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Plants monitor seasonal cues to optimize reproductive success by tuning onset of repro-

duction and inflorescence architecture. TERMINAL FLOWER 1 (TFL1) and FLOWERING

LOCUS T (FT) and their orthologs antagonistically regulate these life history traits, yet their

mechanism of action, antagonism and targets remain poorly understood. Here, we show that

TFL1 is recruited to thousands of loci by the bZIP transcription factor FD. We identify the

master regulator of floral fate, LEAFY (LFY) as a target under dual opposite regulation by TFL1

and FT and uncover a pivotal role of FT in promoting flower fate via LFY upregulation. We

provide evidence that the antagonism between FT and TFL1 relies on competition for

chromatin-bound FD at shared target loci. Direct TFL1-FD regulated target genes identify this

complex as a hub for repressing both master regulators of reproductive development and

endogenous signalling pathways. Our data provide mechanistic insight into how TFL1-FD

sculpt inflorescence architecture, a trait important for reproductive success, plant archi-

tecture and yield.
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Of particular importance for reproductive success of
flowering plants is optimal timing of onset of reproduc-
tive development and of the transition from branch to

floral fate in the inflorescence in response to seasonal cues1–5. For
example, in plants that flower only once, like Arabidopsis and
most crops, an early switch to flower formation allows rapid
completion of the life-cycle and is beneficial in a short growing
season5–7. At the same time early onset of flower formation
reduces seed set and yield since flowers form in lieu of branches,
which support production of more flowers per plant5–8. By
contrast, delaying flower formation increases branching and total
flower number, but prolongs time to seed set5–8.

Key regulators of seasonal control of onset of reproductive
development and of the switch from branch to floral fate in
primordia of the inflorescence are members of the
phosphatidylethanolamine-binding protein (PEBP) family of
proteins5,6,9,10. Among these, FT promotes onset of the repro-
ductive phase and flower formation (determinacy), while TFL1
promotes vegetative development and branch fate (indetermi-
nacy)9,11–13. Arabidopsis flowers in the spring and FT accumu-
lates when the daylength exceeds a critical threshold, while TFL1
is present in both short-day and long-day conditions2,3,14.

FT and TFL1 are small mobile proteins, which have been
implicated in transcriptional regulation but do not have DNA-
binding domains14–18. Biochemical and genetic studies showed
that FT physically interacts with the bZIP transcription factor FD
via 14-3-3 proteins and similar interactions have recently been
described for TFL119–22. Indeed, despite their antagonistic roles,
TFL1 and FT are distinguished by only a small number of non-
conservative amino acid changes11,12,23,24. FT can be converted
into TFL1 and vice versa by a single amino acid substitution and
such mutations have been selected for during crop domestica-
tion23–26. Accumulating evidence suggests that FT acts as a
transcriptional co-activator, while TFL1 may either prevent FT
activity or act as a co-repressor23,27. However, non-nuclear roles
have also been described for both TFL1 and FT28,29.

A key unanswered question is how the florigens modulate plant
form—what are the downstream processes they set in motion and
what is molecular basis for their antagonism? Here we show that
TFL1 is recruited to target loci by the bZIP transcription factor
FD. We identify the master regulator of floral fate, LEAFY, as a
target under dual opposite regulation by TFL1 and FT and
uncover a prominent role for FT in LFY upregulation. We find
that the antagonism between TFL1 and FT relies on competition
for access to chromatin bound FD at the LFY locus and other
shared targets. Finally, we identify hundreds of TFL1–FD regu-
lated genes linking this complex not only to repression of master
regulators of floral fate, but also of diverse endogenous signalling
pathways. The combined data reveals how TFL1 and FT tune
inflorescence architecture in response to seasonal cues by altering
transcriptional programs that direct primordium fate in the
inflorescence.

Result
TFL1 is recruited to thousands of loci by the bZIP transcrip-
tion factor FD. Mechanistic insight into TFL1 activity has been
hampered by low protein abundance. To overcome this limitation
and to test the role of TFL1 in the nucleus, we first generated a
biologically active, genomic GFP-tagged version of TFL1 (gTFL1-
GFP tfl1-1) (Supplementary Fig. 1a–c) and identified a develop-
mental stage and tissue where TFL1 accumulates. TFL1 protein
strongly accumulated in branch meristems in the axils of cauline
leaves in 42-day-old short-day grown plants just prior to the
switch to flower formation (Fig. 1a). To conduct TFL1 chromatin
immunoprecipitation followed by sequencing (ChIP-seq), we next

isolated shoot apices at this stage for anti-GFP immunoprecipi-
tation. Because TFL1 is present in very few cells and binds
chromatin indirectly, we combined eight individual ChIP reac-
tions per replicate to enhance detection. We conducted FD ChIP-
seq in analogous fashion using a published, biologically active,
genomic fusion protein (gFD-GUS fd-1)20 (Supplementary
Fig. 1d). This approach yielded high-quality ChIP-seq data in
both cases (Supplementary Figs. 2 and 3a).

In total, we identified 3308 and 4422 significant TFL1 and FD
peaks (MACS2 summit qval ≤ 10−10), respectively (Fig. 1b). The
TFL1 peaks significantly overlapped with the FD peaks (72%
overlap, p val < 10−300, hypergeometric test; Fig. 1b–d). De novo
motif analysis of ChIP peak summits identified the G-box cis
motif, a known FD-binding site30, as most significantly enriched
(p val < 10−470) and frequently present (>84%) under TFL1
bound and TFL1/FD co-bound peaks (Fig. 1e and Supplementary
Fig. 2). To test whether TFL1 chromatin occupancy is dependent
on the presence of FD, we also performed TFL1 ChIP-seq in the
fd-1 null mutant. TFL1 chromatin occupancy was strongly
reduced in fd-1 (Fig. 1c, d). Our data point to a prominent
nuclear role for TFL1 and show that FD recruits TFL1 to the
chromatin of target loci.

Annotating FD and TFL1 peaks to genes identified 2699 joint
TFL1 and FD targets. Gene Ontology (GO) term enrichment
analysis implicates these targets in abiotic and endogenous
stimulus response and reproductive development (Supplementary
Table 1). TFL1 and FD peaks were present at loci that promote
onset of the reproductive phase in response to inductive
photoperiod2,3,31 like GIGANTEA (GI), CONSTANS (CO), and
SUPPRESSOR OF CONSTANS 1 (SOC1) and at loci that promote
floral fate31,32 such as LFY, APETALA1 (AP1), and FRUITFULL
(FUL) (Fig. 1f). Identification of these TFL1 and FD co-bound
targets fits with the known biological role of TFL1 as a suppressor
of onset of reproduction and of flower fate and the proposed
molecular function of TFL1 in opposing gene activation11–13,27.

LEAFY is under dual opposite regulation by TFL1/FD and FT/FD.
We selected the LEAFY (LFY) gene, which encodes a master reg-
ulator of flower fate33,34, to further probe the molecular mechanism
of action of TFL1. While TFL1 promotes branch fate, LFY promotes
flower fate in primordia (Supplementary Fig. 4a–f)13,33–35. Using
independent biological replicates, we confirmed FD-mediated TFL1
binding to LFY by ChIP-qPCR (Supplementary Fig. 4g, h). To test
whether LFY expression is rapidly repressed by the TFL1–FD com-
plex, we generated transgenic plants expressing a steroid inducible
version of TFL1 (TFL1ER; Supplementary Fig. 5). A single steroid
treatment reduced LFY levels by 50% after 4 h (Supplementary
Fig. 4i). The combined data suggest that the TFL1–FD complex
directly represses LFY.

To better understand TFL1 recruitment to the LFY locus, we
identified the genomic region sufficient and the cis motifs
necessary for TFL1 association with the LFY locus. TFL1 and
FD peak summits located to the second exon of LFY (Fig. 1f and
Supplementary Fig. 4g, h) and LFY reporters that lacked the
second exon were not repressed in response to TFL1 over-
expression (Supplementary Fig. 6a, b). Exonic transcription
factor-binding sites, although rare, are found in both animals
and plants, and frequently link to developmental regulation36,37.
To test whether LFY exon 2 (e2) alone is sufficient to recruit
TFL1–FD, we transformed gTFL1-GFP tfl1-1 plants with a T-
DNA containing only LFY e2. We detected strong TFL1
recruitment to the introduced copy of e2, using primer sets that
specifically amplify the transgene borne exon (Fig. 2a). Next we
identified three putative bZIP-binding sites in the second exon of
LFY; These include an evolutionarily conserved G-box and two
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partially conserved C-boxes (Fig. 2b). When we transformed
gTFL1-GFP tfl1-1 with a version of LFY e2 in which the three
bZIP binding were mutated (e2m3), we were unable to detect
TFL1 binding to the introduced copy of e2m3 (Fig. 2a). The three
bZIP-binding sites in the second exon of LFY are thus necessary
for TFL1 recruitment. Similar results were obtained when we
tested TFL1 recruitment to e2 and e2m3 via FD in yeast
(Supplementary Fig. 6c).

Having identified the cis motifs necessary for TFL1 recruitment
to LFY, we next probed their contribution to spatiotemporal LFY
accumulation. LFY reporters that contain e2 (pLFYi2-GUS,
Supplementary Fig. 6a) and a genomic LFY reporter (gLFY-
GUS, Fig. 2b) recapitulated endogenous LFY expression (Fig. 2c,
Supplementary Fig. 6d)34,35. Mutating the three bZIP-binding
sites in pLFYi2-GUS or gLFY-GUS caused ectopic reporter
expression in the centre of the inflorescence shoot apex (Fig. 2c,
Supplementary Fig. 6d). This is the precise region where TFL1
protein accumulates during reproductive development (Fig. 2c)14.
Indeed, LFY is known to be ectopically expressed in the

inflorescence shoot apex of tfl1 mutants during reproductive
development13. Thus, TFL1–FD binding to the bZIP motifs of e2
of LFY is required to prevent ectopic LFY accumulation in the
centre of the shoot apex.

Surprisingly, the bZIP-binding site mutations in the second
exon of LFY in addition strongly reduced reporter expression in
incipient and young flower primordia (Fig. 2c, Supplementary
Fig. 6d). This suggests that the bZIP motifs may be required for
LFY upregulation in these flower primordia, perhaps via FT.
Based on prior studies31,38–41, LFY was not thought to be an
immediate early FT target. Because constitutive mutants that
delay onset of the reproductive phase, like ft, indirectly delay the
switch to flower formation42 we wished to deplete FT specifically
during the reproductive phase to test whether FT promotes LFY
expression. Towards this end, we used a minimal FT promoter
(p4kbFT) that is active in parts of leaves and stems in long-day
grown plants only after day 1243. We fused p4kbFT to a
previously characterized FT-specific artificial microRNA44. In
the resulting conditional ft mutant (p4kbFT:amiRFT), onset of
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reproduction was not delayed (Fig. 3a, Supplementary Fig. 7).
However, p4kbFT:amiRFT plants displayed a significantly delay
in onset of flower formation and failed to upregulate LFY
expression (Fig. 3a and Supplementary Fig. 7).

In a parallel approach to test the role of FT in LFY induction, we
induced endogenous FT expression by treating 42-day-old short-
day grown plants with a single far-red-enriched long-day
photoperiod (FRP). Far-red light enhances FT induction by
photoperiod (Supplementary Fig. 8a, b)45,46. In addition, FRP
triggered significant LFY induction, which was dependent on the
presence of FT (Supplementary Fig. 8c, d). A single FRP treatment
also induced the gLFY-GUS reporter, but only if the bZIP-binding
sites in e2 were intact (Fig. 3b). Finally, we probed for rapid LFY
induction by FT after generating an estradiol inducible version of

FT (35S:FT-HAER) (Supplementary Fig. 9a–c). A single steroid
treatment triggered significant LFY induction after 4 h (Supple-
mentary Fig. 9d). After crossing FT-HAER to LFY reporters
containing (pLFYi2:GUS) or lacking (pLFYi2m3:GUS) the bZIP-
binding sites in e2, we tested reporter activity in response to steroid
activation. GUS upregulation was similar to that of endogenous
LFY when the bZIP-binding sites were present (Supplementary
Fig. 9e). By contrast, GUS expression was not upregulated in the
pLFYi2m3:GUS FT-HAER plants after steroid induction (Supple-
mentary Fig. 9e). The combined loss-of-function, photoinduction
and gain-of-function data indicate that FT–FD directly activates
LFY expression via bZIP-binding sites in the second exon.

These findings prompted us to assess the biological importance
of the LFY bZIP-binding sites for inflorescence architecture.
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While a genomic GFP-tagged LFY construct (gGLFY) fully
rescued the lfy-1 null mutant (in 24 out of 25 independent
transgenic lines), a construct which preserves LFY protein
sequence but has mutated bZIP-binding sites (gGLFYm3) yielded
only partial rescue (in 15 out of 15 independent transgenic lines)
(Fig. 3c, d and Supplementary Fig. 10). In the gGLFYm3 lfy-1
plants onset of flower formation was significantly delayed, leading
to formation of many more branches, and LFY accumulation was
strongly reduced (Fig. 3c, d and Supplementary Fig. 10). The
dramatic reduction of LFY accumulation is striking given the
many additional positive inputs into LFY upregulation previously
identified38,40,47,48. Our combined data uncover a pivotal role of
FT in LFY upregulation and reveal that FT promotes flower
formation via LFY. We note that LFY accumulation in the centre
of the gGLFYm3 lfy-1 shoot apex was much lower than that
observed in tfl1 mutants and that gGLFYm3 lfy-1 did not exhibit
the terminal flower phenotype typical of tfl1 (Supplementary
Fig. 10)13. This is expected since the bZIP mutations at the LFY
locus prevent access of both TFL1 and of activating PEBP family
members FT and the closely related TWIN SISTER OF FT (TSF).
Indeed, it has been shown that the terminal flower phenotype of
tfl1 is suppressed in tfl1 ft tsf triple mutants49.

FT competes TFL1 from FD bound at shared target loci.
Having identified LFY as a target under dual opposite regulation
by TFL1 and FT, we next investigated the mechanism underlying
the TFL1–FT antagonism at this locus. To test for possible
competition between FT and TFL1 at the chromatin, we con-
ducted anti-HA ChIP-qPCR in 42-day-old short-day grown FT-
HAER gTFL1-GFP plants four hours after mock or steroid
application. Estradiol induction led to rapid recruitment of FT-
HA to the second exon of LFY, the region occupied by FD and
TFL1 (compare Fig. 4a, b to Supplementary Fig. 4h). Anti-GFP
ChIP-qPCR performed on the same sample uncovered a con-
comitant reduction in TFL1 occupancy (Fig. 4a, b). We next
asked whether upregulation of endogenous FT also triggers
reduced TFL1 occupancy at the LFY locus. Towards this end, we
treated plants with a single FRP to upregulate FT (Supplementary
Fig. 8b). The single FRP likewise significantly reduced TFL1
occupancy at the LFY chromatin (Fig. 4c). By contrast, photo-
induction of FT did not alter FD occupancy (Fig. 4d). To probe
whether FT is recruited to the second exon of LFY via the bZIP-
binding sites, we transformed FT-HAER with either a wild-type
version of e2 or a bZIP-binding site mutated version thereof
(e2m3). After steroid induction, we used transgene-specific
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LFY locus. e FT-HAER recruitment to LFY exon 2 (e2) or a bZIP-binding site mutated version thereof (e2m3) after 4-hour steroid treatment. Top: LFY exon 2
(e2, black rectangle) and T-DNA vector (grey line). Centre: location of amplicons P1 and P2, each consisting of one exon 2-specific and one vector-specific
primer. Below: FT-HAER ChIP-qPCR. Progeny pools of >50 random FT-HAER T1 plants transformed with e2 or e2m3 were analyzed (see also ref. 108).
f Effect of photoperiod (FRP) on TFL1 occupancy at TFL1–FD target loci identified in Fig. 1f and LMI267 g FT-HAER occupancy with or without 4-h estradiol
treatment at TFL1–FD bound regions of target loci shown in f. b–g ChIP was performed in 42-day-old short-day-grown plants. Shown are mean ± SEM of
three independent biological experiments (black dots). P values (unpaired one-tailed t-test): b anti-HA ChIP ** region 4= 0.009, region 5= 0.003; anti-
GFP ChIP ***region 4= 6E−05, region 5= 0.006; c *region 4= 0.039, **; region 5= 0.002; d n.s. LFY= 0.18, TA3= 0.29. e **P1= 0.004, P2= 0.002,
n.s. TA3= 0.12; f * GI= 0.016, ***CO= 0.0007, **SOC1= 0.0015, ***FUL= 0.0003, ***AP1= 0.007, LMI2= 0.0011, n.s. TA3= 0.34. g **GI= 0.009,
*CO= 0.011, **SOC1= 0.003, *FUL= 0.015, ***AP1= 0.0001, **LMI2= 0.008, n.s TA3= 0.17. h Model for antagonistic roles of TFL1 (purple circles) and
FT (red circles) in promoting branch fate or floral fate, respectively. Increased FT accumulation leads to competition of TFL1 from bZIP transcription factor
FD bound to chromatin and to onset of flower formation. FD dimers (orange ovals), 14-3-3 proteins (black disks).
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primers to monitor FT binding to the two versions of LFY e2 by
ChIP-qPCR. As described above for TFL1 (Fig. 2a), FT was
recruited to LFY e2 alone (Fig. 4e). In addition, FT recruitment to
the introduced copy of LFY e2 was abolished when the three
bZIP-binding sites were mutated (Fig. 4e).

Our combined data suggest that FT competes TFL1 from FD
bound at exonic bZIP motifs at the LFY locus. The loss of TFL1
from the LFY locus via competition by FT is further supported by
the finding that neither steroid nor FRP induction of FT reduced
TFL1 mRNA accumulation (Supplementary Figs. 8c and 9d).

Competition of TFL1 from FD by FT is not limited to the LFY
locus. We tested whether FT induction by FRP competes TFL1
from the other direct TFL1–FD target loci we identified (Fig. 1f).
FRP treatment reduced TFL1 occupancy at all loci tested (Fig. 4f).
To confirm that FT indeed occupies the TFL1–FD bound sites at
these loci, we also conducted ChIP-qPCR in FT-HAER after
steroid induction. In the estradiol treated samples, we saw
significant FT recruitment to the TFL1–FD bound regions at all
loci tested (Fig. 4g). We conclude that the antagonism between
FT and TFL119,21,27 relies on competition for FD bound at the
chromatin of shared target loci (Fig. 4h).

Direct TFL1–FD repressed genes promote onset of flower
formation and endogenous signalling. Our findings place
florigens directly upstream of LFY, yet prior genetic data suggest
that florigens act both upstream of and in parallel with LFY39,50.
To gain insight into additional gene expression programs
repressed by the TFL1–FD complex, we next conducted RNA-seq
with and without FRP treatment. We isolated inflorescences with
associated primordia from 42-day-old short-day-grown ftmutant,
wild-type and tfl1 mutant plants and identified the significant
gene expression changes in each genotype relative to untreated
siblings. On the basis of Principle Component Analysis (PCA)
and replicate analysis, RNA-seq quality was high (Supplementary
Fig. 11). We next defined genes directly repressed by TFL1–FD.
Towards this end, we focussed on TFL1–FD complex bound loci
that exhibit FT-dependent de-repression upon photoinduction.
Six-hundred four TFL1–FD bound genes were significantly
(DESeq2 adjusted p < 0.005) de-repressed upon FRP treatment in
the wild-type or in tfl1 mutants but not in ft mutants (Fig. 5a).
GO term enrichment linked the TFL1–FD repressed genes to
reproductive development and to response to endogenous and
abiotic signals (Fig. 5b).

K-means clustering of the 604 genes identified three main
patterns of gene expression. Genes encoding promoters of floral
fate32 (LFY, AP1, FUL and LMI2) clustered together (cluster III in
Fig. 5c) and displayed stronger upregulation in tfl1 mutants than
in the wild type. This pattern of de-repression was confirmed for
all four loci using independent biological samples and qRT-PCR
(Supplementary Fig. 12a). SOC1 clusters with these genes, but was
not included in further analyses because it was weakly, but
significantly, de-repressed in ft mutants (Fig. 5c, Supplementary
Data 1 and Supplementary Fig. 12b). By contrast, CO and GI,
which promote cessation of vegetative development2,3, were more
strongly upregulated in the wild-type than in tfl1 mutants (cluster
I in Fig. 5c), perhaps because these genes are already partially de-
repressed in tfl1 mutants in the absence of FRP treatment. Indeed,
like RNA-seq, qRT-PCR of independent biological replicates
revealed higher accumulation of GI and CO in untreated tfl1
mutant compared to wild-type plants (Fig. 5c, Supplementary
Data 1 and Supplementary Fig. 12b). Cluster II genes are only
upregulated in the wild type and may represent genes that are
transiently de-repressed. Our data identify the TFL-FD complex as
a hub for repression of key regulators of the onset of reproductive
development and of the switch to flower fate (Fig. 5c)

Consistent with the GO-term enrichment analysis (Fig. 5b),
combined ChIP-seq and RNA-seq analysis additionally identified
components of endogenous stimulus response. We identified genes
linked to sugar signalling (trehalose-6-phosphate) and hormonal
signalling and response (abscisic acid, cytokinin, brassinosteroid,
auxin and strigolactone) as direct TFL1–FD complex repressed
targets (Fig. 5c). Using qRT-PCR and independent biological
samples, we confirmed FT-dependent de-repression of members of
these pathways by FRP photoinduction (Fig. 5c). Several of the
identified pathways link to repression of branching or to promotion
of onset of flower formation in the inflorescence. For example, we
identified four trehalose-6-phosphate phosphatases (TPPH, TPPJ,
TPPG and TPPE) as direct TFL1–FD complex repressed targets;
TPPs were recently shown to repress branching in the maize
inflorescence51. In addition, auxin and the auxin-activated transcrip-
tion factor MONOPTEROS (MP) were direct TFL1–FD complex
repressed targets (Fig. 5c). MP promotes the switch to floral fate in
Arabidopsis52 and the tomato ortholog of TFL1 executes its role in
inflorescence architecture at least in part by modulating auxin flux
and response53. Finally, we identified key components of the
brassinosteroid pathway including the BRI1 receptor and the bHLH
transcription factor BIM154,55 as direct TFL1–FD complex repressed
targets. Brassinosteroid signalling represses inflorescence branching
in Setaria56. The combined data implicate TFL1–FD in direct
repression of genes that promote floral fate or repress branch fate,
consistent with the role of TFL1 in promoting branch formation.

We also identified the cytokinin activating enzyme LOG557,
abscisic acid biosynthesis (ABA1) and response regulators (ABI5,
ABF4, APF2)58,59, and components of strigolactone signalling,
SMXL6 and SMXL860,61, as direct TFL1–FD complex repressed
targets.

To gain further insight into the role of the TFL1–FD complex
in hormone signalling, we next assessed indirect, downstream,
gene expression changes triggered by FRP treatment. In
particular, we identified genes not bound by TFL1 or FD that
were significantly differentially expressed (DESeq2 adjusted p <
0.005) in the wild type and in tfl1, but not in ft. The identified
indirect targets provide a ‘molecular phenotype’ that is consistent
with de-repression of the auxin, brassinosteroid and cytokinin
hormone pathways upon FRP treatment in the wild-type and in
tfl1 mutants (Fig. 5c). By contrast, the abscisic acid signalling
pathway signature was more complex (Fig. 5c). Our combined
data uncover a prominent role for the TFL1–FD complex in
regulation of endogenous signalling.

It is conceivable that components of some of the identified
TFL1–FD dependant pathways (strigolactone, cytokinin, auxin,
abscisic acid as well as sugar signalling) may modulate additional
aspects of the inflorescence architecture, such as branch out-
growth62–64. Support for this hypothesis comes from our
phenotypic analyses. We examined the effect of a single FRP on
inflorescence architecture in the ftmutant, the wild-type and the tfl1
mutant. Photoperiod induction triggered a reduction in the number
of branches, but not cauline leaves, formed in the wild type and
more strongly, in tfl1 (Supplementary Fig. 13a–j). This suggests that
branch meristems adopt floral fate upon stimulus perception65. tfl1
mutants also formed fewer branches than the wild type in the
absence of photoperiod. These phenotypes are consistent with the
observed gene expression changes (Fig. 5c). In addition, FRP
triggered a significant increase in inflorescence branch outgrowth in
both wild-type and tfl1 plants (Supplementary Fig. 13k). FRP had
no phenotypic effect in ft mutants. Our combined data suggest that
florigens tune plant form to the environment by controlling
expression of master developmental regulators and endogenous
signalling pathway components. These developmental changes
likely require large-scale transcriptional reprograming in the context
of chromatin. Consistently, we identified transcriptional co-
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regulators and chromatin regulators among the direct TFL1–FD
repressed targets (Supplementary Fig. 14a, b).

Discussion
Here we identify LFY, a master regulator of flower fate33,34, as a
target under dual opposite transcriptional regulation by TFL1 and
FT and demonstrate that FT activation of LFY expression is
critical to promote floral fate. We provide a molecular framework
for the antagonistic roles5,27 of FT and TFL1 that relies on
competition for bZIP transcription factor mediated access to
binding sites at regulatory regions of shared target loci. Addi-
tional support for this mechanism comes from recent in vitro
studies21.

Our data suggest that TFL1 may not simply prevent access of
the FT co-activator to the chromatin23 but may be an active
repressor, as mutating bZIP-binding sites results in LFY de-
repression specifically in the TFL1 expression domain. The
identity of the transcription factors that activate LFY in the centre
of the inflorescence shoot apex in the absence of PEBP/FD
binding to LFY is not known. Our identification of FT recruiting
motifs in the second exon of LFY fits with prior data demon-
strating that the 2.3 kb upstream intergenic ‘LFY promoter’ is
unresponsive to FT38. This upstream regulatory region drives
reporter expression in similar domains as endogenous LFY66. The
requirement of the bZIP motifs for LFY upregulation in the
context of the genomic construct, which contains the 2.3 kb ‘LFY
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promoter’, suggests the presence of repressive regulatory elements
in the genic region of LFY.

We identify hundreds of TFL1–FD repressed genes many of
which, based on our computational analyses of recently published
FD and TFL1 ChIP-seq datasets17,30, are also immediate early
gTFL1 or gFD targets in long-day conditions. Eighty two percent
of our 604 high-confidence TFL1–FD repressed genes are present
in at least one of the long-day ChIP-seq datasets (Supplementary
Fig. 3b). The 604 direct TFL1–FD repressed genes include key
regulators of onset of the reproductive phase and of floral fate. Of
note, TFL1 opposes not only LFY, but also LFY targets, such as
LMI2 and AP167,68. This is consistent with prior genetic inves-
tigations that place TFL1 both upstream of LFY and as a mod-
ulator of plant response to LFY50. Finally, we link the TFL1–FD
complex to repression of diverse endogenous signalling pathways
including sugar and hormonal signals. Several of these pathways
have been shown to impact the switch from branch or flower fate
in other plant species51,53,56. The combined data point to an
important role of the hormonal environment for the switch from
branch to flower fate in primordia of the inflorescence.
Our findings also set the stage for elucidating communalities as
well as differences between florigen regulated cell fate repro-
gramming during flower initiation and other developmental
pathways under seasonal control by florigens such as tuberization,
bulb formation and seed dormancy69–72.

Changes in the relative balance of activating and repressive
PEBP family members occurred during domestication of diverse
crop species to give rise to desirable traits like everbearing and
compact growth habits5,8,69,73. Thus, mechanistic insight into the
antagonism and identification of the targets of PEBPs will benefit
traditional or genome editing-based crop improvement. It should
further facilitate elucidation that how PEBP protein act as co-
activators or co-repressors in the nucleus.

Methods
Plant materials. Arabidopsis ecotype Columbia plants were grown in soil at 22 °C
in long-day photoperiod (LD, 16 h light/8 h dark, 100 µmol/m2 s) or short-day
photoperiod (SD, 8 h light/16 h dark, 120 µmol/m2 s). gFD-GUS20, fd-1 null
mutants74, tfl1-14 hypomorph mutant27,75, tfl1-1 severe mutant27,75,76, lfy-1 null
mutant33,77,78, ft-10 null mutant79, 35S:LFY68 and 35S:TFL1 (ref. 35) were pre-
viously described. 35S:LFY (Landsberg erecta) was introgressed into the Columbia
background through backcrossing. gFD-GUS80 was crossed into the fd-1 null
mutant background.

Constructs for transgenic plants. For gTFL1-GFP, GFP followed by a peptide
linker (GGGLQ) was fused to an 8.4 kb BamHI (NEB, R0136S) genomic fragment
from lambda TFG4 (ref. 81). This fragment was introduced into the binary vector
pCGN1547 (ref. 82). For TFL1ER and FT-HAER, TFL1 and FT were PCR amplified
from cDNA; in the case of FT, the 3′ primer contained three times Hemagglutinin
(HA) plus a stop codon. PCR products were cloned into pENTRD-TOPO (Invi-
trogen, K243520) and shuffled into pMDC7 (ref. 83) by LR reaction (Invitrogen,
11791-020).

For LFY-GUS reporters, the bacterial beta-glucuronidase (GUS) gene from
the pGWB3 (ref. 84) binary vector was fused with pENTRD-TOPO vector
containing the 2290-bp LFY promoter66 alone (pLFY:GUS), the LFY promoter and
LFY genic region up to and including the first intron (pLFYi1:GUS), or the LFY
promoter and LFY genic region up to and including the second LFY intron
(pLFYi2:GUS) by LR reaction. bZIP-binding site mutations in LFY e2 (pLFYi2m3:
GUS) were generated by Ω-PCR85. gGLFY was constructed by PCR amplifying a
4929-bp genomic LFY fragment (gLFY), including the 2290-bp LFY promoter,
from genomic DNA followed by cloning into the KpnI-HF (NEB, R3124S) and
NotI-HF (NEB, R3189S) digested pENTR3C vector by Gibson Assembly. Next,
GFP was inserted at position+ 94 bp, as previously described for pLFY:GLFY42,80,
by Ω-PCR85. bZIP-binding site mutations were introduced into pENTR3C-gGLFY
by Ω-PCR to generate gGLFYm3. Both constructs were shuffled into pMCS:GW86

using LR reaction. To create gLFY:GUS, the 4929-bp genomic LFY clone minus
the stop codon and the GUS fragment were PCR amplified and inserted into
linearized pENTR3C by Gibson Assembly. For gLFYm3:GUS, bZIP-binding site
mutations were introduced into pENTR3C-gLFY:GUS by Ω-PCR. To test
recruitment of TFL1 and FT to e2 of LFY, wild-type (e2) or bZIP-binding site
mutated exon 2 (e2m3) were PCR amplified and cloned into pGWB3 (ref. 84).

For test of recruitment, LFY e2 and e2m3 were amplified by forward (5′-caccAA
CAGCAGCAGAGACGGAGAAAGAA-3′) and reverse (5′-TCGTACAAGTGGA
ACAGATAATC-3′) primers and cloned into pGWB3 binary vectors, which were
transformed into gTFL1-GFP and 35S:FT-HAER.

For pFT4kb:amiRFT, a 3994-bp truncated FT promoter87 was PCR amplified
from genomic DNA as was the published amiRFT44 from pRS300 (ref. 88). The
amiRFT fragment was introduced into EcoRI-HF (NEB, R3101S) digested
pENTR3C (Thermo Fisher Scientific, A10464) by Gibson Assembly (NEB, E5510S)
and shuffled into binary vector pMCS:GW86 using LR reaction, which resulted in
pMCS:amiRFT. The previously described 3994-bp FT promoter was inserted to
XhoI (NEB, R0146S) digested pMCS:amiRFT by Gibson Assembly.

Genomic DNA was extracted using the GenElute Plant Genomic DNA
Miniprep Kit (Sigma-Aldrich, G2N70). Primer sequences are listed in
Supplementary Table 2. All constructs were sequence verified prior to
transformation into plants with Agrobacterium strain GV3101 by floral dip89.
Plant lines generated are listed in Supplementary Table 3.

Imaging. Images were taken with a Canon EOS Rebel T5 camera for plant phe-
notypes and yeast one-hybrid assays, or with a stereo microscope (Olympus
SZX12) equipped with a colour camera (Olympus LC30) for GUS images and
inflorescence phenotypes. For GFP images, a Leica TCS SP8 Multiphoton Confocal
with a 20× objective was used with a 488 nm excitation laser and emission spec-
trum between 520 and 550 nm (GFP) or 650–700 nm (chlorophyll auto-
fluorescence) using standard imaging techniques90,91. For tfl1-1 gTFL1-GFP in
short-day photoperiod, shoot apices were sectioned longitudinally on an oscillating
tissue slicer (Electron Microscopy Sciences, OTS-4000) after embedding in 5%
Agar (Fisher Scientific, DF0812-07-1).

Plant treatment and gene expression analysis. For test of gene expression, 16-
day-old TFL1ER or 12-day-old FT-HAER plants grown in LD were induced by a
single spray application of 10 μmol beta-estradiol (Sigma-Aldrich, 8875-250MG)
dissolved in DMSO (Fisher Scientific, BP231-1L) and 0.015% Silwet L-77 (Plant-
Media, 30630216-3). Mock solution consisted of 0.1% DMSO and 0.015% Silwet.
To probe FT recruitment to and TFL1 occupancy at the LFY locus, 42-day-old FT-
HAER gTFL1-GFP plants grown in SD were treated by a single spray application of
10 μmol beta-estradiol or mock solution. In all cases, tissues were harvested 4 h
after treatment. To test for gain-of-function phenotypes in long-day photoperiod,
FT-HAER, TFL1ER and FT-HAER gTFL1-GFP plants were treated with 10 μmol
beta-estradiol or mock solution from 5-day onwards every other day until bolting.

FRP was applied at the end of the short day (ZT8) for 24 h using a Percival
Scientific E30LED45 with red (660 nm) to far-red (730 nm) ratio= 0.5 and light
intensity 80 µmol/m2 s. Control plants were kept in regular short-day conditions
(16 h dark and 8 h light, red to far-red ratio= 12 and 120 µmol/m2 s light intensity)
for 24 h. Light intensity and spectral composition were measured by an Analytical
Spectral Devices FieldSpec Pro spectrophotometer.

For qRT-PCR analysis, total RNA was extracted from leaves or shoot apices
using TRIzol (Thermo Fisher Scientific) and purified with the RNeasy Mini Kit
(Qiagen, 74104). cDNA was synthesized using SuperScript III First-Strand
Synthesis (Invitrogen, 18080051) from 1 μg of RNA. Real time PCR was conducted
using a cDNA standard curve. Normalized expression levels were calculated using
the 2ˆ(−delta delta CT) method with the housekeeping gene UBQ10 (AT4G05320)
as the control. Where expression of multiple different genes was compared,
normalized gene expression is shown relative to the control treatment. Primer
sequences are listed in Supplementary Table 2.

Yeast one-hybrid assay. LFY e2 and the bZIP-binding site mutated version
(e2m3) were cloned into the KpnI-HF and XhoI linearized pAbAi vector (Takara)
by Gibson Assembly and integrated into the yeast genome following the Match-
maker Gold Yeast One-Hybrid protocol (Takara) and the Y1Golden strain
(Takara). Coding sequences of FD and TFL1 were cloned into the pENTRD-TOPO
vector. After sequencing, constructs were shuffled into either pDEST32 or
pDEST22 (Takara) by LR reaction and transformed into the DNA-binding region
containing yeast strain. Empty pDEST32 and pDEST22 served as negative controls.
Growth was assayed after serial dilution on growth media with or without 60 ng/ml
Aureobasidin A (Clontech, 630499). Primer sequences are listed in Supplementary
Table 2.

ChIP-qPCR, ChIP-seq and data analysis. Forty two-day-old short-day grown
plants were trimmed and 1.6 g of non-bolted inflorescences were harvested from 36
plants. Chromatin immunoprecipitation was conducted following a published
protocol92 for ChIP-qPCR. For ChIP-seq, each biological replicate consisted of
eight individual IP reactions pooled into one MinElute PCR (Qiagen, 28004)
purification column. For ChIP-seq and ChIP-qPCR, anti-GFP antibody (Thermo
Fisher Scientific, A-11122; 1:200 dilution) and anti-GUS antibody (Abcam,
ab50148; 1:200 dilution) were used. The antibodies were validated by the manu-
facturers. ChIP-qPCR was performed using Platinum Taq DNA Polymerase
(Invitrogen, 10966034) and EvaGreen dye (Biotium, 31000). For ChIP-qPCR, the
value of the ChIP samples was normalized over that of input DNA as previously
described92. Non-transgenic wild-type plants were used as the negative genetic
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control for anti-GFP and anti-GUS antibody ChIP. The TA3 retrotransposon
(AT1G37110) was used as the negative control region for ChIP-qPCR. Primer
sequences are listed in Supplementary Table 2.

Anti-GFP ChIP-seq was performed for gTFL1-GFP (A), gTFL1-GFP (B), fd-1
gTFL1-GFP and control samples (non-epitope containing plants). Anti-GUS ChIP-
seq was performed for gFD-GUS. Two biological replicates were sequenced in each
case. Dual index libraries were prepared for the ten ChIP samples listed above and
for four input samples using the SMARTer ThruPLEX DNA-Seq Kit (Takara Bio,
R400406). Library quantification was performed with the NEBNext Library Quant
Kit for Illumina (NEB, E7630). Single-end sequencing was conducted using High
Output Kit v2.5 (Illumina, TG-160-2005) on the NextSeq 500 platform (Illumina).

FastQC v0.11.5 was performed on both the raw and trimmed93 reads
using TRIMMOMATIC v0.3693 (ILLUMINACLIP:adaptors.fasta:2:30:10
LEADING:3 TRAILING:3 MINLEN:50) to confirm sequencing quality94. Reads
with MAPQ ≥ 30 (SAMtools v1.7)95 uniquely mapping to the Arabidopsis
Information Resource version 10 (TAIR 10)96 that were not flagged as PCR or
optical duplicates by Bowtie2 v2.3.1(ref. 97,98) were analyzed further by principal
component analysis (PCA) using the plotPCA function of deepTools99. Reads were
further processed following ENCODE guidelines100, followed by cross-correlation
analysis with the predict function of MACS2 (ref. 101) to empirically determine the
fragment length. Significant ChIP peaks and summits (summit q value ≤ 10−10)
were identified in MACS2 for the pooled ChIP relative to the pooled negative
controls (ChIP in non-transgenic wild type). Peak overlap (≥1 bp) was computed
using BEDTools intersect v2.26.0 (ref. 102) and statistical significance was
computed using the hypergeometric test assuming a ‘universe’ of 10,000 possible
peaks103. Heatmaps were generated using deepTools v3.1.2 (ref. 99). The 3308 TFL1
and 4422 FD peaks were mapped to 3699 and 4493 Araport11 (ref. 104) annotated
genes, respectively, if the peak summit was intragenic or located ≤4 kb upstream of
the transcription start site. Recently published datasets were analyzed in identical
fashion. Genomic distribution of peak summits was called using the
ChIPpeakAnno library104,105.

De novo motif analysis was conducted using MEME-ChIP v5.0.2
(Discriminative Mode)106 and HOMER v4.10 (ref. 107) for MACS2 q value ≤ 10−10

peak summits (±250 base pairs) compared to genome-matched background
(unbound regions from similar genomic locations as the peak summits) as
previously described108,109.

GO term enrichment analyses were performed using GOSlim in agriGO v2.0
(ref. 110) and significantly enriched GO terms with q value < 0.0001 (FDR,
Benjamini and Yekutieli method111) were identified.

Correlation analyses. Public ChIP-seq datasets for FD30, for TFL117, LFY112 and
an unpublished LFY ChIP-seq dataset from our lab (GEO accession GSE141706)
were analyzed as described above for TFL1 and FD ChIP-seq. To compare the
relationship between all ChIP-seq datasets we calculated Pearson correlation
coefficients for reads in regions of interest using deeptools v3.1.299. Regions of
interest were comprised of the combined significant peak regions (MACS2 ≤ q
value 10−10) of all ChIP-seq datasets and read signal was derived from the
sequencing-depth normalized bigwig file for each sample.

RNA-seq and data analysis. A single 24 h FRP was applied to 42-day-old short-
day grown ft-10 mutants, wild-type and tfl1-1 mutants, starting at the end of the
day (ZT8). After the treatment, 0.1 g of inflorescence shoots were harvested for
each biological replicate after removing all leaves and roots. Three biological
replicates were prepared for each experiment. RNA quantity and quality were
analyzed by Qubit BR assay (Thermo Fisher Scientific, Q10210) and Agilent RNA
6000 Nano Kit (Agilent, 5067-1511) on an Agilent 2100 bioanalyzer, respectively.
Libraries were constructed from 1 µg total RNA using the TruSeq RNA Sample
Prep Kit (Illumina, RS-122-2001). After library quantification with the NEBNext
Library Quant Kit for Illumina (NEB, E7630), single-end sequencing was con-
ducted using the NextSeq 500 platform (Illumina).

RNA-seq analysis was conducted using FastQC v0.11.5 (ref. 94) on raw
sequences before and after trimming using Trimmomatic v0.36 (ref. 93)
(ILLUMINACLIP:adapters.fasta:2:30:10 LEADING:3 TRAILING:3 MINLEN:50)
to confirm sequencing quality94. Reads were mapped using the STAR mapping
algorithm113 (–sjdbOverhang 100 --outSAMprimaryFlag AllBestScore
--outSJfilterCountTotalMin 10 5 5 5 --outSAMstrandField intronMotif
--outFilterIntronMotifs RemoveNoncanonical --alignIntronMin 60
--alignIntronMax 6000 --outFilterMismatchNmax 2), to the TAIR 10 Arabidopsis
genome-assembly96, and Araport11 Arabidopsis genome-annotation104. Specific
read coverage was assessed with HT-Seq114 (--stranded= ‘no’ -minaqual= 30).

For PCA, raw read counts were subjected to variance stabilizing transformation
and projected into two principal components with the highest variance115–117. In
parallel, raw reads were adjusted for library size by DESeq2 v1.24.0 (ref. 118). After
PCA, two biological replicates per genotype and treatment were selected for further
analysis. Gene normalized z-scores were used for k-means (MacQueen)
clustering119. Pairwise differential expression analyses were performed by
comparing FRP and untreated pooled normalized read counts in each genotype
using default DESeq2 parameters with no shrinkage (ref. 118) and an adjusted
p value cut-off ≤ 0.005.

Photoperiod shift phenotype analysis. A single 24-h far-red light enriched
photoperiod shift (FRP) was applied to 42-day-old short-day grown ft-10 mutants,
wild-type and tfl1-1 mutants as for RNA-seq, followed by further growth in short-
day conditions. To asses onset of reproductive development, the number of rosette
leaves formed were counted at bolting. To analyze the inflorescence architecture,
the number of sessile buds, outgrowing branches, flower branches, and single
flowers subtended by a cauline leaf were counted weekly after bolting until the first
normal flower (not subtended by a cauline leaf) formed.

Statistical analyses. The Kolmogorov–Smirnov (K–S) test120 was used to assess
whether the data were normally distributed. All ChIP and qRT-PCR data were
normally distributed. An unpaired one-tailed t-test was used to test for changes in
one direction. Error bars represent the standard error of the mean (SEM). Two to
three independent biological replicates were analyzed. For multiple-group com-
parisons (phenotypes) the non-parametric Kruskal–Wallis test121 followed by the
Dunn’s post hoc test122 were employed. Box and whisker plots display minima and
maxima (whiskers), lower and upper quartile (box) and median (red vertical line).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper, its Supplementary information files and public data repositories. Source
data are provided with this paper. The ChIP-seq and RNA-seq datasets were deposited to
the GEO database (GSE141894). Individual replicates and P values for all figures are
provided as a source data file. Source data are provided with this paper.

Code availability
Scripts for peak to gene annotation can be found at https://github.com/sklasfeld/
ChIP_Annotation.
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