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COVID-19 vaccine clinical development was conducted with unprecedented speed.
Immunity measurements were concentrated on the antibody response which left
significant gaps in our understanding how robust and long-lasting immune protection
develops. Better understanding the cellular immune response will fill those gaps,
especially in the elderly and immunocompromised populations which not only have the
highest risk for severe infection, but also frequently have inadequate antibody responses.
Although cellular immunity measurements are more logistically complex to conduct for
clinical trials compared to antibody measurements, the feasibility and benefit of doing
them in clinical trials has been demonstrated and so should be more widely adopted.
Adding significant cellular response metrics will provide a deeper understanding of the
overall immune response to COVID-19 vaccination, which will significantly inform
vaccination strategies for the most vulnerable populations. Better monitoring of overall
immunity will also substantially benefit other vaccine development efforts, and indeed any
therapies that involve the immune system as part of the therapeutic strategy.
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INTRODUCTION

The historically fast delivery of COVID-19 vaccines has already saved upwards of a million lives
globally (1). Vaccine clinical development, however, focused heavily on the antibody response while
largely neglecting the cellular response. While this narrower focus may have accelerated deployment
of the vaccines, it also left significant gaps in our understanding of how robust and long-lasting
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protection develops. A deeper understanding of cellular immunity
will help fill those gaps, and this information will be important in
formulating vaccination strategies for situations where the
antibody response alone is insufficient when developing
strategies to combat new viral variants, addressing questions
about mix-and-match vaccination, booster vaccinations, and
optimizing vaccination strategies for individuals that are elderly
or immunocompromised by diseases or therapy.

In this paper we argue that COVID-19 vaccination trials need to
include more extensive assessment of cellular immunity, especially
for immune compromised individuals. The experimental and
logistical technologies necessary to effectively conduct more
complete assessments of cellular immunity already exist and are
being used in other kinds of cl inical development.
Immunocompromised individuals are at higher risk for contracting
severe COVID-19 disease and are more likely to insufficiently
respond to the existing vaccination regimens. They will be the
biggest beneficiaries of introducing more comprehensive immune
evaluation of vaccine responses, and therefore the place to start.

The arguments presented here in favor of more comprehensive
cellular immune response assessments have been made in a
COVID-19 vaccination specific context. However, many of the
knowledge gaps identified below are not unique to COVID-19.
They also apply to other vaccine development efforts, and indeed
to any therapies that recruit the immune system as part of the
therapeutic strategy. Therefore, other significant populations
beyond those affected by SARS-CoV-2 infection, such as type-2
diabetes, obesity, HIV, or other chronic infections will also benefit
from more comprehensive assessments of cellular immunity.
EVALUATING IMMUNITY IN
IMMUNOCOMPROMISED SUBJECTS

Immune responses are highly coordinated, involving multiple
cell types and soluble factors, and result in both antibody-derived
and cellular immunity (2, 3). These two types of immunity are
complementary and interdependent. Antibodies prevent
infection by blocking entry of pathogens into target cells,
whereas cellular immunity clears infection by removing
infected cells. The generation of high-affinity immunoglobulin
G (IgG) antibody responses depend on the presence of cellular
immunity, particularly CD4+ T helper cells. The development of
cellular immunity is in turn accelerated by opsonization, which is
the absorption and processing of antibody-pathogen complexes
by immune cells. Recognizing this integration of cellular and
humoral immunity, the European Roadmap for Vaccine
Development called for immunogenicity testing to include
both antibody and cellular immunity functions (4).

In healthy individuals, antibody measurements have been
used as surrogates for overall responsiveness to vaccination and
correlate well with measures of cellular immunity (5, 6).
However, the kinetics of antibody and cellular responses differ,
as shown by the differential waning of antibody levels compared
to cellular immune responses following vaccination against SAR-
CoV-2 (7–13). T cell responses may thus not be accurately
predictable by inference from antibody data alone. Therefore,
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for a more complete understanding of immune protection,
measures of both antibody-based as well as cellular immunity
are required. In immunocompromised populations, where
antibody measurements alone provide a much less complete
assessment of the response to vaccination, adding measures of
cellular immunity is urgently needed. The characteristics of the
largest of the immunocompromised subgroups in the context of
SARS-CoV-2 infection and vaccination are discussed below.

Inborn Errors of Immunity
Most immune deficiencies are acquired, developing because of
chronic disease, or immune suppressant therapies. A small
proportion (~4%) have genetic origins, including genetic
susceptibility to infectious triggers of autoimmune diseases.
The vast majority of these inborn errors of immunity result in
defects in antibody production (14). An extreme of this diverse
group are agammaglobulinemic persons, who are otherwise
healthy but lack all antibody production. Nonetheless, they can
successfully mount T cell-based immune responses against many
microbial infections (15).

Abnormalities in antibody productionmake standardmeasures
of antibody titerdifficult to interpret andof limitedusefulness in this
population. For example, analysis of antibody and cellular
immunity responses after a single Pfizer-BioNTech SARS-CoV-2
vaccination in patients with multiple kinds of inborn errors of
immunity revealed highly variable antibody responses that did not
reachprotective levels in a large fractionof subjects (16). In contrast,
T cell responses were comparable between those with inborn
immune errors, the healthy vaccinated, and healthy convalescent
control populations. The best predictor of immune responsiveness
was the cellular immune status prior to vaccination (16). Deficient
antibody production after vaccination in subjects with primary
antibody deficiencies was also reported by Selinas et al. (17), who
further described atypical memory B cells but mostly intact T cell
responses in these subjects. Increasedmemory B cell frequency was
also associated with response to vaccination (18). Furthermore, a
study of subjects with B cell compartments compromised either by
inherited immune deficiencies, blood cancers, or therapy
determined that the number of naïve B cells available was an
independent predictor of successful vaccination (19). Taken
together these findings suggest that exclusive reliance on antibody
testing would likely underestimate vaccine responsiveness for a
large segment of individuals with inherited immune deficiencies. A
better characterization of the deficient B cells would improve our
understanding of the impact of those deficiencies on vaccine
provided protection while helping to develop new vaccine
candidates for particularly susceptible populations.

Cancer
Individuals with cancer generally have suppressed immune
function as a result of the disease (20–24) and of the treatment
(25–27). Unsurprisingly, cancer patients with SARS-CoV-2
infections have substantially reduced antibody responses, the
vast majority of which did not generate sufficient humoral
immunity (27–33).

Persons with hematologic cancers, however, that maintained
CD8 (cytotoxic) T cell numbers above a defined threshold had
May 2022 | Volume 13 | Article 880784
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better survival rates than those who could not maintain such
levels (33). Thus, simply counting the CD8 T cells may identify
most of the hematological cancer patients with the highest risk of
severe COVID-19 infection and death. Including these measures
as part of regular assessment may allow for preventative
measures that improve survival. The authors concluded that
boosting T cell immunity in cancer patients would substantially
aid their ability to weather an infection (33). This interpretation
was further supported by other studies of SARS-CoV-2 vaccine
responses in patients with cancer (29, 30, 34). Most patients with
impaired antibody responses generated protective levels of
cellular immunity, suggesting that cellular immunity may be
able to overcome the absence of an antibody response and clear
the infection. For patients immunocompromised by cancer,
relying on antibody testing alone will be unable to distinguish
those who can respond to vaccination from those who cannot.
Measurements of cellular immunity can provide those
distinctions and help evaluate novel strategies to boost
immunity in cancer patients.

Immune Suppressive Treatment
Intentional or collateral immunosuppression may result from
therapeutic treatments targeting a wide variety of conditions.
Immunosuppressive therapies are a staple for transplant
recipients and for those with autoimmune morbidities. Among
all immune supressed individuals, transplant recipients
produced the weakest response to vaccination (35, 36),
consistent with the severe immune suppression intentionally
induced to prevent transplant rejection. Researchers observed
extremely low antibody responses following both SARS-CoV-2
infection (35) and vaccination (36–38). Cellular immune
responses, however, impacted outcome severity (35), again
illustrating the importance of cellular immunity in resolving
SARS-CoV-2 infection in the immunocompromised. Testing for
cellular immune responses in transplant recipients may enable
clinicians to identify which subjects are at higher risk of not
controlling an infection.

Many people receive immunosuppressive treatment for a
large variety of autoimmune conditions. These include
arthritis, inflammatory bowel disease, and multiple sclerosis,
among many others (39, 40). In addition, systemic
inflammation is known to suppress immune function (41, 42)
and is associated with the development of heart disease, obesity,
metabolic syndrome, and type 2 diabetes (41, 42). In total, there
are potentially millions of people living with varying degrees of
immune deficiency caused by these conditions, and these
immune deficiencies may significantly affect the ability to
produce humoral or cellular immune responses to vaccination.
Despite being high risk for severe disease, these groups were
underrepresented in first-generation COVID-19 vaccine trials.
Conducting more comprehensive assessments of immune
responsiveness that include assessments of cellular immunity
would enable a more complete understanding of immune status
and of the interventions necessary to establish immunity in
these individuals.

For example, a study of COVID-19 vaccinated patients with
psoriasis receiving immunosuppressant drugs (43) demonstrated
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variable, but overall poorer antibody responses compared to a
control population. Their cellular immune responses, however,
were at least as robust as the responses of the controls (43). This
differential response to vaccination would not have been
observed if only antibody titer measurements were used.
Additionally, some treatment types appeared comparatively
more immune sparing than others, which may become an
important consideration when selecting therapeutic options.
Thus, manufacturers of immune suppressants and treating
physicians would benefit from a more complete evaluation of
the impact immunosuppressant therapies have on SARS-CoV-2
vaccine efficacy. Including cellular immunity measurements
along with antibody titer assessments will begin to fill those gaps.

Aging
Aging in healthy individuals is independently associated with a
decline of immune responsiveness due to a reduction in the total
number of immune cells available as well as a specific reduction
in the ability to respond to novel antigens (44–46). Even healthy
elderly have immune systems that differ significantly from
younger adults (44–48) and typically require higher vaccine
doses to elicit a sufficient immune response (44, 49–51).
Chronic diseases, infections, and other underlying health
conditions can combine with the effects of aging to further
weaken the immune systems of elderly individuals. As a result,
there is an increased vulnerability to external stressors, including
infections (52) and a significantly higher risk of vaccine
failure (53).

The effects of aging are not uniform. Recent studies define
approximately half the over-55 population as immunologically
frail (54, 55). Greater immunological frailty was associated with a
poorer response to vaccination (55). Subsequent studies have
further supported the association of frailty with poor immune
responses (56), and diminished vaccination efficacy (56–58). In
SARS-CoV-2 infection, frailty correlated with severe disease and
mortality more than chronological age (59–61). However, the
SARS-CoV-2 vaccine trials to date have excluded volunteers with
severe comorbidities and conditions impacting immune
functioning (62–64), even in vaccine efficacy studies in the
elderly (49). Thus, vaccine efficacy in the frail elderly remains
unknown. The elderly share with the other immunocompromised
populations described here a significant unmet need for
comprehensive evaluation of their immune systems to inform
strategies to risk stratify patients and to increase vaccine response
in those identified as high risk.

Immunocompromised Population Size
There are potentially many millions of individuals with at least
partial immune deficiency. Approximately 4% of US residents
have inherited or acquired immune deficiencies (53) and
approximately 16% of the US population is over 65 years old.
About 2.5% of the US population lived with cancer in 2020 (65),
and millions receive immune suppressants for cancer or
autoimmune diseases. Even with a significant overlap between
these populations, millions of Americans are affected, rendering
them at least partially immunocompromised. In persons younger
than 65, at least several million may also be indirectly
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immunocompromised due to obesity, diabetes, and heart disease.
Comparable populations are also expected in other developed
societies. The size of these populations and the lack of
understanding of cellular immune response to vaccination,
emphasizes the urgency of the unmet need.

Immunocompromised persons are a significant segment of
the population. They are also the most at risk for severe SARS-
CoV-2 infection. By excluding these persons from clinical trials,
particularly larger-scale phase 2 and 3 trials represent a potential
source of observational bias and has led to large gaps in
understanding of the true efficacy of vaccination. By including
T cell evaluations in clinical development programs,
immunocompromised persons no longer need to be excluded
for fear of confounding study data. To the contrary, optimal
vaccination strategies can be designed specifically to target
these groups.
COVID-19 SPECIFIC ISSUES

As outlined above, individuals can become immunocompromised
by age, disease, or chronic treatment. This reduces their ability to
mount robust immune responses to challenges, including
vaccination. Better understanding both the cellular and antibody
responses in these individuals will inform more effective
vaccination strategies. In addition to this generally applicable
observation, several COVID-19 specific issues have emerged
which further underscore the need for a greater understanding
of the overall vaccine-induced immune response.

Novel Viral Variants
The generation of new viral variants of concern has been
discussed extensively elsewhere (66). Viral variants have been
repeatedly shown to reduce the effectiveness of neutralizing
antibodies developed through vaccination with the prototype
strain (67). The corresponding T cell responses, however,
remained robust against the variants (67, 68), largely because T
cell responses were less sensitive to the single amino acid
mutations that define emerging variants. Moreover, T cells
have been identified that target sections of the SARS-CoV-2
proteins which cannot mutate without compromising viral
fitness (69–71). These T cells, if induced by vaccination or
infection by the ancestral strain of SARS-CoV-2, will provide
cross-protective benefits against many mutant variants. Indeed,
similar cross-protection has been demonstrated with several
other viral infections including influenza (72–74), as well as
other anti-viral vaccines (75, 76), re-enforcing that this is by no
means a COVID-19 specific effect.

T cell response to vaccination may provide the missing link
between experimental testing and what is observed empirically in
the real world. As mentioned above, highly infectious variants
exhibit mutations that were demonstrated to provide immune
escape from neutralizing antibodies induced by either infection
with the ancestral strain or vaccination (77). Therefore,
quantitative, and qualitative analysis of T cell responses
induced by the different vaccine candidates should be
Frontiers in Immunology | www.frontiersin.org 4
considered when evaluating the utility of any vaccination
strategy or regime, including the need of a third dose
booster shoot.

By focusing on antibody testing in vaccine clinical trials, these
robust cross-reactive T cell populations remain understudied,
limiting our true understanding of vaccine efficacy. As an
example, using flow cytometry several recent independent
studies have confirmed that the vast majority (>90%) of the T
cell response induced by two doses of mRNA vaccines were
directed against conserved, “mutation-resistant” sections of the
virus (78, 79). When single mutations do occur in these regions,
they had limited-to-no impact on T cell activation. However,
these studies were limited in size relative to large phase-III
clinical trials and lack the regulatory rigor required to submit
for vaccine licensing. T cell evaluations of this type must be taken
from the academic realm and applied into the world of vaccine
clinical trials.

Long COVID
Long COVID-19 is defined as sequelae that extend beyond four
weeks after initial infection (80). Statistically significant risk factors
included age, with the ≥50 age group having the greatest risk, and
number of pre-existing medical conditions, in particular
hypertension, obesity, psychiatric or immunosuppressive
conditions (81). Chronic fatigue was the most frequently
reported symptom following recovery from acute infection (82–
85). Other frequently reported symptoms included dyspnea,
cardiovascular abnormalities, cognitive impairment (“brain
fog”), smell and taste dysfunction, and other less common
symptoms (82, 86–93).

The mechanisms leading to long COVID-19 are not fully
understood but may involve deficits in cellular immune
function. A study that showed no difference in severity of initial
infection between individuals with and without post-acute
infection sequelae identified lower and more rapidly waning
specific T cell responses in the latter population (94). In subjects
experiencing neurological post-acute sequelae, no correlation
between anti-SARS-CoV-2 T cell responses and IgG production
could be found at 155-315 days post-infection, indicating that
antibody responses cannot serve as a surrogate indicator of cell-
mediated immunity in this group (95). This study also described
aberrant T cell memory responses to vaccination in subjects with
neurological long COVID-19 (95). The finding that some people
experiencing long COVID symptoms notice an improvement after
vaccination, and others a worsening of their symptoms supports
the potential role of a heterogeneous immune response in the
pathogenesis of long COVID (96). Taken together these
observations underscore the need for independent monitoring of
these two arms of the immune system when following long
COVID-19 patients. While our understanding of long COVID-
19 is still emerging, currently it appears that the elderly and
immunocompromised individuals are most at risk, and that the
cellular immune response may be disproportionally affected. Thus,
like the other immunocompromised groups described above, long
COVID-19 sufferers would also benefit from a comprehensive
evaluation of their immune responses to vaccination.
May 2022 | Volume 13 | Article 880784

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Paramithiotis et al. Cellular Immunity Covid Vaccine Efficacy
‘Mix-and-Match’ Vaccination Strategies
Concurrent with the rise of more infectious viral variants,
recommendations in favor of inoculations with more than one
type of SARS-CoV-2 vaccine, and clinical studies evaluating the
effectiveness of vaccine mixing and matching have been
presented (97, 98), and many governments are considering
mix-and-matched 3rd boosters shots for deployment amongst
their populations. The argument for comprehensive immune
monitoring applies when considering mix-and-matching
vaccination are similar to the arguments presented for viral
variants or immunocompromised persons. Different SARS-
CoV-2 vaccines have been shown to induce T cell responses
that can differ in their magnitude, as well as the composition of
the T cell response (99). T cell immunity may not be qualitatively
the same in all mix-and-match vaccination situations. It cannot
be predicted how different vaccines will complement or conflict
with each other when used in any given mix-and-match
vaccination strategy, nor can it be taken for granted that the
quality or quantity of a T cell immune response can be accurately
inferred by evaluating antibody responses alone. Therefore, when
assessing which mix-and-match vaccination strategies are the
best choice against all viral variants, T cell immune monitoring
must be included in these clinical trials. This is particularly
important when considering immunocompromised groups of
persons, as discussed above.

Such an update to our research paradigm will lead to better-
informed health policy decisions and establish more robust
clinical decision criteria not only for this current pandemic,
but for other contemporary vaccination campaigns, as well as
future pandemic diseases. These new vaccination strategies could
be tailored at the population level to optimize vaccine choices for
particular age groups and/or disease states. At the most extreme,
vaccination strategies could be personalized based on particular
patient idiosyncrasies.
MEASUREMENTS OF CELLULAR
IMMUNITY

The generally accepted gold standard for vaccine clinical trials is
measurement of antibody titre and neutralizing activity. These tests
can be done to scale with readily obtainable blood plasma or sera and
have been an adequate surrogate of the overall immune response in
healthy populations. In contrast, measurements of cellular immunity
require living peripheral blood mononuclear cell (PBMC) samples
which have more complex handling requirements. These logistical
deterrents were not insurmountable as cellular immunity
measurements are commonplace in a variety of clinical trials,
including examples in CAR-T (100), immunomodulatory oncology
treatments (43, 101), HIV (102), novel flu vaccination (103, 104),
minimal residual disease (MRD) assessment (105, 106) and others
(107, 108).However, it should be noted that cellular immunity assays
are typically limited to early stage and smaller clinical trials.

In addition, novel techniques to measure cellular immunity
from large groups of participants in non-clinical settings have
Frontiers in Immunology | www.frontiersin.org 5
been implemented (109, 110). These methods can be readily
adapted to COVID-19. While research in non-clinical settings
may not be able to match the depth of immunophenotyping that
is possible in the lab it can provide complementary breadth by
reaching more participants in order to laying the groundwork for
more focused large scale clinical investigations. Basic science
helps identify key biologic markers involved in processes relevant
to disease progression and the host response. Applied science
then explores those biomarkers within specific clinical use cases.
As clinical understanding matures to the point where the key
biomarkers in a particular process become apparent, the next
phase identifies a restricted set of biomarkers that are most
useful, scalable, and inexpensive. A deeper investment in a
comprehensive immunologic profiling now will be critical to
defining the inexpensive and scalable biometric assays that will
become widely used in clinical care later.

ELISpot (enzyme-linked immune absorbent spot) and flow
cytometry are currently the two main technologies used to
conduct cellular immunity measurements in vaccine trials (111,
112). Both measure the frequency of cytokine-secreting PBMCs
after antigen-specific activation in culture and provide an
indication of response magnitude. However, ELISpot does not
characterize the responding cells, whereas flow cytometry can
identify the type of cell responding to activation. This additional
characterization is necessary for a full understanding of the cellular
responses induced by vaccination. This is important because
responses can be derived from naïve, memory, regulatory, or
effector cell types, all of which have different roles in establishing
and maintaining long-term immunity. Understanding what type
of cells are involved allows for a far more robust characterization
of the immune response, which may be particularly important to
know in immunocompromised individuals.

Although flow cytometry generates more information per
sample, ELISpot is still dominant in vaccine trials, primarily due
to cost considerations and perceptions of better standardization
for regulatory submissions. Best practice guidelines have been
published to guide flow cytometry data evaluation in a
standardized manner (109, 113–117). Guidelines for general
method validation (114, 118–120), as well as recommendations
for specific applications are widely available (121, 122).
Furthermore, additional, unsupervised flow cytometry data
evaluation methods have been developed in recent years (123–
125) as the number of parameters that can be simultaneously
interrogated by flow cytometry has increased (125–129).
Therefore, there are few technical limitations preventing
regular deployment of multiparametric flow cytometry for an
in-depth and standardized characterization of cellular immunity
in vaccine clinical trials.

ELISpot tests can be runwith fewer cells and fewer reagents than
multi-parametric flow cytometry, although ELISpot tests typically
require significantlymoreculture time.However, theprincipalfixed
costs of cellular immunitymeasurements are derived from the need
for living cells, and thus the establishment and execution of the
highly qualified sample procurement, preparation, and transport
protocols. The costs associated with these activities are the same,
regardless ofwhetherELISpot orflowcytometrywould beused.We
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argue that multi-parametric assessment is not only a better return
on that investment, but is essential to the evaluation of vaccine
development programs. This is especially true in test populations
that lack previous cellular response characterization. This logic
would apply equally to the current COVID-19 pandemic as to
future vaccinationprograms.Costs can also be reducedby reserving
comprehensive immune response analysis of both antibody and
cellular immunity measurements to specific subpopulations,
enabling the inclusion of immune deficient and frail elderly
subjects into the large vaccine trials. Neglecting to include
detailed cellular immunity evaluations in clinical trials now will
likely result in collateral costs to public health and healthcare
systems that far outweigh the price of these tests.
CONCLUSION

In summary, we advocate for much more holistic assessment of
immune status in research cohorts as a prerequisite for advancing
both population-based and personalized vaccination strategies. We
believe that boarder research testing, including T cell evaluations,
will lead to better-informed anti-COVID-19 vaccination strategies
which are effective, efficient, and inexpensive. This is particularly
important in immunocompromised populations, including those
suffering from long COVID-19, where antibody production may be
absent or aberrant, and therefore vaccine protection is largely
dependent on the T cell-mediated arm of the immune system.
Frontiers in Immunology | www.frontiersin.org 6
The paradigm surrounding immune monitoring for
infectious diseases and their corresponding vaccines needs an
update. Regulatory bodies, vaccine manufactures, manufactures
of immune-suppressive therapeutics, physicians, and others
must shift their thinking away from an antibody-only
approach towards a more holistic approach including the
monitoring of T cell mediated immunity. There is an urgent
need to reframe our research paradigm immediately while
recruitment of individuals for prospective vaccination studies is
still relatively easy. The technologies and logistic channels to
perform T cell testing are well established and readily available.
These assessments are essential, the cost of not performing them
will be paid in financial and operative stress to our healthcare
systems, as well as in human morbidity and mortality,
particularly amongst immunocompromised groups.
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