position [108]. Analogous results were obtained
later by some researchers [109—112]. During space-
flight under microgravity conditions, EEG was
recorded for the first time by G. Cheron et al. [111],
who showed an increase in the o-rhythm power at a
frequency of 10 Hz and a slight shift of a-peak fre-
quency from 9.9 to 10.4 Hz with eyes closed (EC). The
increased EEG frequency and power in the o-rhythm
band is a reliable indicator of voluntary inhibition
[112—114], which can also be evidence of the cognitive
component of postural control. Later, D. Lipnicki
supposed that cortical inhibition could be accounted
for by redistribution of blood volume towards the
upper part of the body and stimulation of arterial baro-
receptors under microgravity conditions, contributing
to the inhibition of the cerebral cortex [115]. However,
G. Cheron et al. noted a considerable increase in neu-
ral activation: the so-called Berger effect (the suppres-
sion of oi-power while opening eyes) under micrograv-
ity conditions compared to the same characteristics on
the Earth. At the same time, it was noted that the
power of the frequency “range of anticipation,” or
u-rhythm, had decreased before the physical opening
of eyes, immediately after receiving the instruction “to
openeyes” [111]. G. Cheron et al. assume that the sen-
sorimotor and parietal-occipital cortices have a shared
network affected by gravity. They have concluded that
the enhanced reactivity of o-rhythms under micro-
gravity is because, along with the decrease or even
elimination of all sensory inputs of postural control,
the response to the only visual information is
unchanged in the absence of gravity is enhanced. Fur-
ther studies of the effect of support afferentation on
neural processes showed that the changes in EEG
activity under microgravity were not explained by
hemodynamic changes but rather reflected emotional
responses associated with the sensation of zero gravity
[116]. In addition, V. Briimmer et al. found a consid-
erable decrease in 3-power under microgravity, which
they attributed to the weakening of excitation [116]. By
analogy, the work of Russian authors showed a reduc-
tion in the amplitude of presaccadic EEG potentials in
the absence of support afferentation [117] and hypody-
namic style [118]. The authors believe that there must
be other generators of electrical activity under altered
gravity, in addition to the neural one [117]. It can be
assumed that the phenomenon of a decrease in EEG
amplitude in the so-called 3-band can be explained by
the technological peculiarities of EEG analysis, which
does not allow estimation of the contribution of elec-
trical oscillations from EMG generated by the tonic
muscles of the scalp, which increases in case of emo-
tional stress [118], as is reported by V. Brimmer et al.
[116]. In addition, I.G. Nenakhov and A.V. Shvetshov
indicate the effect of muscle tone on postural control
[118].
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At present, it is difficult to draw any clear conclu-
sions from the comparison of EEG parameters
obtained during space and parabolic flights and/or
under conditions of microgravity: firstly, EEG and
EMG studies were insufficient; secondly, most studies
were performed without taking into account the age,
gender, and hormonal factors; thirdly, EEG analysis,
due to merely methodological reasons, was performed
without taking into account the individual EEG
endophenotype [113, 114] that determines the strategy
of achieving sensorimotor integration.

Age. Many studies have convincingly demonstrated
the effect of the “age” factor on the relationship
between psychophysiological and stabilometric char-
acteristics of postural control [25, 66, 67, 119]. It has
been shown that the variability of COP oscillations
decreases with the maturation of children up to 10—
12 years [120] and increases with aging after 40 years
[119]. Numerous studies have demonstrated that pos-
tural control parameters in older adults are reduced
and, accordingly, the risk of falling considerably
increases [25, 30, 66, 67, 119]. Postural control
impairment in older adults can be caused by the age-
related weakening of almost all body sensory and
operating systems. At the same time, it is supposed
that the risk of falling in women is higher than in men
[121] due to the weakened function of ovaries. How-
ever, the studies by T. Naessen et al. have convincingly
demonstrated that estrogen replacement therapy does
not improve postural control in older women if it is not
accompanied by physical activity training [122]. When
comparing the psychophysiological characteristics in
women of postmenopausal age, we established that
long-term physical activity (fitness, dances, or Aikido
training for no less than eight years) is accompanied by
the decline of psychological symptoms postmeno-
pause. Still, the best stabilometric indicators of pos-
tural control (the lowest energy demands for main-
taining balance and the lowest EEG and EMP reactiv-
ity during the dual cognitive-postural and motor-
postural tasks performance) are noted only in the
group of women training the sensation of support on
the anterior part of the foot [18, 19]. The findings con-
clude that the most efficient method to overcome the
risk of falling in older adults is a physical activity asso-
ciated with the targeted postural control training.

Gender factor. Although there are several studies of
the effect of gender on the ability to maintain a pos-
ture, no detailed results have yet been obtained [122,
123]. Inconsistency of the results obtained is due to a
failure to consider the obvious fact that women in dif-
ferent phases of the hormonal cycle demonstrate sig-
nificantly different psychophysiological characteris-
tics [124], particularly postural stability [125]. The
matter is that the periodic effect of 17-B-estradiol in
women increases the plasticity of ligaments of the foot
[24] and knee [125] and, accordingly, postural activa-
tion is changed. Estrogen relaxes the collagen cross-
links in ligaments and alters the activity of actomyosin
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ATPase in skeletal muscles. In addition, estrogens sig-
nificantly affect neuromuscular interactions involved
in the motor control of ligaments and joints such as the
knee [125]. However, no consensus on the impact of
hormonal background on postural control has been
achieved until now [123], and, hence, further studies
are required.

Psychoemotional state. Because the same areas and
networks of the brain are involved in the regulation of
afferent functions, emotions, and mood and in the
system of maintaining balance, more and more atten-
tion is focused on the study of interrelationships
between these systems [7, 23, 25, 73, 83]. In particular,
T.M. Azevedo et al. had recorded much lesser swaying
of the body, as well as an increase in the median power
frequency (MPF) of COP oscillations (indexing mus-
cle stiffness), when healthy volunteers stood on a sta-
bilometric platform while watching unpleasant (muti-
lations) vs. pleasant (sports actions) or neutral
(objects) images [126]. As expected, pulse also slowed
down while perceiving unpleasant stimuli. This pat-
tern resembles “freezing” and “fear bradycardia”
observed in many biological species as protective
responses to threatening stimuli, which is mediated by
the psychophysiological mechanisms contributing to
survival [126]. Contrariwise, it has been shown that
the presence or absence of support afferentation influ-
ences the valence of emotional response [127]. In par-
ticular, students in the sitting position with support
onthe feet perceive images more positively than
sitting without permission on the feet [127]. In con-
trast, older women who have trained support stimula-
tion demonstrate a lower level of anxiety and depres-
sion compared to women of the same age doing fitness
only [18].

CONCLUSIONS

The analysis of modern literature devoted to the
research into the relationship between postural and
psychological characteristics of the ability to maintain
balance has shown that beginning from Bernstein’s
works, sensorimotor integration and feedback under-
lying the relationship between postural and psycho-
logical functions is the critical psychophysiological
mechanism of postural control. This statement is of
fundamental and theoretical significance for under-
standing the evolutionally significant role of postural
control and is confirmed in each reviewed study. Par-
ticular interest in studying interrelations between
human postural and psychological characteristics is
associated with revealing the role of gravity and sup-
port afferentation in the formation and development
of psychophysiological functions at the Russian scien-
tific school of acrospace medicine. The beginning of
these studies is associated with recognizing the signif-
icance of support on the legs and stabilometric mea-
surements in psychophysiological diagnostics, pre-
vention, and correction of motor and psychological
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functions. At present, there is sufficient indirect evi-
dence that affective and cognitive processes are asso-
ciated with the stabilometric parameters of balance
maintenance. In literature, the following characteris-
tics are distinguished as psychophysiological parame-
ters of postural control: attention, spatial memory,
mood, emotional tone, rate of decision making, and
fine motor skills of fingers. It means that learning,
training, and correction of these psychological func-
tions can be performed by training postural control. At
the same time, the most informative predictive stabi-
lometric correlates of these psychological functions
are the integral speed indices of COP oscillations in
high-frequency ranges. At present, it is impossible to
draw any unambiguous conclusions regarding the psy-
chophysiological mechanisms of postural control due
to relatively small sizes of populations under study and
methodological heterogeneity (e.g., different instru-
mental methods for assessing the balance and gait and
various methodological approaches to the analysis of
cognitive and affective functions). Hence, it was
impossible to provide a significant quantitative assess-
ment of the psychological and affective correlates of
postural control through meta-analysis.

However, despite the neurophysiological mecha-
nisms underlying the described relationships, the age-
and gender-related differences are still based only on
indirect evidence. It can be supposed that the progress
of modern high-precision measurement and informa-
tion technologies in the nearest future will provide
new knowledge in this field due to its fundamental sig-
nificance for the development of the theory of the evo-
lutionally most ancient function of maintaining an
upright posture and relevance to the applied aspect of
using nonpharmacological noninvasive stabilometric
approach to training and/or correction of cognitive
and affective processes.
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