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Pro-Resolving Ligands
Orchestrate Phagocytosis
Christa Decker , Sudeshna Sadhu and Gabrielle Fredman*

The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States

The resolution of inflammation is a tissue protective program that is governed by several
factors including specialized pro-resolving mediators (SPMs), proteins, gasses and
nucleotides. Pro-resolving mediators activate counterregulatory programs to quell
inflammation and promote tissue repair in a manner that does not compromise host
defense. Phagocytes like neutrophils and macrophages play key roles in the resolution of
inflammation because of their ability to remove debris, microbes and dead cells through
processes including phagocytosis and efferocytosis. Emerging evidence suggests that
failed resolution of inflammation and defective phagocytosis or efferocytosis underpins
several prevalent human diseases. Therefore, understanding factors and mechanisms
associated with enhancing these processes is a critical need. SPMs enhance
phagocytosis and efferocytosis and this review will highlight mechanisms associated
with their actions.
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INTRODUCTION

Elie Metchnikoff uncovered the significance of phagocytosis nearly 100 years ago (1). Since then,
phagocytosis has been recognized as a critical cellular program for innate and adaptive immune
responses to foreign material. Moreover, we now appreciate that engulfment and neutralization of
invading organisms is key to maintain health. Phagocytes like PMN and macrophages promote
microbial removal and wound debridement. Mechanisms associated with phagocytosis continue to be
uncovered which has aided in our understanding of inflammation and disease. There are now numerous
endogenous factors like lipid mediators (LMs), proteins, metabolites and gasses, that can promote
phagocytosis. For example, LMs like specialized pro-resolving mediators (SPMs) are biosynthesized
from arachidonate (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or n-3
docosapentaenoic acid (DPA) (2, 3). SPMs are named lipoxins, resolvins, protectins, their aspirin-
triggered isomers, maresins, cysteinyl-conjugated SPMs (CTRs) and 13-series resolvins (RvTs) (2, 4–9).
Each of the SPMs has a distinct chemical structure (2) and several of the SPMs bind and signal through
distinct G-protein coupled receptors (GPCRs) (10–14). SPMs in general exert a tissue protective action
in as much as they can temper pro-inflammatory factors and promote the clearance of harmful stimuli
and dead cells (i.e. phagocytosis). Pro-phagocytic ligands are not limited to SPMs and indeed the
repertoire of these factors are growing and is summarized in Table 1.

Non-resolving inflammation is an underpinning of several prevalent diseases, including
cardiovascular and neurodegenerative diseases, cancer, arthritis, asthma etc. Phagocytes play a major
org June 2021 | Volume 12 | Article 6608651
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TABLE 1 | Pro-resolving factors that promote phagocytosis.

Phagocyte Phagocytic action elicited References

Lipid
Mediators

EPA Derived RvE1 Macrophages (human
and murine)

-Increases phagocytosis of Zymosan, E. coli, C. albicans (15–19)

Neutrophils (human and
murine) -Promotes efferocytosis of apoptotic PMN

RvE2 Macrophages (human) -Increases phagocytosis of Zymosan (20)

RvE4 Macrophages (human) -Increases efferocytosis of apoptotic PMN, effete RBCs (21, 22)

DHA
Derived

RvD1, AT-
RvD1

Macrophages (human,
murine, rat)

- Increases phagocytosis of Zymosan, E. coli, P. aeruginosa, NTHi, IgA-
OVA-coated beads, Amyloidb, clot particles, cancer cell debris

(23–41)

Neutrophils (human and
murine)

- Promotes efferocytosis of apoptotic PMN, osteoblasts, Jurkats,
macrophages, thymocytes, and sickle cell RBCs

Fibroblasts (human) -Enhances clearance of necroptotic cells

RvD2 Macrophages (human
and murine)

-Enhances phagocytosis of live E. coli (29, 42–44)

Neutrophils (human and
murine)

-Promotes efferocytosis of apoptotic PMN apoptotic osteoblasts

RvD3, AT-
RvD3

Macrophages (human
and murine)

-Enhances phagocytosis (40, 45)
-Promotes efferocytosis of apoptotic PMN
-Increases uptake of cancer cell debris

RvD4 Macrophages (human) -Enhances phagocytosis of S. aureus, Zymosan (25, 46)
Fibroblasts (Human)
Whole blood phagocytes -Increases efferocytosis of apoptotic PMN

RvD5 Macrophages (human) -Enhances phagocytosis of E. coli (23)

MaR1,
MaR2

Macrophages (human
and murine)

-Enhances phagocytosis of E. coli, Zymosan (47–50)
–Increases efferocytosis of apoptotic PMN

PD1/NPD1,
AT-PD1

Macrophages (human
and murine)

-Increases efferocytosis of apoptotic PMN, thymocytes (15, 23, 41, 51–54)

Cys SPMs: Macrophages (human
and murine)

-Enhances phagocytosis of E. coli, Zymosan (8, 55–59)
MCTR1,
MCTR2,
MCTR3, -Increases efferocytosis of apoptotic PMN
PCTR1,
PCTR2,
PCTR3,
RCTR1,
RCTR2,
RCTR3

n-3 DPA
derived
SPMs

RvD5n-3DPA Macrophages (human
and murine)

-Increases phagocytosis of S. aureus, Zymosan (9, 14, 60)
PD1n-3DPA
Marn-3DPA
RvDn-3DPA
RvT -Enhances efferocytosis of apoptotic HL-60 cells

AA Derived LXA4, AT-
LXA4

Macrophages (human,
murine, rat, THP-1 cells)

-Enhances efferocytosis of apoptotic PMN (61–63)

LXB4, AT-
LXB4

Macrophages (human,
murine, rat)

-Increases phagocytosis of E. coli (63, 64)
-Enhances efferocytosis of apoptotic PMN

Proteins Annexin A1,
Ac2-26

Macrophages (human) -Enhances efferocytosis of apoptotic PMN (65)

DEL-1 Macrophages (murine) -Increases efferocytosis of apoptotic PMN (66)

IL-10 Macrophages (human) -Increases phagocytosis of E. coli (67)
-Enhances efferocytosis of apoptotic PMN

IFN-b Macrophages (murine) -Enhances efferocytosis of apoptotic PMN (68)

(Continued)
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role in the resolution of inflammation because of their ability to
neutralize and contain harmful stimuli and clear dead cells and
debris, which is a feed-forward process that helps repair tissue
injury. Not surprisingly, phagocyte functions in several diseases
mentioned above have been shown to be dysregulated and are nicely
reviewed in the following reference (79). Instead, we appreciate that
aging is a major risk factor for several diseases and is a scourge of
modernmedicine. Therefore, this mini review will highlight some of
the pro-phagocytic bioactions of SPMs, with a focus on aging.
Lastly, we will offer some suggestions for future studies in this arena.
PRO-RESOLVING LIGANDS
ENHANCE THE CLEARANCE
OF MICROBES AND DEBRIS

We now appreciate that phagocytosis and thus the engulfment and
neutralization of invading organisms is key tomaintain health. There
are several manners in which phagocytes like neutrophils or
macrophages ingest pathogens, which is nicely reviewed by
Flannagan RS et al. (80). Briefly, the removal of pathogens is a
highly orchestrated event that involves cell surface receptors and
specific signaling pathways to initiate recognition, engulfment and
degradation. SPMs have been shown to increase phagocytosis (Table
1) of pathogens and some of the initial findings are described below.
One of the earliest observations involved the SPM called Resolvin E1
(RvE1). RvE1 was shown to enhance the clearance of Candida
albicans by human neutrophils and in a mouse model of candidiasis
(17). In this same paper, RvE1 was also shown to be biosynthesized
by C. albicans. Other pathogens like Pseudomonas aeruginosa (81),
T. gondii (82) and T. cruzi (83) were also shown to biosynthesize
SPMs. Collectively, these studies demonstrate an intimate link
between host-derived SPMs and pathogens. Some questions
remain, like why would microbes make SPMs? From the
viewpoint of pathogens like Candida, RvE1 could potentially limit
the number of recruited polymorphonuclear lymphocytes (PMN),
Frontiers in Immunology | www.frontiersin.org 3
allowing for its persistence. From the perspective of the host,
Candida also increases IL-8 (which is a neutrophil
chemoattractant) and the presence of RvE1 can enhance local
phagocytes to clear Candida (17). From an evolutionary
perspective, it is possible that mammalian hosts hijacked SPMs as
important armament to protect against foreign invaders. Therefore it
is possible that evolutionary pressures on the host are what drove
SPMs to possess the ability to enhance phagocytosis. Along these
lines, several SPMs such as RvD5, PD1, RvD1 and RvD2 each
enhanced the clearance and neutralization of E. coli by neutrophils
and macrophages (23, 42). An important finding was that these
SPMs do not directly kill E. coli, but rather act on phagocytes to
enhance killing in a contained manner. Table 1 summarizes key
papers associated with SPM’s ability to enhance phagocytosis in
numerous contexts. SPMs also promote phagocytosis of pathogens
found in the lungs (34, 84, 85), which may be important for a return
to homeostasis post airway infections. Along these lines, RvD1 and
Mar1 contain and limit Mycobacterium tuberculosis intracellular
growth in macrophages (86). RvD1 increased antimicrobial peptides
including bactericidal/permeability-increasing protein (BPI) and LL-
37 and Mar1 only increased BPI. The control and containment of
Tuberculosis relies heavily on the balance between pro-inflammatory
and pro-resolving factors (87). Moreover, RvD1 and Mar1 each
stimulated NF-kB nuclear translocation but only Mar1 promoted
Nrf2 localization. These results suggest that while RvD1 and Mar1
have overlapping functions, they also exert distinct actions and thus
highlight the utter importance of having several distinct SPM species
available to promote optimal function. A deeper understanding of
the common and distinct actions of SPMs on phagocytosis are
of interest.

Along these lines, uncovering mechanisms associated with SPM
clearance of microbes and debris is an emerging area of research.
As an example, aspirin-triggered lipoxin A4 (or AT-LXA4) was
shown to enhance phagocytosis in a mannose scavenger receptor
dependent manner (61) because inhibition of the mannose
receptor by treatment with mannin completely abrogated AT-
LXA4’s ability to enhance the clearance of E. coli (61). In this same
TABLE 1 | Continued

Phagocyte Phagocytic action elicited References

Galectin-1 Microglial cells
Macrophages

-Enhances phagocytosis of myelin (69, 70)
–Increases efferocytosis of apoptotic PMN

Galectin-3 Neutrophils (human) -Enhances phagocytosis IgG-RBCs (71, 72)
Macrophages (murine) –Increases efferocytosis of apoptotic PMN

Melanocortin Macrophages (murine) -Enhances phagocytosis of zymosan (73)
–Increases efferocytosis of apoptotic PMN

Alpha-2-
macroglobin

Macrophages (murine) -Enhances phagocytosis of zymosan (74)
–Increases efferocytosis of apoptotic PMN

Gases H2S Macrophages -Enhances phagocytosis of bacteria (75)

CO Macrophages (human) -Increases phagocytosis of zymosan (76)
–Increases efferocytosis of apoptotic PMN

Nucleotides Adenosine PMN -Stimulates Fc-mediated phagocytosis (77)

Lipids Estrogen Microglial cells -Stimulated efferocytosis of apoptotic PC12 cells (78)
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study, the authors also found that AT-LXA4 required PI3K and
p110g to enhance phagocytosis (61). AT-LXA4 binds and signals
through a GPCR called ALX/FPR2 and so these results suggest that
SPMs engage signaling pathways via their cell surface GPCRs.
Accordingly, RvD2 binds and signals through a GPCR called
GPR18 and knockdown of GPR18 abrogated RvD2’s ability to
enhance phagocytosis (43). Moreover, RvD2 enhanced the
expression of key phagocytic recognition receptors like CD206
and CD163 (43). In a subsequent study, RvD2 was also found to
increase phagocytosis through mechanisms involving cAMP, PKA
and STAT3 (44). Other SPMs, like 13S,14S-epoxy-DHA (or eMaR)
and RvD1 also increased surface levels of CD163 and CD206 on
human macrophages (88). Also, n-3 docosapentaenoic acid–
derived resolvin D5 (RvD5n-3 DPA) enhanced phagocytosis
through mechanisms involving a GPCR called GPR101 (14).
Collectively, these are only a few examples of how SPMs enhance
phagocytosis and further understanding of the intricate signaling
pathways associated with SPM-initiated phagocytosis are of
immense interest. SPMs have also been reported to enhance the
clearance of debris, including fibrin clots (35), which is an
important process to maintain vascular homeostasis. Overall,
SPMs enhance the clearance of microbes and debris. There are
several remaining questions: Do particular subsets of macrophages
or neutrophils respond optimally to SPMs, and if so which species
of SPM? How are SPM GPCRs regulated during phagocytosis?
How do SPMs impact macrophage or PMN metabolism when
ingesting and neutralizing pathogens? Addressing these questions
will likely yield important information as to how cells integrate
SPM signals and may help inform the development of targeted
therapies for particular infections. Another critical aspect to the
maintenance of homeostasis is the clearance of dead cells. The next
sections will focus on how SPMs enhance dead cell removal
by phagocytes.
PRO-RESOLVING LIGANDS ENHANCE
THE CLEARANCE OF DEAD CELLS

Billions of cells die daily in adult lives and so the efficient
clearance of dead cells is utterly critical for homeostasis (89).
Moreover, a large number of cells also die during the resolution of
a pathological outcome, such as infection or tissue damage (89).
The engulfment of dead cells by professional phagocytes like
macrophages is called efferocytosis, which is a highly intricate
process that ultimately allows for the recycling of cellular
products and tissue repair (79, 90). Failure to clear dead cells
can lead to accumulation of necrotic debris, which is associated
with several prevalent human diseases, including atherosclerosis
(91). Therefore, a major topic of interest in recent years has been
the exploration of factors that increase efferocytosis to quell
persistent inflammation, limit tissue necrosis and promote repair.

SPMs are of immense interest because of their ability to
enhance efferocytosis. Lipoxin A4 (LXA4) was among the first
SPMs that was published to enhance the clearance of apoptotic
cells in vitro (62, 92). Mechanistically, the increase in efferocytosis
is in part through LXA4’s ability to dephosphorylate MYH9, a
Frontiers in Immunology | www.frontiersin.org 4
protein involved with cytoskeletal rearrangement (92). This
dephosphorylation results in the activation of components of a
signaling cascade leading to cell polarization and increased
phagocytosis. In addition to MYH9, LXA4 also activates CDC42,
which promotes engulfment (92).

Numerous SPMs, including the E-series, D-series, DPA-
derived resolvins, protectins and maresins enhance the clearance
of dead cells (93). This redundancy again suggests that SPMs and
efferocytosis are utterly critical for tissue repair mechanisms and
our survival. The mechanisms by which SPMs enhance
efferocytosis are under investigation. Because SPMs have distinct
structures, the first step in our understanding toward mechanisms
is to investigate the receptors to which they bind. Indeed, several
SPM receptors have been discovered and are highlighted in further
detail by Chiang et al. (2). Removal of key receptors for SPMs
demonstrate that SPMs initiate pro-efferocytotic programs
through their cell surface receptors (14, 36, 43, 47).

Intracellular signaling associated with SPM mechanisms are
also of immense interest. Resolvin D1 for example binds and
signals through a GPCR called ALX/FPR2 (36). RvD1 initiates a
cAMP-PKA signaling event and also limits the phosphorylation
of p47, a crucial molecule involved in NADPH oxidase (NOX)
activation (37). Limiting the activation of NOX aids in quelling
inflammation by reducing the amount of ROS which trigger
oxidative stress induced cellular damage (37). To this end, it is
appreciated that certain pro-inflammatory cytokines, like TNF-a
can limit efferocytosis through increased ROS in macrophages
(94). RvD1 also limits LPS-induced TNF-a expression to rescue
defective efferocytosis by controlling the classical NF-kB1
pathway and activating an atypical pathway that suppresses the
secretion of TNF-a and IL-1b (28). Moreover, through C-
terminal cleavage of NF-kB1, RvD1 initiates formation of a p50/
p50 homodimer which competes for DNA binding with the
classical heterodimer (28). Therefore, RvD1’s actions in limiting
the release of pro-inflammatory factors (28, 37, 95–97) may also
aid in its ability to enhance efferocytosis. Another interesting
angle is that oral administration of RvD1 was recently shown to
control key transcriptional profiles in ingesting macrophages in
vivo (98). For example, RvD1 reduced transcript levels of
coactivator‐associated arginine methyltransferase 1 (CARM1),
histone aminotransferase 1 (HAT1), histone deacetylase 5 and 7
(HDAC5 and HDAC7), protein arginine N‐methyltransferase 2
(PMRT2), and ribosomal protein S6 kinase, polypeptide 5
(RPS6KA5) in macrophages from inflammatory loci ex vivo
(98). With regard to the regulation of CARM1, adoptive
transfer of siCARM1‐transfected human macrophages to
zymosan‐challenged mice resulted in a significant increase in
PMN clearance, which suggests an important counter regulatory
role for CARM1 and efferocytosis (98). RvD1 also decreased
HDAC5 and HDAC7, which suggests that RvD1 may regulate
epigenetic mechanisms (98). How RvD1-initated epigenetic
control of macrophages impacts its efferocytic function is of
interest. Along these lines, RvD1 also regulated a panel of
miRNAs that might contribute to phagocytosis, efferocytosis
and resolution of inflammation (99) and a deeper exploration
of roles and mechanisms of pro-resolving and pro-phagocytic
miRNAs are also of interest.
June 2021 | Volume 12 | Article 660865
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Another emerging area of interest is the macrophage’s ability
to carry out continual efferocytosis, which is the ability of
individual macrophages to engulf multiple apoptotic cells
consecutively. Early work in this arena demonstrated that
CD11b levels were associated with a macrophage’s ability to
eat “a little” or “a lot” of apoptotic cells (100). We now appreciate
that macrophages within tissues are very diverse with regard to
function and phenotype and newer research suggests that
macrophage metabolism is an important player in the ability of
a macrophage to eat apoptotic cells (101–105). Apoptotic cell
engulfment and the eventual breakdown of the corpse provides
the fuel for metabolic programs like fatty acid oxidation (FAO)
and oxidative phosphorylation (OXPHOS) (101). Macrophages
also engage aerobic glycolysis to ingest apoptotic cells (105).
Recent work by Yurdagul A et al. demonstrates a critical role for
amino acid metabolism and continual efferocytosis (102, 103).
Briefly, they found that arginine can be metabolized to ornithine
by Arginase-1 in pro-resolving macrophages. Moreover they also
found that pro-resolving macrophages converted ornithine into
putrescine via ornithine decarboxylase (ODC) for continual
efferocytosis. To further this mechanism they then found that
ODC-dependent putrescine synthesis drives IL-10 production
and inflammation-resolution in vivo. Moreover, putrescine
promoted MerTK levels through sH3K9 di/trimethylation
mechanisms. Together, these results uncover key players in our
understanding of the link between macrophage metabolism,
efferocytosis and inflammation resolution programs.
EFFEROCYTOSIS PROMOTES SPM
BIOSYNTHESIS

Another fascinating finding is that the process of efferocytosis
itself leads to the biosynthesis of more SPMs (15, 106, 107). This
feed-forward circuit was first demonstrated in murine systems
(15). Human macrophages that had ingested apoptotic PMN also
had increased biosynthesis of SPMs, including RvD1, RvD2 and
LXB4 (106). A potential mechanism for the increase in SPMs
during efferocytosis is transcellular biosynthesis (106). From a
mechanistic perspective and to determine whether released
SPMs enhance efferocytosis in a feed forward manner, Chiang
N et al. knocked down a key SPM biosynthetic enzyme called 15-
lipoxygenase (15-LOX) in human macrophages. They found the
15-LOX silenced macrophages had significantly impaired
efferocytosis, which suggests a critical role for SPM synthesis
and efficient clearance (76). Another mechanism that promotes
SPMs during efferocytosis is through MerTK signaling (107). Cai
B. et al. demonstrated that MerTK signaling led to increased
SPMs and that silencing of MerTK resulted in less SPMs (107).
Mechanisms through which MerTK increases SPMs may be
through non-nuclear subcellular localization of a key SPM
biosynthetic enzyme called 5-lipoxyeganse (5-LOX) (95, 107).
Collectively, these papers point to a critical feed-forward
mechanism in which efferocytosis stimulates SPMs and SPMs
act locally to further enhance efferocytosis.
Frontiers in Immunology | www.frontiersin.org 5
RELEASED SPMS AS IMPORTANT
“GOOD-BYE” TISSUE MESSENGERS

SPMs and other lipid mediators were also shown to be released
by apoptotic neutrophils (106). Interestingly some SPMs
enhance the migration of monocytes and macrophages and so
released SPMs by apoptotic cells may act as a signal for
phagocytes to find these cells for swift clearance. Moreover,
these findings suggest that apoptotic cells themselves are active
participants in their own clearance. Newer work suggests that
metabolites such as putrescine released by apoptotic cells also
participate in their own clearance (108) and so released products
from apoptotic cells may play critical roles in their swift
clearance. More work regarding apoptotic cell secretomes and
how released factors impact their clearance are of interest. In fact,
Medina et al. profiled the metabolite secretome of apoptotic
lymphocytes and macrophages and showed specific metabolites
released by apoptotic cells act as “good-bye” messengers to
modulate tissue functions. These metabolites reprogram the
genes of neighboring healthy cells to facilitate an anti-
inflammatory phenotype and promote tissue homeostasis (108).

Moreover, we know there are many modes of cell death beyond
apoptosis. Lytic cell death like necroptosis, impacts phagocyte
function given the pro-inflammatory nature of their death (109). In
addition to the release of DAMPs, cytokines and chemokines, recent
work from our lab suggests that necroptotic cells release prostanoids
(26). Advanced atherosclerotic plaques from hypercholesterolemic
Mlkl-/- mice had significantly more prostanoids like PGE2, PGD2,
PGF2a, and thromboxane (TX) compared with wild type (Wt)
controls (26). In vitro studies revealed that necroptotic macrophages
and endothelial cells also released prostanoids, including TX and
PGE2 (26). Receptor antagonists for DP (i.e. PGD2 receptor), EP2
(i.e. PGE2 receptor) and TP (i.e. TX receptor) rescued defective
efferocytosis caused by necroptotic cell releasate, suggesting that a
prostanoid storm negatively impacts phagocyte behavior (26).
Moreover, macrophages stimulated with a TP agonist called
U46619 impaired the clearance of both apoptotic and necroptotic
cells and so TXmay be a novel “avoidme” signal (26). As mentioned
above, certain pro-inflammatory cytokines also limit efferocytosis and
so released factors from necroptotic cells (or cells that undergo a pro-
inflammatory mode of death) may play a large role in negatively
impacting phagocyte behavior in tissues.
SPMS PROMOTE THE CLEARANCE
OF NECROPTOTIC CELLS

Necroptosis is a pro-inflammatory form of cell death (110, 111) and
so the accumulation of necroptotic cells can be damaging to tissues
(112). Therefore, uncovering mechanisms associated with
necroptotic cell clearance is of immense interest. Earlier work
demonstrated that necroptotic cells were cleared by macrophages
in a distinct and less efficient manner than apoptotic cells (113, 114).
However, detailed molecular mechanisms, quantification methods,
and factors that augment the clearance of necroptotic cells were not
June 2021 | Volume 12 | Article 660865
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known. We recently found that necroptotic macrophages express
high levels of a “don’t eat me” signal called CD47 (27). Other work
suggests that the exuberant expression of CD47 results from pro-
inflammatory cytokines, like TNF-a (115), and so the pro-
inflammatory nature of this cell death likely drives the increase of
CD47. Moreover, because necroptotic cells have regions
of disrupted membrane (109), we also found that elevated levels
of CD47 were present in clusters on the surface of the necroptotic
cell (27). The elevated levels and clustering of CD47 led to an
inefficient “nibbling” of necroptotic cells via a RhoA-pMLC
signaling event (27). RvD1 when given in vitro and in vivo was
able to enhance the clearance of necroptotic cells by promoting
whole cell engulfment (26, 27). RvD1-stimulated whole cell
engulfment of necroptotic cells by macrophages was non-
phlogistic and RvD1 acted by limiting RhoA-pMLC signaling and
promoting CDC42 (27). Additionally, RvD1-stimulated
macrophages swiftly recognized necroptotic cells for their
engulfment and how RvD1 overcame the “don’t eat me”
recognition was of interest. ER-mediated phagocytosis is a process
in which macrophages release calreticulin onto their target. In other
contexts, ER-mediated phagocytosis has been described and is
thought to be important for eating large cargo (116, 117). Our
work suggests that RvD1 promotes the release of calreticulin from
macrophages (117) and may be a mechanism through which RvD1
can swiftly recognize these cells for whole-cell clearance. This work
highlights the intricate set of signals/signaling that a macrophage
needs to decode for efficient engulfment and clearance of dead cells.

From ametabolic perspective RvD1 stimulates p-AMPK, fatty
acid oxidation (FAO) and oxidative phosphorylation (OXHPOS)
mechanisms in macrophages to allow for enhanced clearance of
Frontiers in Immunology | www.frontiersin.org 6
necroptotic cells (26). We found OXPHOS is not as readily
activated in vehicle-treated macrophages that were ingesting
necroptotic cells (26), which suggests that the cargo load
within the macrophage may be important for initiating these
programs. As mentioned above, apoptotic cell uptake and its
eventual breakdown provides the fuel for FAO and OXPHOS in
macrophages (101) and so these data suggest that RvD1
maintains this protective metabolic phenotype.
PRO-RESOLVING LIGANDS RESCUE AGE-
RELATED DEFECTS IN EFFEROCYTOSIS

The population is rapidly aging, health care costs are already
insurmountable and therapeutics to manage several age-related
diseases are limited. Therefore aging and age-related diseases are the
scourgesofmodernmedicine.Aging is a complexprocess that involves
genetic, environmental and biological factors. Therefore
understanding a common mechanism that may link all of these
diseases will inform the development of therapeutics that can
promote health span. Persistent, non-resolving inflammation, or
inflammaging, largely contributes to a panoply of age-related
diseases including periodontal disease, neurodegenerative diseases,
macular degeneration, and atherosclerotic cardiovascular disease
(118). Defective efferocytosis in aging is well appreciated (119–123).
Linehanet al. observed thatperitonealmacrophages fromoldmicehad
diminished efferocytosis comparedwith peritonealmacrophages from
young mice (121). Interestingly, they transferred peritoneal
macrophages from young mice into the peritoneum of old mice,
and found that the young macrophages exhibited defective
A B

FIGURE 1 | Schematic diagram depicting failed efferocytosis mechanisms during aging. (A) Efferocytic receptors like MerTK or TIMD4 on young healthy
macrophages interact with phosphatidyl serine on apoptotic cells to promote efficient clearance. SPMs promote efferocytosis and MerTK signaling in a feed forward
manner which stimulates the synthesis of SPMs. In response to apoptotic cell ingestion, the pro-inflammatory p38 MAPK pathway is inhibited and macrophages
prevent the production of pro-inflammatory programs. (B) In the context of aging, MerTK is cleaved by released factors from senescent cells (i.e. factors from the
senescence-associated secretory phenotype or SASP) which limits apoptotic cell uptake and the feed-forward pro-resolution circuit. TIMD4 expression is also
significantly decreased on macrophages from aging humans which drives the activation of p38 to propagate inflammation.
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efferocytosis similar to thatofmacrophages fromoldmice (121),which
suggests that the aging milieu drives defective efferocytosis (120, 121).
Lungmacrophages fromoldmice also exhibiteddefective efferocytosis,
whichmayaccount for theaccumulationof leukocytes and failed tissue
repair in lungs from influenza-infected aged mice (124, 125).

Accumulation of senescent cells is also associated with
inflammaging (126). Senescent cells acquire a senescence-
associated secretory phenotype (SASP) which exacerbates
inflammation (126) and contributes to inefficient clearance of
dead cells (38). Briefly, we found that released factors from
senescent cells promote the cleavage of a critical efferocytosis
receptor on macrophages called MerTK to limit efferocytosis (38).
RvD1rescued senescent cell-induceddefective efferocytosis in vitro.
RvD1 treatment to old mice also increased in situ efferocytosis in
lungsposthind-limb ischemia-reperfusion injury (38).MerTK is an
interesting efferocytosis receptor because of its ability to stimulate a
pro-resolution feed-forward circuit. In this regard,MerTK cleavage
is associated with delayed temporal resolution, impaired SPM
synthesis over pro-inflammatory lipid mediators and has been
shown to promote atherosclerosis (107, 127). Also, with regard to
otherTAMreceptors andaging, Frisch et al. found thatGas6,which
is a ligand for MerTK (and other TAM receptors), was down
regulated in the bone marrow from aged mice (123) which may
account for defective efferocytosis in the aging bonemarrowmilieu.
Moreover, they demonstrated loss-of-function of another
efferocytic TAM receptor, Axl in bone marrow macrophages
from aged mice which further leads to a significant increase in
pro-inflammatory IL-1b signaling. Together, these results suggest
that efferocytosis receptors and thus a feed-forward pro-resolution
circuit may be dysfunctional in aging.

Along these lines, imbalances in the SPM to pro-inflammatory
lipid mediator ratios have been observed in mice and humans in the
context of inflammaging (122, 128). In elderly humans, urinary
lipoxins (LXs) were decreased resulting in a profound imbalance
between pro-resolving LXs and leukotrienes (LTs) (128). Other
relevant age-related diseases like atherosclerosis, peripheral vascular
disease, periodontal disease and Alzheimer’s disease are also
associated with imbalances in this critical ratio and restoration of
defective SPMs to these pre-clinical models of disease result in
protection (129–132). Nevertheless, how these imbalances arise in
aging is of interest but work suggests that one mechanism (of many)
may be through MerTK signaling (38). MerTK signaling in human
macrophages decreased activity of the mitogen-activated protein
kinase (MAPK) p38 and the kinase MK2, resulting in the increased
non-phosphorylated, cytoplasmic form of 5-LOX and enhanced SPM
biosynthesis (133). Therefore, downstream signaling events from
efferocytic responses may drive SPM synthesis of pro-inflammatory
mediators. Of note, RvD1 was shown to limit p38 activation
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which promotes a pro-resolution circuit in macrophages (95).
Therefore, continued activation of p38 may not only drive defective
efferocytosis but also impair resolution in aging (Figure 1).

Recent work demonstrated that the efferocytosis receptor,
TIM-4 was decreased on macrophages from elderly humans in
self-limited inflammatory loci (134). Reduced levels of TIM4 in
elderly humans was attributed to increased p38 activation (134)
and blockade of elevated p38 restored efferocytosis in the elderly.
This work provides strong rationale for therapeutic strategies
that target p38 to promote efferocytosis in aging (135). Together,
phagocyte function in aging is impaired, which may be one of
several factors that contributes to limited tissue repair in aging. A
deeper exploration of efferocytosis mechanisms in aging may
help inform the development of new tissue-reparative therapies.
CLOSING REMARKS: THERAPEUTIC
OPPORTUNITY

SPMsandother pro-resolving ligands offer tremendous opportunities
for therapeutic use. Currently, treating inflammation is difficult
because we evolved inflammatory reactions to fight infection and
repair wounds. Therefore anti-inflammatories possess a risk in which
critical host defense mechanisms are weakened. Anti-inflammatories
mayhalt theprogressionofongoing inflammation, butdovery little to
repair the already damaged tissue. Ultimately what is lacking is a
therapeutic strategy that can repair tissuedamageonce ithasoccurred.
SPMs are protective in numerous pre-clinical models of disease and
most recently have been shown to reduce PMN infiltration during
acute sterile inflammation in humans (136). SPMs stimulate
phagocytes to clear, and neutralize pathogens or accelerate the
removal of unwanted dead cells or debris, all while dampening
inflammatory mediators and stimulating necessary pro-repair
factors (58). Thus, SPMs offer an entirely new way to control
inflammation which includes enhancing the removal of harmful
stimuli and promoting tissue repair.
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