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Abstract

Alcohol use disorder is characterised by disrupted reward learning, underpinned by

dysfunctional cortico-striatal reward pathways, although relatively little is known

about the biology of reward processing in populations who engage in risky alcohol

use. Cues that trigger reward anticipation can be categorized according to their learnt

valence (i.e., positive vs. negative outcomes) and motivational salience (i.e., incentive

vs. neutral cues). Separating EEG signals associated with these dimensions is chal-

lenging because of their inherent collinearity, but the recent application of machine

learning methods to single EEG trials affords a solution. Here, the Alcohol Use Disor-

ders Identification Test (AUDIT) was used to quantify risky alcohol use, with partici-

pants split into high alcohol (HA) (n = 22, mean AUDIT score: 13.82) and low alcohol

(LA) (n = 22, mean AUDIT score: 5.77) groups. We applied machine learning multivar-

iate single-trial classification to the electroencephalography (EEG) data collected

during reward anticipation. The LA group demonstrated significant valence discrimi-

nation in the early stages of reward anticipation within the cue-P3 time window

(400–550 ms), whereas the HA group was insensitive to valence within this time win-

dow. Notably, the LA, but not the HA group demonstrated a relationship between

single-trial variability in the early valence component and reaction times for gain and

loss trials. This study evidences disrupted hypoactive valence sensitivity in the HA

group, revealing potential neurophysiological markers for risky drinking behaviours

which place individuals at-risk of adverse health events.
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1 | INTRODUCTION

Alcohol use disorder (AUD) is characterised by disrupted reward

processing, underpinned by dysfunctional cortico-striatal reward

pathways.1–3 An abundance of research has identified reward circuitry

alterations that regulate the development and persistence of AUD.2–5

However, relatively little is known about the biology of reward

processing in non-disordered populations who exhibit risky drinking

behaviours placing them at-risk of future adverse health events.6

Knowing more about these at-risk drinkers could facilitate earlyRobert Whelan and Elsa Fouragnan equally contributed to this work.
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prevention and intervention strategies thus reducing overall alcohol

related harm in society.7

Reward processing encompasses two distinct phases. The first

phase, reward anticipation, arises when a cue with learnt valence

(i.e., positive vs. negative) and motivational salience (i.e., incentive

vs. neutral) is encountered (Figure 1A).8 The second phase, reward

outcome, happens when an outcome is delivered that generates a pre-

diction error, which ultimately triggers learning.9,10 Reward outcomes

have been extensively studied using both functional magnetic reso-

nance imaging (fMRI) and electroencephalography (EEG). fMRI studies

of AUD have generally shown increased activation in a distributed

reward network, including the ventral striatum (VS), during reward

outcome.2 Our prior EEG investigation with at-risk drinkers concurred

with fMRI findings in AUD, demonstrating an elevated neural

response during the outcome phase of reward processing. Specifically,

we found at-risk drinkers had increased feedback-P3 amplitude

(a positive-going event related potential [ERP] component, peaking at

centro-parietal electrodes around 400 ms post feedback onset), which

was related to reward prediction error.11 Notably, other research

groups found alcohol and substance dependence to be associated

with disrupted reward learning at time of outcome; however, this was

characterised by reduced amplitudes for feedback-related ERPs.12,13

During reward anticipation, however, fMRI studies have shown

hypoactivation of the main areas of the reward circuit in AUD3–5

although brain activity during this decision period in populations

exhibiting risky drinking behaviours has not yet been investigated.

The present study builds upon our prior EEG work,11 providing a com-

plete picture of both phases of reward processing, by evaluating the

neural dynamics of reward anticipation in at-risk drinkers. Here, we

used an EEG version of the monetary incentive delay (eMID) task.11,14

The millisecond temporal resolution of EEG enabled full characterisa-

tion of the time course of valence and salience dimensions of reward

anticipation, which have been shown to engage distinct neural net-

works in prior fMRI meta-analyses.8,15 We split participants into two

groups using the Alcohol Use Disorders Identification Test (AUDIT).16

Participants with high AUDIT (HA) scores formed a group of at-risk

hazardous drinkers, and those with low AUDIT (LA) scores formed the

control group.

Studying the valence and salience dimensions of reward in a sin-

gle EEG study is challenging because of the inherent collinearity of

the neural signals under investigation.17 These challenges may be

tackled with machine learning (ML) methods applied to high density

EEG data that have been successful at disentangling valence and

salience at reward outcome and reliably extracting their related

F IGURE 1 Experimental design, RT analysis and single-trial discriminant component maps. (A) Flowchart representation of stimulus type,
illustrating the difference between valence and salience. (B) Schematic representation of the experimental paradigm. On each trial, one of three
cue symbols was presented for 0.25 s indicating if participants could win or lose 20cents, or if the trial would have no impact on earnings
(i.e., neutral). Following a jittered delay of 2–2.5 s, a square target was presented. A staircase algorithm adapted the target duration attempting to
fix accuracy at �66% within each trial type. Following a delay of 1.25 s, feedback was shown for 1 s. A jittered inter-trial interval of 2 s was
presented before the next trial began. (C) RT results for both groups are presented together and are visualised using box and whisker plots,
including the median, two hinges and two whiskers. Individual participant results are plotted as separate data points (N = 22 per group). Note:
Any points which go beyond the end of the whiskers are outliers. (D) Summary of our single-trial EEG analysis. Example of a discriminant
component map resulting from our single-trial linear discrimination analysis. The panels represent the discriminator amplitudes for the valence
component for monetary loss (top) and loss cue (bottom) trials, using the training window shown by the vertical bars labelled training window
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single-trial EEG information.18 By decoding experimental conditions

using whole brain activity, and therefore avoiding the use of a priori

electrode selection, multivariate ML offers several analytical advan-

tages over traditional univariate statistics, including the preservation

of single trial information and an enhanced signal-to-noise ratio (SNR).

In conventional ERP time-locked EEG analyses, the data are aver-

aged over trials to increase the amplitude of the signal correlated with

neural processes relative to noise, masking information contained in

single trials at specific time points. The higher SNR of the ML

approach facilitates more reliable extraction of single trial neural infor-

mation, which can be related to variable behavioural responses that

are also changing on a trial-by-trial basis.19 Based on the aforemen-

tioned advantages, the present study combines ERP analyses with a

multivariate ML approach to help identify neurophysiological markers

of reward anticipation in hazardous at-risk drinkers.

eMID studies have been informative about the time course of key

anticipatory events. Relevant ERPs include the cue-P3 and the contin-

gent negative variation (CNV) slow wave.20 The cue-P3 is a broad posi-

tive wave, peaking around 350–550 ms post stimulus that is related

to novelty, attention and arousal.21,22 Moreover, it is thought to be

generated by the central dopaminergic system.23 Importantly, the

cue-P3 is a potential neural marker for reward disruption in AUD since

its amplitude correlates with ventral striatum (VS) signal during reward

processing.24 Prior eMID literature with healthy participants consis-

tently demonstrated cue-P3 valence sensitivity (i.e., enhanced neural

processing for the positively valenced gain cues compared with the

negatively valenced loss cues).24–27 We therefore hypothesised that

the LA group would have larger cue-P3 amplitudes for gain compared

with loss cues and significant gain versus loss ML discrimination, ter-

med Az value, within this time window. Considering fMRI MID studies

found diminished valenced sensitivity in AUD5 and hazardous at-risk

drinkers (>16 days of drinking per month),28 we hypothesised the HA

group compared with the LA group would exhibit reduced cue-P3

valence sensitivity and reduced gain versus loss Az value within this

time window.

The CNV is a slow negative wave occurring in time between a

stimulus which prompts preparatory processes, and another event

which requires a motor response.29 It is thought to reflect motivation

associated with intention to perform an act.30 Previous research sug-

gests that the CNV originates in the anterior cingulate cortex (ACC),

supplementary motor area (SMA) and bilateral thalamus, and is com-

monly associated with alertness and salience.10,31,32 Some eMID stud-

ies with healthy participants report the CNV to be insensitive to

experimental manipulation.24,26,27,33 Others report salience sensitivity

(i.e., enhanced neural processing for the high salience incentive cues

compared with the low salience neutral cues) with task modulation

occurring in the late stages of anticipatory processing, during prepara-

tion for the motor response to the eMID target.22,25

Importantly, the CNV is relevant for at-risk drinkers: healthy

young adults who first consumed alcohol during puberty have

enhanced CNV amplitudes compared with those who begin consump-

tion post puberty.34 We therefore predicted that in the late CNV win-

dow, 200 ms before target onset,22,25 the HA group would

demonstrate enhanced salience sensitivity compared with the LA

group reflecting altered motivational mechanisms. This would be

evidenced by a greater difference in neural processing between incen-

tive and neutral cues.

A full list of testable hypotheses and further exploratory analysis

for the P2 and N2 components are detailed in Supplementary Infor-

mation (Table S1).

2 | METHODS

2.1 | Participants

The final sample consisted of 44 participants (20 female), with a mean

age of 23.77 years (range 18–32 years) (see Table 1 for group com-

parison of demographic data). Participants were recruited at university

campuses via posters as part of a wider study on substance use. Par-

ticipants were subsequently telephone screened to determine eligibil-

ity. Exclusion criteria included being less than 18 years old; any

physical disability or learning difficulties that would impact task per-

formance (e.g., motor impairment); any history of major axis I mental-

health illness (excluding depression), as defined by the Diagnostic and

Statistical Manual of Mental Disorders (DSM); any history of head

trauma (including concussion) or stroke; and regular cannabis or drug

use (more than twice a month). Eligible participants were required to

complete online questionnaires (including AUDIT and the Drug Abuse

Screening Test [DAST]35). Based on AUDIT scores, we invited a sub-

set of participants to attend the 2-h EEG laboratory session (see

Table 1), with the goal of recruiting equal numbers of participants with

high and low AUDIT scores. Participants were compensated with €20
for EEG session completion, and with up to €10 for travel expenses.

Alternatively, eligible participants could opt for compensation with

course credit. All participants gave written informed consent to partic-

ipate. The study was approved by the Trinity College Dublin School of

Psychology Ethics Committee and the University College Dublin

School of Psychology Ethics Committee.

2.2 | Alcohol and substance-use measures

The AUDIT was used to assess the nature and severity of any alcohol

misuse, and to quantify risk on a scale from low-level to hazardous

drinking. The 10 AUDIT questions are each scored from 0 to 4, giving

a maximum total score of 40. Based on diagnostic guidelines for

AUDIT, participants with a total AUDIT score of greater than 8 were

classified as having hazardous drinking behaviours and formed a high

AUDIT (HA) group who have a higher risk of developing AUD. Follow-

ing the method in our previously published study, participants with a

total AUDIT score of 8 or below were classified as low risk and

formed a low AUDIT (LA) control group.11 Twenty-two participants

were recruited in each group. Psychoactive drug use was assessed

using the DAST. Smokers were defined as people who reported

smoking at least one cigarette per day in the 30 days prior to testing.
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2.3 | Experimental design

Participants performed an eMID task (Figure 1B), adapted from that

originally employed by Knutson for use with fMRI.14 During the antic-

ipation phase of the task, participants were presented with a cue sym-

bol for 250 ms, which informed them of the type of trial they were

about to perform. A green square indicated the potential to win

20 cents (i.e., gain condition); a red square indicated the potential to

lose 20 cents (i.e., loss condition); and a blue square indicated there

would be no financial outcome (i.e., neutral condition). This was

followed by a target anticipation period where a blank screen was dis-

played for 2000 to 2500 ms (see Figure 1 for the full experimental

design).

In the following target phase, a white solid pentagram in a circle

was displayed for a variable duration (the response interval was varied

based on task performance; potential range = 100–1250 ms). Before

commencing the task, participants were asked to respond to the tar-

get as quickly as possible with the index finger of their dominant hand

via a wired controller. For the incentive cues, hitting the target (which

was presented for a variable duration, the “response hit interval”)
resulted in monetary gain, or avoidance of monetary loss. An adaptive

algorithm, based on target response hit interval, was employed with

the goal of providing 66% positive feedback across all conditions. The

response interval for the target was reduced if the success rate

exceeded 66% (increasing task difficulty) and lengthened if the suc-

cess rate was below 66% (reducing task difficulty). Participants were

not made aware of the adaptive algorithm as this could undermine

their motivation to perform well in the task. The aim of the algorithm

is to keep the subjective difficulty of the task consistent across partici-

pants, despite variation in response time. The adaptive algorithm func-

tioned as intended, with participants achieving a mean success rate of

66.3% (std. = 1.94) and no participants were excluded due to low suc-

cess: fail ratio. Following offset of the target stimulus, a blank screen

was presented for 1200 ms.

In the subsequent outcome phase of the task feedback was dis-

played for 1000 ms. For gain cues, the feedback shown was “+20 ct”
when the target was hit, and a sad cartoon face when the target was

missed. For loss cues, the feedback shown was “�20 ct” when the

target was missed and a smiley cartoon face when the target was hit.

For the neutral cues, the feedback was a smiley or sad cartoon face

when the target was hit or missed, respectively. Each trial was sepa-

rated by a 2000-ms inter-trial interval. Analyses from the outcome

phase were reported previously.11 Each participant completed 48 trials

per condition (gain, loss, neutral; 144 trials total). Participants com-

pleted a practice set of 30 trials prior to the full task.

2.4 | EEG data acquisition and pre-processing

An ActiveTwo Biosemi system was used to record EEG data (1024-Hz

sampling rate), with 64 scalp electrodes positioned according to the

10–10 system. Participants sat in a darkened, sound attenuated room,

1.05 m in front of a Dell cathode ray tube computer monitor (75-Hz

refresh rate; 1024 � 768 pixels), resulting in each centimetre sub-

tending 0.55 degrees of visual angle. Horizontal and vertical electro-

oculograms associated with eye movement were recorded bilaterally

using four additional electrodes. These were placed approximately

2 cm below the eyes and from the outer canthi. Two additional elec-

trodes were located on the mastoids.

EEG data were pre-processed using the EEGLAB toolbox36 and

the Fully Automated Statistical Thresholding for EEG Artifact Rejec-

tion (FASTER) plug-in,37 as in Cao et al.11 The raw EEG data were

band pass filtered from 0.1 to 95 Hz, and a 50-Hz notch filter was

applied. The data were then average-referenced across all scalp elec-

trodes. Epoching was performed from 500 ms pre-stimulus to

2000 ms post-stimulus, locked to the cue, target, and feedback onset.

Artifact detection is described in Supplementary Information. Subse-

quently, data were low-pass filtered at 30 Hz.

2.5 | Event related potential analyses

The cue-P3a and cue-P3b were quantified over a parietal group of

electrodes (P1, P2, POz, Pz)25 and measured as the mean amplitude

between 250–400 ms and 400–550 ms after cue onset, respectively.

The P2 and N2 were quantified over a frontal group of electrodes

TABLE 1 Demographic data and clinical measures

HA LA p

Sample size 22 22

AUDIT total, mean (SD) 13.82 (3.57) 5.77 (2.18) <0.001

Gender, male/female 11/11 13/9 0.367

Age, y, mean (SD) 23.91 (4.41) 23.64 (4.67) 0.635

Education, y, mean (SD) 16.73 (2.21) 15.59 (2.99) 0.225

Smoker/non-smoker, n 10/12 12/10 0.364

DAST drug use total, mean (SD) 2.64 (3.57) 4.55 (7.13) 0.971

Note: Group differences for continuous variables were carried out with independent sample t tests; however, gender and smoking status were tested using

chi-squared tests.

Abbreviations: AUDIT, Alcohol Use Disorder Identification Test; DAST, Drug Abuse Screening Test; HA, participants with high alcohol use based on AUDIT

score; LA, participants with low alcohol use based on AUDIT score; RT, RTs in milliseconds; SD, standard deviation; y, years.
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(FC1, FC2, FCz, Fz)22 and measured as the mean amplitude between

160–210 ms and 210–310 ms after cue onset, respectively. The CNV

was measured as the mean amplitude 200 ms prior to target presenta-

tion (1800 to 2000 ms post cue onset) over a central group of elec-

trodes (C1, C2, Cz, FCz).25 ERPs were calculated using all remaining

epochs following artifact rejection (see Supplementary Information).

All ERP statistical analyses were carried out using R.38 We first

conducted one-way repeated measures ANOVAs on mean ERP ampli-

tudes, with condition (gain, loss, and neutral) as the within-subjects

factor, for the LA group and HA group individually. These tests were

conducted for all ERP components separately (including cue-P3a, cue-

P3b, P2, N2, CNV). This enabled us to validate the task by allowing

comparison with prior EEG MID literature which has focused on

reward anticipation in healthy subjects. To assess group differences,

mixed ANOVA tests were then conducted on mean ERP amplitudes

with condition as the within-subjects factor and group as the

between-subjects factor. Again, separate tests were used for all ERP

components. ERP data were checked using Mauchley test for spheric-

ity and Greenhouse–Geisser correction was applied when any viola-

tion occurred. Significant ANOVA tests were investigated with

Tukey's honest significant difference post-hoc test to confirm which

conditions were significantly different from each other. The signifi-

cance level was set at p < 0.05 for all statistical tests completed.

Based on the a priori hypotheses of valence sensitivity (i.e., gain

amplitudes > loss amplitudes) we also evaluated whether gain-

minus-loss ERP difference waves were sensitive to between group

differences (see Supplementary Information). This alternative analysis

strategy can be more effective at isolating components of interest, by

eliminating common operations between two conditions.39

2.6 | Machine learning analyses

We used single-trial, multivariate discriminant analysis on our epoched

EEG data10,18,40 to perform binary discriminations along the dimen-

sions of valence and salience during the anticipatory phase of the

MID task (Figure for an illustration of the analysis). For each partici-

pant, we estimated linear weightings of the EEG electrode signals

(i.e., spatial weighting vectors) across the whole brain that provided

maximal discrimination between (1) gain versus loss cue trials

(valence) and (2) incentive (gain and loss) versus neutral cue trials

(salience) (Equation 1). For the salience discrimination, to avoid any

confound due to velocity in motor preparation, we extracted incentive

trials that were matched to neutral trials based on the distribution of

reaction times (RTs). For this, we used the distribution of RTs in the

neutral trials approximated with a Gaussian distribution and extracted

trials from the gain and loss conditions to match this distribution. We

ensured there were an equal number of incentive compared with neu-

tral trials and that the mean and variance of these two incentive and

neutral distributions were in the same range (mean = 40.54 trials,

std. = 3.99).

The multivariate discriminant analysis was conducted over sev-

eral temporally distinct training windows to identify temporally

distinct neural components associated with valence and salience

(Figure 1D). The training windows had a fixed window length of

δ = 60 ms and onset times τ varying from �200 to 2000 ms rela-

tive to cue onset (increasing in 10-ms increments). We used a reg-

ularized Fisher discriminant to estimate the spatial weighting

vectors w τð Þ, which maximally discriminates between EEG electrode

signals x tð Þ, for two groups of interest (i.e., gain vs. loss trials for the

valence dimension, and incentive versus neutral trials for the salience

dimension):

yi τð Þ¼ 1
N

Xt¼τþN=2

t¼τ�N=2
w τð ÞT xi tð Þ ð1Þ

The pre-processed EEG data x tð Þ are a multidimensional D� T matrix,

with D= electrodes, T= time samples, and with N= total number of

trials. The resulting one-dimensional “discriminating component” yi τð Þ
is produced by applying the spatial weighting vectors w τð Þ to the sin-

gle trial EEG data xi tð Þ, and linearly integrating single-trial information

across spatially distributed electrodes. It can therefore be con-

ceptualised as an individual whole brain channel that reflects single

trial variability (STV) in neuronal response associated within each

group of interest. Notably, any shared activity between conditions is

removed. The “discriminating component” yi τð Þ has enhanced SNR

compared with individual channel data, due to less interference from

physiological and environmental noise which do not contribute to the

binary discrimination.40

The spatial weighting vectors w τð Þ for each onset time τ were

calculated as follows: w¼ Sc m2�m1ð Þ with mi being the mean for

each group i and Sc ¼ 1
2 S1�S2ð Þ is the common covariance matrix—

the average of the covariance matrices for each group,

Si ¼1 N�1ð ÞPN
j¼1 xj�mi

� �
xj�mi

� �T
. Additionally, we regularized the

covariance matrices for each group in order to avoid any estimation

errors, following the equation: eSi ¼ 1�λð ÞSiþλvI, with λ� 0,1½ � being
the regularization term and v the average eigenvalue of the original Si

(i.e., trace (SiÞ=D). For λ¼0 , no regularization is being applied whereas

λ¼1 assumes spherical covariance matrices. For each participant, we

optimized λ at each onset time during the entire period following the

cue presentation based on discriminator performance (see below)

using grid search in increments of 0.01.

Performance of the discriminator was quantified at each

time window of interest by calculating the area under a receiver

operating characteristic (ROC) curve (termed Az value) using a leave-

one-out trial (LOO) cross validation approach. Significance of the

discriminator performance was assessed by permutation testing

using the leave-one-out trial procedure after randomizing the labels

associated with each trial. We repeated this randomisation proce-

dure 1000 times to produce a probability distribution for Az and

estimate the Az value leading to a significance level of p < 0.05.

Due to the linearity of the model, we also computed scalp topogra-

phies of the significant discriminating components output from

Equation (1 estimating forward models using Equation (2, which

describes the electrical coupling of the single-trial component ampli-

tudes y τð Þ and the observed data x.
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aτ ¼ x τð Þ y τð Þ
y τð ÞTy τð Þ

ð2Þ

2.7 | Between group comparison of machine
learning results

SPM1d version 0.4.7 (MATLAB open-source software, available at

http://www.spm1d.org/) was used to statistically compare group aver-

aged Az values (i.e., ML discriminator performance). SPM1d is similar to

the conventional SPM (statistical parametric mapping) approach to infer-

ential statistics but is designed for one-dimensional data. This toolbox

provides the following advantages: (1) it improves on Bonferroni correc-

tion for multiple comparisons by using random field theory to account

for covariance between scalar components at each timepoint; (2) the

critical threshold (test statistic) accounts for timeseries smoothness and

length; (3) cluster specific p values are calculated, which indicate the

probability of producing supra-threshold clusters (i.e., multiple adjacent

timepoints exceeding the critical threshold [α] of 0.05).41–43 Calculation

of SPM{t} is detailed in Supplementary Information.

Specifically, in accordance with our predictions, we conducted

one-tailed unpaired t tests which evaluated if (1) the Az values for

valence discrimination (i.e., ability to differentiate between gain and

loss trials) were greater in the LA group compared with the HA group,

from 400–550 ms after cue onset; and (2) the Az values for salience

discrimination (i.e., ability to differentiate between incentive and neu-

tral trials) were greater in the HA group compared with the LA group,

from 1800 to 2000 ms after cue onset.

2.8 | Relationship between behaviour and single
trial variability

We extracted the single-trial variability (STV) for each individual par-

ticipant, at the group averaged time of maximum significant

discrimination (t) for the valence (STV.Valence(t)) and salience

(STV.Salience(t)), thus identifying the point with most trial-by-trial var-

iance in the data. Our aim was to evaluate the relationship between

behaviour and brain activation during the decision-making process, by

relating STV to the trial-to-trial variability in RTs with a multiple

regression model. To do so, we first extracted the discriminator out-

put with dimensions T � N, where T is the number of EEG samples

and N the number of trials. Second, to extract robust STV, yτ, we

averaged all samples within our time window, to obtain:

yτ�i ¼
1
T

XT

j¼1
yτ�ij ð3Þ

where i is the trials index and j the EEG samples index. Once we had

extracted our STV per participant, yτ, we used the STV as parametric

regressors to see if they predicted variability in upcoming RTs.

In order to control for potential confounding factors in the regres-

sion, specifically trial order and outcome, we also computed the trial

order (trial_order) and the outcome of the task (correct [+1]/incorrect

[�1], trial_outcome) and added these as regressors of non-interest in

our regression analysis.

For valence, we used the following equation to predict RTs based

on the single trial discriminator amplitudes of gain versus loss cues, in

a mixed-effect model such as

RTs~1þ β�STV: Valence tð Þþβ� trial_orderþβ� trial_outcome ð4Þ

For salience, we used the following equation to predict RT based on

the discriminator amplitudes of incentive versus neutral cues, in a

mixed-effect model such as:

RTs~1þβ�STV: Salience tð Þþβ� trial_orderþβ� trial_outcome ð5Þ

To establish a significant trial-by-trial association between RTs and

discriminator output we tested whether the regression coefficients

resulting from all participants came from a distribution with mean

greater than zero (using a one-tailed t test).

3 | RESULTS

3.1 | Behavioural data

The 3 (condition) � 2 (group) mixed ANOVA revealed a main effect of

condition on RT, F(1.94, 81.36) = 14.16, p < 0.01. Tukey post hoc

tests showed significantly longer RTs for the neutral compared with

the gain (p < 0.0001) and loss (p = 0.0003) conditions (Figure 1B).

There were no significant group effects or interactions.

3.2 | ERP results

For gain-minus-loss difference wave and exploratory component

(P2 and N2) results see Supplementary Information.

3.2.1 | Cue-P3a

For the LA group, we conducted a one-way repeated measures

ANOVA on mean cue-P3a and found a significant main effect of con-

dition, F(2, 42) = 6.69, p = 0.003, ηp2 = 0.242 (Figure 2A). Tukey post

hoc tests showed significantly larger cue-P3a amplitudes for the gain

condition compared with the loss condition (p = 0.014) and the gain

condition compared with the neutral condition (p = 0.021). For the

HA group, we conducted a one-way repeated measures ANOVA on

mean cue-P3a, but the main effect of the condition did not reach sig-

nificance, F(2, 42) = 1.45, p = 0.247, ηp2 = 0.064 (Figure 2B).

The 3 (condition) � 2 (group) mixed ANOVA revealed no signifi-

cant differences between the groups for the cue-P3a amplitude, F

(1, 42) = 0.28, p = 0.600, ηp2 = 0.007. There was, however, a signifi-

cant main effect of condition on cue-P3a amplitude, F(2, 84) = 5.81,
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p = 0.004, ηp2 = 0.122. Tukey post hoc tests showed significantly

larger cue-P3a amplitudes for the gain condition compared with the

loss condition (p = 0.010) and the gain condition compared with the

neutral condition (p = 0.019).

3.2.2 | Cue-P3b

For the LA group, we conducted a one-way repeated measures

ANOVA on mean cue-P3b and found a significant main effect of con-

dition, F(2, 42) = 4.23, p = 0.021, ηp2 = 0.168 (Figure 2A). Tukey post

hoc tests showed significantly larger cue-P3b for the gain condition

compared with the neutral condition (p = 0.003). For the HA group,

we conducted a one-way repeated measures ANOVA on mean cue-

P3b, but the main effect of the condition was not significant, F(2, 42)

= 1.92, p = 0.065, ηp2 = 0.122 (Figure 2B).

The 3 (condition) � 2 (group) mixed ANOVA revealed no signifi-

cant differences between the groups for the cue-P3b amplitude, F

(1, 42) = 0.38, p = 0.541, ηp2 = 0.009. There was, however, a signifi-

cant main effect of condition on cue-P3b amplitude, F(2, 84) = 5.91,

p = 0.004, ηp2 = 0.123. Tukey post hoc tests showed significantly

larger cue-P3b amplitudes for the gain condition compared with the

neutral condition (p = 0.003).

3.2.3 | CNV

For the LA group, we conducted a one-way repeated measures

ANOVA on mean CNV, but the main effect of the condition did

not reach significance, F(2, 42) = 1.10, p = 0.343, ηp2 = 0.050

(Figure 4A). For the HA group, we conducted a one-way repeated

measures ANOVA on mean CNV and found a significant main effect

F IGURE 2 Cue-locked valence ERPs and discrimination results. (A) Average ERP components for the LA group, computed over parietal
electrodes [P1, P2, POz, Pz]. Red, blue, green and orange traces represent loss, neutral, gain and gain–loss trials, respectively. The first and second
grey-shaded bars depict the time windows for the Cue-P3a and Cue-P3b, respectively. Scalp topographies are included for peaks of the gain-
minus-loss difference waves within these time windows (265–305 ms and 405–465 ms). Note that ERPs are plotted with the negative y axis
pointing up. (B) Average ERP components for the HA group, computed over parietal electrodes [P1, P2, POz, Pz]. Red, blue, green and orange
traces represent loss, neutral, gain and gain–loss trials, respectively. The first and second grey-shaded bars depict the time windows for the
Cue-P3a and Cue-P3b, respectively. Scalp topographies are extracted for the peaks of the gain-minus-loss difference waves within these time

windows (265–305 ms and 405–465 ms). (C) Single-trial discriminator performance (Az) between gain and losses as a function of cue-locked time
for the LA group. Results are averaged over all participants (mean line in blue ±se across participants, represented by the shaded blue area). The
dotted red line represents the Az leading to a significance level of p = 0.05. The grey boxes represent the time windows of interest used for the
STV analysis. The forward model is presented at 435 ms (scalp maps, A). (D) Single-trial discriminator performance (Az) between gain and losses
as a function of cue-locked time for the HA group. There were no time windows reaching significance in the entire period after cue presentation.
The forward model is presented at 435 ms (scalp maps, A). (E) Comparison of mean HA-Az and LA-Az across the window of interest (400–
550 ms). (F) Results of SPM1d analysis, illustrating the magnitude of LA-Az to HA-Az differences (i.e., SPM{t}) across time window of interest
(400–550). Grey-shaded region indicates where there is a significant difference between HA-Az and LA-Az values, that is, where the critical
threshold (2.336) has been crossed by the SPM{t}
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of condition, F(2, 42) = 5.73, p = 0.006, ηp2 = 0.214 (Figure 4B).

Tukey post hoc tests showed significantly larger CNV for the loss con-

dition compared with the neutral condition (p = 0.005).

The 3 (condition) � 2 (group) mixed ANOVA revealed no signifi-

cant difference between the groups for the CNV amplitude, F(1, 42)

= 0.54, p = 0.467, ηp2 = 0.013. There was a significant main effect of

condition on CNV amplitude, F(2, 84) = 6.04, p = 0.004, ηp2 = 0.126.

Tukey post hoc tests showed significantly larger CNV amplitudes for

the gain condition compared with the neutral condition (p = 0.023)

and loss condition compared with the neural condition (p = 0.016).

3.3 | Machine learning results

3.3.1 | Valence

For the LA group, we observed a wide temporal window of significant

Az value for valence discrimination: between 333 and 512 ms after

cue onset (Figure 2C). The forward model (scalp map) extracted from

the midpoint (423 ms) of the significant valence component was con-

centrated over parietal electrodes, aligned with reported neural gener-

ators of the cue-P3 ERP component.21 For the HA group, the mean Az

value for valence discrimination did not reach significance at any time

point between cue onset and target presentation (Figure 2D). Az

values were significantly larger in the LA group compared with the HA

group (Figure 2E,F), from 480 to 550 ms (Figure 2F; pcluster = 0.017).

3.3.2 | Trial-by-trial RT indexed by valence
component

The STV in our valence component was predictive of RT triggered by

the cue (Figure 3A,B depicts an individual example of Valence STV, RT

distributions and relationship between the two). Our regression analy-

sis included STV for each participant, extracted at the group average

peak of maximum discrimination, within our hypothesised time window

for valence processing (400–550 ms) (see Figure 3C). Specifically, there

was a significant negative relationship between RTs and the STV in the

valence component in the LA group; the estimated regression coeffi-

cients (See Method's β1's in Equation 4) were significantly different

from zero t(21) = �2.14, p = 0.044. In other words, the larger the dif-

ferentiation in neural processing between gain and loss cues, the faster

the response times to the target. Furthermore, for our regressors of

non-interest, we found no effect of trial order on RTs, t(21) = 0.28,

p = 0.78, and a strong effect of outcome on RTs, t(21) = �5.8,

p = 7.6e�06, that did not impact the nature of the relation between

neural data and RTs. This analysis was also conducted in the HA group

but failed to reach significance. An unpaired t test comparing the beta

coefficients output from the regression analyses conducted within each

group did not reach significance t(86) = �0.828, p = 0.410.

3.3.3 | Salience

For the LA group, we observed a significant early peak of salience dis-

crimination 282 ms after cue onset (Figure 4C). The mean Az LOO

value for the LA group salience discrimination did not reach signifi-

cance at any other time point between cue onset and target presenta-

tion. For the HA group, we observed a significant early peak of

salience discrimination 294 ms after cue onset (Figure 4D). Note that

there is no difference in time between the early salience components

across the two groups, t(42) = 0.65, p = 0.51; thus, it is assumed to

be a similar neural generator.

The HA group but not the LA group, had significant salience dis-

crimination at later stages of reward anticipation within the time win-

dow of the CNV slow wave. The HA group exhibited a maximum

F IGURE 3 STV in the valence component predicts RT sin the LA group. (A) Single-trial discriminator performance (Az) between gain and
losses as a function of cue-locked time for a representative participant in the LA group (top panel). Single-trial PE discriminant component maps
for gain and loss trial for the same an exemplar participant (middle and bottom panels respectively). (B) Representation of the RT distribution and
scatter plot between the RTs and the STV for the exemplar participant. (C) EEG STV component amplitudes separated by slow and fast RTs (the
bins were created by splitting the RTs in equal groups)
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significant peak of discrimination at 1846 ms. The forward models

(scalp maps) extracted at this time point had a fronto-central spatial

distribution, aligned with typical generators of the early CNV slow

wave.29 There were no group differences in salience discrimination

(all clusters with an SPM{t} value less than critical threshold).

3.3.4 | Trial-by-trial RT indexed by salience
component

There were no significant results from the single-trial mixed effect

regression analysis between the salience STV and RT.

4 | DISCUSSION

4.1 | Summary of the main findings

Here, we disentangled two dimensions of reward anticipation—

valence and salience—in young adults with and without hazardous

drinking behaviours. Within the cue-P3 time window, valence discrim-

inator performance (i.e., Az values) was significantly higher in the low

risk alcohol use (LA) group compared with the hazardous drinking

(HA) group, indicating disrupted valence discrimination in the HA

group. Additionally, we discovered a negative relationship between

valence discrimination STV and RT in the LA group only, such that

greater variability in the neural response between gain and loss cues

led to faster response times to the target. Although there were no sig-

nificant between-group differences in our ERP and ML salience dis-

crimination analyses, our data show a trend towards enhanced

salience sensitivity in the HA group. Our findings demonstrate young

adults with hazardous levels of drinking have lower neural sensitivity

to valence, but not salience, during reward anticipation.

4.2 | Hazardous drinking is associated with
disrupted valence processing

The single trial machine-learning approach revealed valence discrimi-

nation differences within the cue-P3 time window. For the LA group,

F IGURE 4 Cue-locked salience ERPs and discrimination results. (A) Average ERP components for the LA group, computed over central
electrodes [C1, C2, Cz, FCz]. Red, blue, green and orange traces represent loss, neutral, gain and incentive-neutral trials respectively. The grey
shaded bar depicts the time window for the late CNV. A scalp topography has been included for the peak of the incentive-minus-neutral
difference wave within this time window (1800–1850 ms). Note that ERPs are plotted with the negative y axis pointing up. (B) Average ERP
components for the HA group, computed over central electrodes [C1, C2, Cz, FCz]. Red, blue, green and orange traces represent loss, neutral,
gain and incentive-neutral trials respectively. The grey shaded bar depicts the time window for the late CNV. A scalp topography has been
included for the peak of the incentive–minus-neutral difference wave within this time window (1800–1850 ms). (C) Single-trial discriminator
performance (Az) between incentive and neutral trials as a function of cue-locked time for the LA group. Results are averaged over all participants
(mean line in blue ±se across participants, represented by the shaded blue area). The dotted red line represents the Az leading to a significance
level of p = 0.05. There were no time windows reaching significance in the late period after cue presentation. The forward model is presented at
1884 ms (scalp maps, A). (D) Single-trial discriminator performance (Az) between incentive and neutral trials as a function of cue-locked time for
the HA group. The grey boxes represent the time windows where the discrimination reaches significance. The forward model is presented at
1884 ms (scalp maps, A). (E) Average ERP components for the LA group, computed over frontal electrodes [FC1, FC2, FCz, Fz]. Red, blue, green
and orange traces represent loss, neutral, gain and gain–loss trials, respectively. The first and second grey-shaded bars depict the time windows
for the P2 and N2, respectively. Scalp topographies are included for peaks of the gain-minus-loss difference waves within these time windows

(175–195 ms and 230–260 ms). (F) Average ERP components for the HA group, computed over frontal electrodes [FC1, FC2, FCz, Fz]. Red, blue,
green and orange traces represent loss, neutral, gain and gain–loss trials, respectively. The first and second grey shaded bars depict the time
windows for the P2 and N2, respectively. Scalp topographies are included for peaks of the gain-minus-loss difference waves within these time
windows (175–195 ms and 230–260 ms)
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there was a sustained period of significant discrimination between

gain and loss cues between 333 and 512 ms after cue onset. The spa-

tial distribution of the single trial valence component aligned with

cue-P3 ERP scalp topographies of gain and loss anticipation in prior

eMID studies.24,25 In contrast, the HA group did not exhibit significant

valence discrimination at any time point between the cue and target

response. Our between group comparison demonstrated that Az

values were significantly larger in the LA group compared with the HA

group between 480–550 ms. Valence processing, as a direct contrast

between gain and loss cues, is often overlooked in MID addiction

studies.44 However, one fMRI MID study found a lack of valence sen-

sitivity during reward anticipation within the VS of detoxified AUD

participants.5 Another study with non-disordered participants also

found at-risk behaviours (>16 days of drinking per month) were asso-

ciated with diminished valence sensitivity in the thalamus.28

Considering the ERP waveforms (see Figure 2A,B), the lack of

valence discrimination in the HA may be driven by a trend towards a

hyperactive response to loss cues compared with the LA group. Nota-

bly, this study found no evidence of a hypoactive response to gain

cues as demonstrated in previous fMRI MID studies with AUD

participants.3–5 A hyperactive negative valence system has also been

described in a recent study comparing binge drinkers with control par-

ticipants, with brain activation to loss events abnormally elevated

within the hippocampus.45 Our study provides further support for the

growing body of research demonstrating disrupted valence processing

in populations with at-risk drinking behaviours.

4.3 | Trends towards enhanced salience sensitivity
in hazardous drinkers

In the later stage of reward anticipation within the CNV time

window—200 ms before target response—the LA group lacked

salience sensitivity (Figure 4A,C) with no differences in neural

processing between incentive and neutral cues. It remains unclear

whether the CNV is reliably modulated by the eMID paradigm in

healthy participants, since a number of prior studies also reported

CNV insensitivity,24,26,27,33 but others demonstrate modulation by

salience.22,25

There was a trend towards enhanced salience sensitivity in the

HA group compared with the LA group (Figure 4A–D), but this did not

reach statistical significance. The mixed model ANOVA showed

increased CNV amplitudes for both gain and loss cues compared with

the neutral cue. Taking into consideration the ERP waveforms (see

Figure 4A,B), this effect appears to be driven by an increased

response to incentive compared with neutral cues in the HA group.

Furthermore, we found multiple time points of significant ML salience

discrimination in the HA group (790–870 ms, 1310–1510 ms, 1538–

1602, and 1782–1974 ms) (Figure 4D) which were lacking in the LA

group (Figure 4C). A prior eMID study also demonstrated an elevated

CNV salience response (2000–3000 ms after cue onset) in young

adults deemed at-risk for AUD based on first alcohol intake during

puberty.34

These results point towards a possible altered hyperactive moti-

vational mechanism in at-risk hazardous drinkers, across the entire

CNV time window, encompassing arousal, response orientation and

motor preparation.31 The CNV is therefore highlighted as a neuro-

physiological marker of interest in future study of AUDs.

4.4 | Reaction time data

Our behavioural results were consistent with prior eMID literature,

with faster responses for incentive compared with neutral trials, and

no difference between gain and loss trials.22,25,46 Thus, it appears that

participants were motivated for the incentive conditions relative to

neutral trials and that gain and loss avoidance were equally motivat-

ing. Reaction times per condition did not differ between groups

despite blunted valence discrimination in the HA group. Prior mone-

tary reward research comparing participants with AUD to healthy par-

ticipants also found no differences in RT between groups, despite

finding blunted VS activation during reward anticipation4,5 and

blunted feedback-P3 during reward outcome.5 In contrast to the anal-

ysis of average RT, we hypothesized that the maximum valence com-

ponent carried task-relevant information, which we could exploit to

predict upcoming RTs. Supporting our hypothesis, there was a signifi-

cant negative relationship between RTs and the single trial variability

(STV) in the valence component in the LA group only. In other words,

the higher the valence of the neural response (as indexed by the EEG),

the faster the LA participants responded to the target. Ultimately

these results offer a link between behaviour and neuronal variability

in our valence component in the LA group. We propose that trial-by-

trial variability in RT is linked to variations in trial-by-trial incentive

motivation, triggered by the gain and loss cues. Since we found a

strong effect of trial outcome in our regression, we speculate RT vari-

ability may also by related to neuronal variability due to fluctuations

in global reward state (i.e., accumulated reward over time) which indi-

rectly effects motivation.47 Our regression analyses demonstrated RT

could not be explained by trial order, thus variations in RT did not

reflect participant fatigue as the task progressed.

4.5 | Strengths and limitations

A strength of this study was the application of ML analyses to the

data – a multivariate approach that makes use of information across

the whole brain of electrodes rather than focusing on a single elec-

trode (or small cluster of electrodes). The approach linearly combines

information from all electrodes into a single channel (i.e., single trial

component). By integrating across space, rather than averaging across

time, SNR is increased and interference from other sources reduced,

when compared with the univariate ERP method.19

Although there was no significant group difference in the cue-P3

ERP valence sensitivity (i.e., gain vs. loss contrast using a trial aver-

aged approach calculated over P1, P2, POz, Pz) (Figure 2A,B), the

comparison of ML valence discrimination performance over the same
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time window demonstrated a significant between-group difference.

Discrepancies between the results could be a consequence of the

enhanced SNR offered by the ML approach. That is, the ML analysis

linearly integrated information from all trials and electrodes to deter-

mine time points of maximum discrimination between conditions

(i.e., single trial valence component), whereas our ERP cue-P3 analyses

collapsed information across trials, ignoring inter-trial variability, and

was localised over a group of four parietal electrodes. The sample size

was relatively modest (total n = 44).

4.6 | Future directions

Chronic substance abuse overstimulates the mesolimbic pathway

causing neuroadaptations which raise the natural reward threshold,

contributing to the maintenance of drug-seeking and taking behav-

iour.48 Considering severe neuroadaptation from alcohol consumption

is not present in young adult nonchronic users,49,50 it is theorised that

the disrupted valence processing uncovered in this study is pre-

existing in our HA group and could be a neurophysiological marker for

the development of more severe AUDs. To confirm this hypothesis

further longitudinal research is required, which evaluates sensitivity to

valence and salience from youth to adulthood, and its relationship

with transition to AUD. Future studies could also seek to extend the

analysis to other groups (e.g., to detect differences across mild, to

moderate and severe AUD).

5 | CONCLUSION

In the present study, young adults with higher AUDIT scores

exhibited disrupted valence processing, but intact salience

processing, compared with those with low AUDIT scores. More spe-

cifically, during reward anticipation the HA group had lower differ-

entiation between the cues indicating potential to win or lose

money. In contrast, the HA group showed a trend towards

enhanced differentiation between incentive and neutral cues within

the general motivational system. The multivariate ML approach

demonstrated here allowed valence and salience to be disentangled.

Furthermore, by preserving variance among trials within a task it

was possible to examine dynamic cognitive states of individual par-

ticipants and the relationship between their brain and behaviour.

These benefits have potential clinical relevance as they could sup-

port patient diagnosis and stratification, where subtle individual dif-

ferences in neural processing may be informative of a predisposing

vulnerability to a disease and potential response to different treat-

ment types.
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