
A major challenge for living organisms is to maintain 
homeostasis in response to changes in external and inter-
nal environments. These include alterations in nutrient 
and water supplies, physical stress, temperature changes, 
physiological stress, infections and malignancies1. 
Through billions of years of evolution, the forms of life 
and biological processes that cope with these challenges 
in the most successful way have been selected. One chal-
lenge that all organisms have to deal with is the elimina-
tion of microorganisms and of abnormal or damaged 
cellular material. The ideal immune response would 
eliminate the potential threat and re-establish home-
ostasis without causing excessive damage to healthy 
cells and tissues. However, immune responses to infec-
tions are often disruptive and can cause marked tissue 
damage2,3. Such responses are evolutionarily advan-
tageous when the benefit of eliminating the challenge 
outweighs the risk of associated tissue damage and the 
requirement for regeneration. However, for potential 
challenges that occur frequently but rarely develop into 
serious homeostasis-altering threats, it is not desirable 
to mount systemic or potentially disruptive immune 
responses. In addition, vigorous immune responses are 
not desirable in organs and tissues that are particularly 
sensitive to immune-mediated damage, such as the 
brain. Therefore, the ideal immune response has checks 
and balances, which allow the organism to modulate the 

magnitude and duration of the response according to the 
nature of the threat caused by the challenge.

The mammalian immune system, as we understand 
it today, is induced mainly by two types of receptor sys-
tems, the germline-encoded pattern recognition receptors 
(PRRs), which initiate innate immune responses, and 
the antigen-specific receptors generated through gene 
rearrangement after antigen encounter, which initiate 
adaptive immune responses4–6. The immune responses 
induced by PRRs, such as Toll-like receptors (TLRs), 
interact with those induced by antigen-specific recep-
tors; this interaction is notably represented by dendritic 
cells, which rely on PRR-driven cues to initiate den-
dritic cell maturation for the stimulation of lympho-
cytes through antigen-specific receptors5. However, 
the research literature contains numerous reports of 
host defence activities that occur independently of both 
PRR-based immunity and antigen-specific receptors7–10, 
and emerging evidence suggests that several of these 
mechanisms have non-redundant roles in host defence 
in humans11,12. Here we review the literature on this topic 
by focusing on constitutive immune mechanisms. On the 
basis of this analysis, and by integrating concepts previ-
ously reviewed13, we propose that this constitutive layer 
of innate immunity exerts early host defence activities 
through specific molecular mechanisms and at the same 
time limits PRR activation as a specific feature.
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Abstract | The immune system enables organisms to combat infections and to eliminate 
endogenous challenges. Immune responses can be evoked through diverse inducible 
pathways. However, various constitutive mechanisms are also required for immunocompetence. 
The inducible responses of pattern recognition receptors of the innate immune system and 
antigen-specific receptors of the adaptive immune system are highly effective, but they also 
have the potential to cause extensive immunopathology and tissue damage, as seen in many 
infectious and autoinflammatory diseases. By contrast, constitutive innate immune mechanisms, 
including restriction factors, basal autophagy and proteasomal degradation, tend to limit 
immune responses, with loss-of-function mutations in these pathways leading to inflammation. 
Although they function through a broad and heterogeneous set of mechanisms, the constitutive 
immune responses all function as early barriers to infection and aim to minimize any disruption 
of homeostasis. Supported by recent human and mouse data, in this Review we compare and 
contrast the inducible and constitutive mechanisms of immunosurveillance.
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Constitutive and inducible mechanisms
The innate immune system uses both constitutive and 
inducible mechanisms to eliminate infections and dam-
aged self to maintain homeostasis (Fig. 1). Although the 
constitutive mechanisms have the advantage of provid-
ing an immediate response to a danger signal, they lack 
the potential to amplify the response. In addition, consti-
tutive mechanisms consume energy to remain operative, 
and there are hence limits to how many of these can be 
maintained in any one organism. By contrast, inducible  
mechanisms such as those mediated through PRRs, as 
well as antigen-specific receptors, are activated only 
in response to stimuli and have the ability to amplify 
signals many times. Hence, inducible mechanisms can 
give rise to very strong and efficient immune responses, 
but can also lead to excess inflammation and immuno
pathology. Given their amplification potential, inducible 
immune mechanisms require tight control and negative 
regulatory systems.

The constitutive immune mechanisms can be divided 
into the chemical and physical barriers of the body, such 
as skin, saliva, stomach acid and urine flow, which are 
not the focus of this Review, and various molecularly 

defined mechanisms that control microbial infection 
and/or replication1. Although these mechanisms have 
been known for many years, they have generally been 
considered to have only minor roles in the immune sys-
tem, and evidence has been lacking as to their specific, 
non-redundant functions in host defence. Consequently, 
they have not received much attention in front-line 
immunology research. Here we discuss the constitu-
tive innate immune responses in comparison with the 
better-described inducible innate responses triggered by 
PRRs. In addition, we present evidence suggesting that 
efficient action of constitutive innate immune mecha-
nisms leads to both antimicrobial activity and mitigation 
of PRR-driven activities (Fig. 2).

PRR-activated inducible innate immune responses. PRRs 
detect pathogen-associated molecular patterns (PAMPs), 
microorganism-associated molecular patterns14, host- 
derived danger-associated molecular patterns15 and 
molecular signatures associated with homeostasis- 
altering molecular processes16. These molecular pat-
terns activate PRR signalling, which ultimately leads 
to the transcription of antimicrobial and proinflam-
matory genes. Downstream activities of PRR signalling 
include the production of type I interferon (interferon-α 
(IFNα) and IFNβ), IL-1β and tumour necrosis factor 
(TNF). These cytokines, in turn, activate antimicrobial 
and proinflammatory activities, as well as the matura-
tion of antigen-specific adaptive immune responses17,18. 
PRR-based immune responses can be highly potent, and 
numerous inflammatory diseases are driven by exces-
sive PRR signalling pathways2,19,20 (Box 1). However, the 
nature of PRR-based immunity is influenced by many 
factors, and it is worth mentioning that the gut micro
biota and chronic viral infections can induce PRR-based, 
host-beneficial responses that tend towards tolerance 
rather than inflammation21,22. Nevertheless, given the 
potency of PRR-based immunity, full activation of 
PRR-driven immune responses each time a microorgan-
ism is encountered may not be beneficial for an organism 
in the longer term. Moreover, it is essential to control 
the activation and duration of PRR signalling-induced 
activities. This is achieved through multiple mech-
anisms, including two-step procedures for full PRR 
activation23,24, the requirement for a threshold PAMP 
concentration to achieve PRR activation25–28, amplifi-
cation loops from initial low responses29 and numerous 
negative-feedback mechanisms30. One way in which the 
activation of PRR signalling in response to very low levels 
of PAMPs is avoided at the molecular level is through 
supramolecular organizing centres. These are higher-order 
signalling complexes at specific subcellular locations that 
rely on amplification mechanisms to achieve full activa-
tion, thus preventing signalling by subthreshold levels 
of PAMPs but amplifying signalling by superthreshold 
levels of PAMPs29. The double-edged sword-like nature 
of PRR-induced immune responses in terms of their 
roles in both protection and disease is also supported by 
evolutionary evidence. This includes the recurring loss 
of 2′-5′-oligoadenylate synthase 1 (OAS1) in primates31. 
OAS1 is an interferon-inducible protein that is associated 
with both antiviral and pathological activities32,33.
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Fig. 1 | Constitutive innate immune responses versus inducible immune responses. 
Illustration of how constitutive and inducible immune responses vary over time during the 
course of a generalized infection, and their impact on host defence, energy consumption 
and host fitness. In the case of a sterilizing and resolving immune response, the additional 
energy consumption required by the inducible immune response is balanced by the 
re-establishment of homeostasis. By contrast, in the case of an immunopathological 
response, the energy that is consumed to mount an inducible response does not benefit 
the host and instead leads to tissue damage and disruption of homeostasis.

Pattern recognition 
receptors
(PRRs). A family of germline- 
encoded immune receptors, 
including the Toll-like receptors, 
that detect immunostimulatory 
molecules to activate signal 
transduction and gene 
expression, which induces 
antimicrobial and inflammatory 
responses.

Constitutive immune 
mechanisms
Host mechanisms that are 
constitutively present in  
an active or latent form and 
thus can exert host defence 
activities immediately, 
independently of inducible 
processes.

www.nature.com/nri

R e v i e w s

138 | March 2021 | volume 21	



Constitutive innate immune mechanisms. Constitutive 
innate immune mechanisms respond to microbial activi-
ties, cellular stress and metabolic alterations by inducing 
antimicrobial effector functions. As there is most evi-
dence for constitutive innate immune mechanisms that 
exert antiviral and antibacterial activities, these are the 
focus of this Review (Fig. 3). A large range of constitutive 
mechanisms of innate immunity have been identified, 
including restriction factors, antimicrobial peptides, 
basal autophagy and proteasomal degradation (Box 2; 

Table 1). Here we divide these mechanisms into two 
classes: those that target specific steps in microbial rep-
lication cycles, such as restriction factors34,35, and those 
that lead to degenerative processes, such as autophagy9,36. 
The constitutive mechanisms that target specific steps in 
microbial replication function by blocking molecularly 
defined events that are essential for the replication of 
specific microorganisms but are dispensable for cellu-
lar fitness. By contrast, those mechanisms that operate 
through degenerative programmes target microbial or 
altered host molecules for recycling or degradation. 
The modes of action of representative examples from 
each of these mechanistic classes are described in the 
following sections.

Given the ability of constitutive immune mechanisms 
to exert antimicrobial activity, one consequence of their 
successful action is decreased levels of PAMPs (Fig. 2a). 
This, in turn, limits PRR activation and the down-
stream inflammatory response (Fig. 2b). Thus, constitu-
tive immune mechanisms equip cells and tissues with 
a layer of defence that can fight infections immediately 
and hence potentially limit the requirement for inducible 

immune responses, such as type I interferon, IL-1β and 
other proinflammatory cytokines.

Targeting microbial replication
Direct inhibition of microbial replication is executed by 
molecules that interfere with specific steps in the replica-
tion cycle of a given microorganism. There are at least six 
mechanisms of action in this category: restriction factors 
that directly block a specific replication step; restriction 
factors that deplete molecules essential for replication; 
RNA interference (RNAi); antimicrobial peptides; soluble 
lectins; and metabolite-mediated inhibition of microbial 
replication (Table 1).

Restrictions factors. Restriction factors are antiviral 
proteins that target viral replication. Extensive studies, 
particularly of HIV-1 and herpesviruses37,38, have led to 
the identification of numerous restriction factors that 
together target nearly all steps in the viral replication 
cycle (Fig. 4a). For example, APOBEC3 proteins belong 
to the family of cytidine deaminases, which catalyse the 
deamination of cytidine to uridine in single-stranded 
DNA, thus introducing potentially deleterious muta-
tions into the HIV-1 genome39. Likewise, tetherin is 
a membrane-bound protein that prevents the release 
of progeny HIV-1 particles from the cell surface40. 
These two mechanisms provide examples of direct 
blockade of specific steps in the replication cycle. By 
contrast, SAM domain and HD domain-containing 
protein 1 (SAMHD1) blocks HIV-1 replication indi-
rectly, by converting deoxynucleoside triphosphates 
into inorganic phosphate and 2′-deoxynucleoside, 

Inducible mechanisms
Biological processes that 
depend on the activation  
of transcriptional programmes 
and hence require 
intermediate steps between 
the trigger stimulus  
and effector function.

Supramolecular organizing 
centres
Location-specific higher-order 
signalling complexes, such as 
the myddosome in Toll-like 
receptor signalling, that 
amplify pattern recognition 
receptor signalling when 
pathogen-associated molecular 
pattern levels exceed specific 
threshold concentrations.

RNA interference
(RNAi). The use of double- 
stranded RNA molecules 
containing sequences that 
match a given gene to knock 
down the expression of that 
gene by inhibiting translation 
of the targeted mRNA or  
by directing RNA-degrading 
enzymes to destroy the 
encoded mRNA transcript.
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Fig. 2 | Constitutive innate immune responses negatively regulate 
inducible immune responses. a | Constitutive innate immune mechanisms 
eliminate pathogens during the initial stages of an infection, which 
prevents the accumulation of pathogen-associated molecular patterns 
(PAMPs) that would otherwise activate an inducible immune response 
through pattern recognition receptors (PRRs). In addition, many of the 
constitutive mechanisms are known to directly downregulate PAMP 
signalling through PRRs. Both of these effects limit PRR-induced expression 
of type I interferon and IL-1β. b | The relationship between the different 
proposed layers of the immune response. A first layer of defence is 

exerted by physical and chemical barriers. Constitutive innate immune 
mechanisms function as soon as a danger signal is detected and eliminate 
harmful microorganisms and host molecules by specific non-inflammatory 
mechanisms that operate independently of PRRs. This prevents 
establishment of the infection and accumulation of PAMPs, thus limiting 
the activation of PRR-based inducible innate immune responses. 
If PRR-based immunity is activated, owing to the level of PAMPs exceeding 
a certain threshold, this leads to inflammation and promotes activation 
of the adaptive immune response mediated by T cells and antibodies. 
IRF, interferon regulatory factor.
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thus depleting essential building blocks for HIV-1 
reverse transcription34,41. The aforementioned restric-
tion factors work in the plasma membrane or in the 
cytoplasm. However, many DNA viruses, including 
herpesviruses, replicate in the nucleus, where they are 
also targeted by numerous restriction factors. These 
include nuclear domain 10 bodies (ND10 bodies) and 
IFNγ-inducible protein 16 (IFI16), which operate by 
different mechanisms to epigenetically silence viral 
genomes35,42. The herpesvirus DNA rapidly associates 
with ND10 bodies, which restrict viral gene expression 
by promoting processes that lead to the formation of 
nucleosome-like structures42. IFI16 restricts viral repli-
cation in the nucleus mainly by interfering directly with 
transcription35. New evidence suggests that this involves 
the ability of IFI16 to form DNA filaments, which 
reduces recruitment of RNA polymerase II (ref.43), but 
also leads to recruitment of ND10 bodies, thus indicat-
ing that these two restriction systems might interact. The 
restriction factors discussed here are all constitutively 
expressed, although the expression of many of them is 
further increased by interferons35,44,45. Tonic type I inter-
feron signalling or constitutive activity of interferon 
regulatory factor 1 (IRF1) drives the basal expression of 
many constitutive restriction factors8,46,47.

RNA interference. RNAi is another constitutive immune 
mechanism that directly controls viral replication. 
RNAi involves the processing of double-stranded RNA 
molecules by members of the Dicer nuclease family to 
20–25-bp fragments, thus leading to the formation of 
the RNA-induced silencing complex (RISC), which 
blocks gene expression or translation through binding 
to target mRNAs48. The ability of RNAi to directly block 
viral replication was first shown in plants49 and was 
later also shown in insects and worms50–52. For example, 

Caenorhabditis elegans and Drosophila melanogaster 
infected with Flock House virus activate antiviral defence 
mechanisms that depend on Dicer51,53. This constitutive 
immune mechanism might have a more important role 
in lower organisms, but as some mammalian viruses do 
target the RNAi system, there may be a subdominant 
role for this primordial antiviral system in host defence 
in more evolved organisms54. For example, Ebola virus 
VP35 and VP30 proteins interact with Dicer cofactors, 
and the hepatitis C virus core protein directly associates 
with Dicer55,56.

Antimicrobial peptides. Antimicrobial peptides, includ-
ing defensins and cathelicidins, contribute to the first 
line of defence against bacteria in the skin and at 
mucosal surfaces. They work by binding directly to bac-
terial membranes, thus perturbing membrane integrity 
and inhibiting microbial growth57–60. These peptides are 
rich in both cationic and hydrophobic amino acids, and 
generally form amphiphilic helical structures, although 
this may not be the case for all antimicrobial peptides61. 
This enables the peptides to interact with negatively 
charged bacterial surfaces through electrostatic inter-
actions, thus triggering disruption of the bacterial 
membranes by pore-forming or non-pore-forming 
mechanisms62. Many antimicrobial peptides, such as 
β-defensin 1, are constitutively expressed on epithelial 
surfaces, thus providing immediate antimicrobial action 
on infection63. This is illustrated by the increased suscep-
tibility to a broad range of bacterial infections in mice 
lacking cathelicidin antimicrobial peptide (CAMP)59,64. 
Beyond their role in antibacterial defence, there is also 
evidence that antimicrobial peptides can disrupt viral 
particles, thus exerting antiviral activity65,66. Similarly 
to the restriction factors, many antimicrobial peptides 
are expressed in both constitutive and inducible man-
ners. This illustrates the general principle that different 
branches of the immune system can use overlapping 
effector functions (Box 2).

Soluble lectins. Many microorganisms have extensive 
and more complex glycan patterns than mammalian 
cells, and these sugars can therefore be used as a means 
to distinguish self from non-self. There are four classes 
of soluble lectins carrying out this function, namely 
collectins, ficolins, galectins and pentraxins67. On reco
gnition of non-self glycans, soluble lectins can exert  
host defence activities indirectly through complement 
activation and opsonization, as discussed later, or 
directly through aggregation and neutralization. For 
example, the collectin surfactant protein D (SP-D) has 
been reported to bind directly to highly glycosylated 
viruses such as HIV-1 and influenza A virus and neu-
tralize their infectivity68,69. Similarly, pentraxin 3 directly 
binds influenza A virus particles and neutralizes virus 
infectivity70. Importantly, SP-D-deficient mice have 
impaired clearance of influenza A virus and increased 
production of proinflammatory cytokines in response to 
viral challenge71. In addition to viruses, SP-D also binds 
and agglutinates Streptococcus pneumoniae72, thus sug-
gesting that soluble lectins might also have a role in the 
immediate inactivation of bacteria.

Box 1 | Diseases induced by excessive production of IL-1 and type I interferon

Excessive or prolonged activation of pattern recognition receptor (PRR) signalling  
is associated with a range of human diseases. Several cytokines are involved in 
PRR-driven diseases, including tumour necrosis factor (TNF), IL-1β, IL-6 and type I 
interferon169,170. Among these, IL-1β and type I interferon are induced exclusively by  
PRR signalling. Thus, the existence of human diseases that are mediated by these two 
classes of cytokines provides strong evidence for the pathological potential of 
PRR-based immune responses. Here we describe some examples of sterile inflammation 
involving IL-1β and type I interferon. We now know that diseases such as familial 
Mediterranean fever, TNF receptor-associated periodic syndrome, hyper-IgD syndrome 
and cryopyrin-associated periodic syndrome are characterized by increased expression 
of IL-1β; furthermore, blocking IL-1-induced signalling in these disease can relieve 
clinical symptoms and improve disease outcome171. Similarly, diseases such as Aicardi–
Goutières syndrome, stimulator of interferon gene (STING)-associated vasculopathy 
with onset in infancy, Sjögren syndrome, proteasome-associated autoinflammatory 
syndromes and systemic lupus erythematosus are associated with high levels of 
expression of interferon-stimulated genes (known as an ‘interferon signature’) and  
are termed ‘interferonopathies’, although the precise contribution of the interferon 
signature to disease pathogenesis is not completely understood170. For several of these 
diseases, inhibition of Janus kinase 1 (JAK1) and JAK3, which are involved in interferon- 
induced signalling, significantly reduces disease activity172. There are marked 
differences in the pathogenesis of IL-1-driven diseases and interferon-driven diseases. 
Diseases that depend on IL-1 are generally neutrophilic and associated with fever and 
increased levels of acute phase reactants, whereas interferon-driven diseases are 
characterized mainly by lymphopenia, vasculitis, central nervous system manifestations 
in some diseases, skin manifestations and varying levels of autoantibodies171,173.

Nuclear domain 10 bodies
(ND10 bodies). Membraneless, 
interchromatin structures in 
the nucleus of eukaryotic cells. 
ND10 bodies are made up 
mainly of proteins and have 
been described to be involved 
in a broad range of processes, 
including gene regulation, cell 
cycle, apoptosis, DNA repair 
and antiviral defence.
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Metabolite-mediated inhibition. A final example of 
constitutive immune mechanisms that directly inter-
fere with microbial growth is provided by metabolites 
that block pathogen replication, and perhaps the best 
example of which is lactate73,74. Many viral infections 
are characterized by a shift of host cellular metabolism 
to aerobic glycolysis, which leads to the production of 
lactate75,76. Viral infections also induce fatty acid synthe-
sis and intermediate molecules in these pathways. These 
include palmitic acid and oleic acid, which have been 
shown to have antiviral activity77,78. The mechanisms by 
which lactate and other metabolites block viral replica-
tion remain to be determined, but the antiviral activity of 
lactate illustrates a general principle that select molecules 
accumulating during alterations of cellular homeostasis 
can interfere with microbial replication.

A second form of metabolite-dependent constitutive 
host defence is mediated through nutritional deple-
tion and starvation of pathogens. For example, natural 
resistance-associated macrophage protein 1 (NRAMP1; 
also known as SLC11A1) is a metal ion transporter that 
transports divalent cations from vacuoles into the cyto-
plasm, hence depleting factors from vacuoles that are 
essential for the growth of intracellular pathogens79. The 
gene encoding NRAMP1 was shown to contribute to 
defence against, for example, Mycobacterium tuberculosis, 
Salmonella enterica subsp. enterica serovar Typhimurium 
and Leishmania donovani80,81, which was later shown to  
be mediated by the reduction of metal ion concentra-
tions inside microorganism-containing vacuoles82.  
A second example of nutritional depletion is provided by 
lactoferrin, which is present in various secretory fluids.  
Lactoferrin is a highly cationic molecule that shows anti-
microbial activity, in part, by binding and sequestering 
iron from pathogenic microorganisms83. Lactoferrin 
contributes to host defence in a non-redundant man-
ner, as lactoferrin-deficient mice have increased suscep-
tibility to Streptococcus mutans-induced dental caries, 
for example84.

Degenerative mechanisms
The second class of constitutive innate immune mech-
anisms functions through the degradation of danger 
molecules and elimination of unwanted cells. This 
class of mechanisms includes autophagy, phagocyto-
sis, proteasomal degradation and nucleases (Table 1). 
Collectively, degenerative programmes function to 
continually limit danger signals, allowing for the rapid 
elimination of unwanted molecules without the acti-
vation of energy-consuming amplificative induced 
immune responses.

Autophagy and phagocytosis. Autophagy and phagocy
tosis execute the digestion of intracellular and extracel-
lular microorganisms, respectively, through membrane 
encapsulation followed by chemical and enzymatic 
degradation85,86. Pathogens are shunted into these 
pathways through the recognition of polyubiquitin 
chains or glycans inside damaged vacuoles in the case 
of autophagy9,87, and through complement coating of 
microorganisms in the case of phagocytosis88. In the 
case of autophagy, a large number of ubiquitin E3 ligases 

have been identified that coat viral and bacterial surfaces 
with ubiquitin9,89–92, thus targeting microorganisms for 
loading into autophagosomes through interaction with 
the autophagosome-associated protein LC3 (also known 
as MAP1ALC3)85 (Fig. 4b). This targeting mechanism 
involves E3 ligases, including SMURF1 and LRSAM1 
(refs91,92), as well as the ubiquitin-binding selective auto-
phagy receptors p62 (also known as SQSTM1), optineu-
rin and NDP52 (also known as CALCOCO2)9,89,93. An 
alternative mechanism for sensing of vesicle-damaging 
pathogens has been identified that involves damaged 
vesicles exposing glycans in the cytoplasm for sensing by 
galactin 8, which links to autophagy via NDP52 (ref.87). 
This triggers phagophore formation in the vicinity of 
cytosolic bacteria94. Autophagy has important roles in 
the control of infection. For example, defective autophagy 
leads to increased susceptibility to infection with Sindbis 
virus in mice89. In addition, stimulation of autophagy 
in primary human macrophages mediated protection 
against M. tuberculosis infection95,96. However, mice defec-
tive in autophagy do not have impaired antimycobacterial 
defence in vivo, which indicates that the precise role of 
autophagy requires further investigation97. Third, herpes 
simplex virus type 1 specifically interferes with autophagy, 
which is essential for neuropathogenicity of the virus36.

Complement-mediated phagocytosis involves spe-
cific recognition of complement components bound 
to the surface of microorganisms by the corresponding 
complement receptors on phagocytes. Activation of  
the complement system, for example after sensing of gly
cans by the lectin pathway, leads to the formation of C3 
convertase, eventually generating C3b, which binds  
to complement receptors, thus inducing phagocytosis98. 
Mice devoid of the lectin-based complement path-
way have increased susceptibility to Staphylococcus 
aureus infection and impaired bacterial phagocytosis99. 
Furthermore, several bacteria, including Streptococcus 
pyogenes, inhibit complement-mediated phagocytosis100.

A third degenerative mechanism for the degradation 
of membrane-encapsulated extracellular material is 
LC3-associated phagocytosis (LAP), which uses com-
ponents from both the phagocytosis and autophagy 
pathways101. LAP is involved in the clearance of extra-
cellular pathogens and dead cells102, and LAP-deficient 
mice fail to clear Aspergillus fumigatus infection103. Thus, 
autophagy, phagocytosis and LAP are important systems 
for immediate host defence.

Proteasomal degradation. The proteasome is a cyto-
plasmic protein complex that degrades proteins by 
proteolysis104. Proteins to be degraded are tagged  
by K48-linked polyubiquitylation, attracted to the pro
teasome, unfolded into polypeptides and then degraded104.  
The proteasomal degradation pathway also contrib-
utes to immediate defence against infecting pathogens. 
For example, viruses can be detected by the ubiquitin 
E3 ligase TRIM21 through binding to antibody-bound 
viral capsids, which links to downstream proteasomal 
degradation105. This process is involved in the elimina-
tion of infecting viral capsids from the cytoplasm and 
contributes to antiviral defence105–107. Other studies have 
shown that the viral RNA-dependent RNA polymerase of 

Aerobic glycolysis
The process by which glucose 
is converted to lactate in the 
presence of oxygen to produce 
energy in the form of ATP.

NaTure RevIeWS | ImmunOLOgy

R e v i e w s

	  volume 21 | March 2021 | 141



Soluble
lectins

Soluble
lectins

Nutritional 
depletion

Nutritional 
depletion

Antimicrobial 
peptides

Degenerative 
mechanisms

Proteasome
degradation

Antimicrobial 
peptides

Autophagy

Autophagy

Phagocytosis

LC3-associated
phagocytosis

Nucleases

RNAi

Restriction
factors

Metabolites
(such as lactate)

dsRNA
dsRNA

dsDNAviRNA

Virus
particle

Progeny 
virus

TREX1

RNase L

RISC

TRIM21

Lactoferrin

Fe2+

Fe2+

NRAMP1

Nucleus

NucleusProgeny
intracellular
bacteria

a  Viral infection

b  Bacterial infection

Infected
host cell

Extracellular space

Cytoplasm

ROS

ROS
ROS

H+

H+

O2
–

Mechanisms that directly 
target microbial replication

Progeny 
extracellular 
bacteria

Free bacteria 
and/or damaged 
vesicles

www.nature.com/nri

R e v i e w s

142 | March 2021 | volume 21	



turnip yellow mosaic virus is degraded by the ubiquitin–
proteasome pathway to control infection108. Proteasome 
activity also contributes to defence against many bacte-
rial infections, including Yersinia spp. infections109, and 
the ubiquitin–proteasome pathway is targeted by many 
viruses and bacteria to promote replication110–114. For 
example, the human cytomegalovirus protein pUL25 
inhibits proteasomal degradation of another viral pro-
tein, pUL26, to sustain the activity of a pUL26-mediated 
immune evasion mechanism114. Collectively, these exam-
ples show that the conserved proteasome pathway is part 
of the constitutive immune defence repertoire.

Nucleases. The cytoplasm contains RNAses and DNAses 
that eliminate unwanted nucleic acid species, including 
viral nucleic acids, and these enzymes can thereby con-
tribute to sterilization of the cytoplasm. RNase L is a 
latent cytoplasmic exoribonuclease that is activated by 
2′-5′ oligoadenylates produced by OASs115. Although 
OASs are highly interferon inducible, they are also 
expressed at a basal level and hence induce basal RNase L  
activity116. Importantly, this activity has been suggested 
to contribute to basal restriction of coronaviruses in 
myeloid cells, and hence to protect other cell types from 
infection117. TREX1 is a cytoplasmic exodeoxyribonu-
clease that eliminates DNA from the cytoplasm. Very 
few microorganisms have free DNA as part of their 
productive replication cycle, but exogenous and endog-
enous retroviruses have a cytoplasmic DNA step that 
is sensitive to degradation by TREX1. Consequently, 
Trex1–/– mice have increased levels of endogenous ret-
roviral DNA in the cytoplasm118, which indicates that 
TREX1 has a role in limiting retroviral infection and 
hence maintaining genome integrity.

Limiting inflammatory responses
Immune responses induced by PRRs and by antigen- 
specific receptors are often highly potent and sterilizing. 
However, they may also be relatively disruptive and can 
be associated with tissue damage and the requirement 

for significant tissue repair and energy consumption119. 
Many of the constitutive immune mechanisms discussed 
here not only interfere with microbial replication but 
also have negative effects on PRR activity (Table 1). This 
raises the possibility that an overarching function of the 
constitutive immune mechanisms is to both eliminate 
danger and limit the use of PRR-driven activities. At the 
mechanistic level, this immunoregulatory function of 
the constitutive mechanisms can be exerted in two qual-
itatively different ways. The first is through the direct 
effect of their antimicrobial activity on decreasing levels 
of PAMPs. The second is through specific inhibition of 
PRR signalling.

Reduction of PAMP levels. Many studies have shown 
that PRR activation requires PAMP levels to be above 
a certain threshold25–28. Above this threshold, PRRs are 
activated in a concentration-dependent manner until 
saturation is reached. Therefore, constitutive immune 
mechanisms that reduce PAMP levels will limit or even 
prevent PRR activation (Fig. 2a). For example, mice 
deficient in the restriction factor APOBEC3, which has 
antiretroviral activity, have higher viral loads after infec-
tion with murine leukaemia virus and corresponding 
higher levels of reverse viral transcripts and downstream 
interferon induction through the cGAS–STING pathway 
(cyclic GMP–AMP synthase–stimulator of interferon 
genes pathway)120. Similarly, SAMHD1 activity in vivo 
controls lentivirus load and limits virus-induced pro-
duction of interferons in myeloid cells121. In addition, 
SAMHD1 deficiency leads to increased expression of 
costimulatory molecules and T cell activation on len-
tiviral infection, which suggests that the constitutive 
reduction of PRR activation by SAMHD1 limits not 
only the expression of innate immune cytokines but 
also downstream adaptive immune responses121. A third 
example is provided by the observation that expres-
sion of Drosophila Dicer in mammalian cells leads to 
decreased induction of IFNβ by double-stranded RNA, 
most likely owing to the digestion of immunostimu-
latory RNA into shorter 20–25-bp RNA species that 
activate PRRs only inefficiently122. Finally, constitutive 
innate immune mechanisms can also reduce PRR activ-
ity by lowering the concentration of PAMPs that have 
immunostimulatory activity. For example, lactoferrin 
binds CpG DNAs and inhibits their ability to activate 
TLR9 (ref.123).

Inhibition of PRR signalling. In addition to reducing the 
levels of PAMPs, some constitutive mechanisms have 
been reported to target PRR activity at the signalling 
level (Fig. 2a). For example, autophagy negatively reg-
ulates signalling by the RIG-I–MAVS pathway (retinoic 
acid-inducible gene I protein–mitochondrial antiviral 
signalling protein pathway) and by the cGAS–STING 
pathway; in the former case by limiting reactive oxygen  
species-mediated amplification of signalling and by 
LC3-dependent MAVS inactivation124,125, and in the 
latter case through degradation of STING126. In line 
with this, defective autophagy as a result of ATG16L 
deficiency predisposes to STING-dependent intestinal 
pathology in mice127, and ATG5 deficiency selectively in 

Fig. 3 | Overview of the regulation of microbial replication by constitutive innate 
immune mechanisms. a | Constitutive innate immune mechanisms and viral infection. 
The accumulation of specific viral molecular structures (such as double-stranded 
RNA (dsRNA) or capsids) and cellular stress responses (such as autophagy) activate 
constitutive–latent mechanisms with direct antiviral activity, independently of pattern 
recognition receptors. Some of the antiviral effector functions target microbial 
replication by blocking specific steps in the replication cycles of viruses; these effectors 
include soluble lectins, antimicrobial peptides, restriction factors, RNA interference 
(RNAi) and metabolites. Other antiviral effectors of the constitutive response function 
through the degradation of virus particles; these include nucleases such as TREX1, which 
degrades viral DNA in the cytoplasm, and RNase L, which degrades viral RNA, as well 
as autophagy and proteasomal degradation. Viruses can be targeted for proteasomal 
degradation by the ubiquitin E3 ligase TRIM21, which binds to antibody-attached 
viral capsids. b | Constitutive innate immune mechanisms and bacterial infection. 
The presence of bacteria changes the local microenvironment, for example through the 
accumulation of hydrophobic and charged bacterial surfaces or alteration of cellular 
metabolism. This activates antibacterial activities independently of pattern recognition 
receptors, including inactivation by soluble lectins and antimicrobial peptides, nutritional 
depletion by natural resistance-associated macrophage protein 1 (NRAMP1) and 
lactoferrin, and bacterial degradation by phagocytosis and basal autophagy. dsDNA, 
double-stranded DNA; RISC, RNA-induced silencing complex; ROS, reactive oxygen 
species; viRNA, virus-derived small interfering RNA.
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(Cyclic GMP–AMP synthase–
stimulator of interferon genes 
pathway). cGAS is a cytosolic 
DNA-sensing pattern 
recognition receptor that 
signals via STING to induce the 
expression of type I interferon 
and inflammatory cytokines.

RIG-I–MAVS pathway
(Retinoic acid-inducible gene I 
protein–mitochondrial antiviral 
signalling protein pathway). 
RIG-I is a cytosolic RNA-sensing 
pattern recognition receptor 
that signals via MAVS to 
induce the expression of type I 
interferon and inflammatory 
cytokines.
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neutrophils exacerbates M. tuberculosis immunopathol-
ogy without affecting bacterial load97. As a second exam-
ple, lactate, which is produced during aerobic glycolysis 
and has virus-restricting activity73,74, also directly inhib-
its MAVS activity; thus lactate both reduces levels of viral 
PAMPs and has a negative regulatory function to inhibit 
PAMP-driven signalling and interferon expression128. 
Third, an engineered amphipathic-helical antimicro-
bial peptide was found to block TLR4 signalling through 
the TRIF pathway129. This occurs by the inhibition of 
TLR4 endocytosis, which is an essential step for the 
engagement of TRIF from endosomal compartments.

Collectively, the current literature suggests that con-
stitutive immune mechanisms reduce PRR activation 
through a range of mechanisms and, therefore, that these 
constitutive mechanisms impose a threshold and negative 
regulatory activity on the amplificative innate and adap-
tive immune responses (Fig. 2b). We propose that rapid, 
molecularly specific and non-amplificative responses to 
challenges provided by constitutive immune mechanisms 
are beneficial for achieving optimal host defence with 
minimal immunopathology.

Constitutive immunity beyond infection
Our main focus here has been on infections. However, 
constitutive immune mechanisms are also involved in the 
elimination of sterile danger. For example, DNA damage in 
the nucleus and the accumulation of DNA in extranuclear 
compartments are eliminated by the DNA damage response 
and specific DNases130, respectively; the accumulation 
of misfolded proteins leads to the formation of aggre-
somes, which are cleared by selective autophagy131,132; 
excessive accumulation of reactive oxygen species leads 
to death of the oxygen-stressed cells133; and free choles-
terol is converted into an ester derivative by lecithin– 
cholesterol acyltransferase, thus enabling transport 
to the liver by high-density lipoprotein and eventual 
degradation134. Defects in these constitutive and latent 
danger-eliminating mechanisms lead to the accumulation 
of danger-associated molecular patterns and activation of 
PRR-based immunity. For example, in cells with defects in 
either the DNA damage response or extranuclear DNases, 
the accumulation of DNA induces type I interferon 

production through the cGAS–STING pathway135–138. 
Similarly, defective elimination of protein aggregates 
or cholesterol leads to the induction of IL-1β produc-
tion through activation of the NLRP3 inflammasome139,140. 
Common to all of the examples given above is that the 
accumulated abnormal endogenous molecules are 
detected and eliminated through molecularly specific 
mechanisms independently of PRRs. This elimination 
limits PRR activation and hence inflammatory reactions. 
Therefore, in addition to eliminating microorganisms and 
PAMPs, constitutive immune mechanisms also eliminate 
sterile danger signals in a damage-limiting manner that 
prevents the activation of excessive inflammation.

Constitutive immunity in human health
We propose that constitutive immune mechanisms  
enable cells and organisms to fight infections and elim-
inate endogenous abnormalities in a non-inflammatory 
manner. Therefore, an important benefit of these mech-
anisms may be to increase the threshold for develop-
ment of clinically overt signs of disease on exposure to 
infections or endogenous danger. Studies of the associ-
ations between single-nucleotide polymorphisms and 
infections have shown that restriction factors, antimi-
crobial peptides and autophagy have important roles  
in antimicrobial defence141–144. Constitutive immune 
mechanisms may be particularly active in the protec-
tion of tissues that are frequently exposed to pathogens, 
such as epithelial cells in the airways and the gut, or 
tissues that are particularly vulnerable to immuno
pathology, such as the brain. In favour of this idea, RNA 
lariat debranching enzyme 1 (DBR1) and small nucle-
olar RNA, H/ACA box 31 (SNORA31) were recently 
shown to have non-redundant, interferon-independent 
roles in the prevention of viral brainstem encephali-
tis and herpes simplex encephalitis, respectively11,12.  
The mechanisms through which they exert their anti-
viral activity remain to be determined. Reports have 
shown that autophagy is an antiviral mechanism in the 
brain in mice36,89,145. In addition, some cell populations, 
including stem cells, seem to use constitutive immune 
mechanisms to eliminate danger without losing key 
functions, such as self-renewal and differentiation 
capacity, that are known to be impaired by PRR-based 
immunity146,147.

An important question related to human immuno
logy is how individuals with a loss-of-function mutation 
in a constitutive immune mechanism may present clini-
cally. Deficiency of a mechanism that is expressed in spe-
cific organs or cell types might lead to a higher frequency 
of clinical infections by a subset of microorganisms that 
are normally controlled by the defective mechanism. 
This seems to be the case for defects in DBR1, which 
confer susceptibility to disease caused by infections with 
herpes simplex virus type 1, influenza virus or norovirus 
in the brainstem11. The impact of deficiencies in constitu-
tive immune mechanisms might not be limited to acute 
infections and could also include chronic and latent infe
ctions. In support of a link between such defects and 
increased inflammation, patients with inborn defects in 
DNA repair, elimination of extranuclear DNA or degra-
dation of misfolded proteins develop autoinflammatory 

DNA damage response
Cellular response to DNA 
damage, including the 
re-establishment of genome 
integrity and cell death 
responses.

NLRP3 inflammasome
The NLRP3 inflammasome is 
activated by danger-associated 
molecular patterns and 
molecular signatures 
associated with homeostasis- 
altering molecular processes  
to execute caspase 1-mediated 
cleavage of molecules such  
as pro-IL-1β and gasdermin D.

Box 2 | Overlap between constitutive and inducible immune responses

In most respects, constitutive and inducible immune responses operate through 
different principles; however, in certain cases, their downstream effector activities may 
overlap. This is to be expected given that all of these responses use mechanisms from 
the same ‘evolutionary toolbox’ to achieve optimal protection of the host. For example, 
autophagy can be activated during infection and upon sterile danger9,174. Similarly, 
phagocytosis can be activated by both Toll-like receptor (TLR)-dependent and TLR- 
independent mechanisms175–177. Moreover, many restriction factors are expressed at 
basal levels to exert immediate antiviral activity, but are also induced transcriptionally 
in response to stimulation with type I interferon35,40,178. Nevertheless, despite these 
minor areas of overlap between constitutive immune mechanisms and the pattern 
recognition receptor (PRR)-induced immune responses, the differences are more 
pronounced. The key difference between constitutive immune mechanisms and PRR- 
induced immunity is that the former mechanisms are all activated through pre-existing 
molecules to directly eliminate danger, whereas the latter system functions mainly 
through inducible transcription-dependent proinflammatory programmes. In addition, 
inducible innate responses can amplify adaptive responses, whereas constitutive innate 
responses do not amplify inducible innate responses.
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diseases, including Aicardi–Goutières syndrome and 
proteasome-associated autoinflammatory syndromes, 
which are characterized by type I interferon-dependent 
autoinflammation and are termed ‘interferonopa-
thies’137,148–150. Therefore, a loss of function in constitutive 

immune mechanisms can lead to selective susceptibility 
to specific infections or to infections in specific organs. 
Likewise, such deficiency might lead to the accumula-
tion of PAMPs, microorganism-associated molecular 
patterns, danger-associated molecular patterns and/or 

Table 1 | Constitutive immune mechanisms in host defence

Type of 
effector

Examples Trigger Target microorganisms Evidence for control of 
inflammatory responses

Refs

Targeting microbial replication

Restriction 
factors

BST2, YBX1, IFITMs Specific viral 
replication events

HIV-1, HCV, HSV-1, VSV, RSV Increased IL-6 and IL-1β expression 
in the lungs of RSV-infected Ifitm1–/– 
mice; increased constitutive infiltration 
of monocytes and macrophages in the 
kidney in Ybx1–/– mice

40,44, 

154–156

SAMHD1, APOBEC3 Modulation of nucleic 
acid availability and/or 
function

HIV-1, vaccinia virus, HSV-1, 
murine herpesvirus 68, 
parvovirus

Increased spontaneous and 
lentivirus-induced interferon and 
ISG expression in Samhd1–/– mice; 
increased IFNβ expression in 
Apobec3–/– mice infected with murine 
leukaemia virus

39,41,120, 

121,157,158

RNAi RISC dsRNA Cucumovirus (plants), Flock 
House virus (worms), cricket 
paralysis virus (flies)

Introduction of Drosophila Dicer-2 
in mammalian cells reduced 
dsRNA-induced IFNβ expression

50–52,159

Antimicrobial 
peptides

β-Defensins, 
cathelicidin

Negatively charged 
surfaces

Salmonella enterica subsp. 
enterica serovar Typhimurium, 
Escherichia coli, Shigella spp., 
HIV-1

LL37 inhibits DNA-sensing 
inflammasomes in psoriatic skin;  
an engineered antimicrobial peptide 
inhibits TLR4 signalling through  
the TRIF pathway

58–60,65, 

129,160

Soluble lectins Collectins, ficolins, 
galectins, pentraxins

Glycans HIV-1, influenza A virus, 
Streptococcus pneumoniae

SP-A inhibits LPS-induced TLR4 
activation by preventing the 
interaction with LPS-binding protein; 
SP-D-deficient mice have increased 
levels of proinflammatory cytokines 
after influenza virus infection

68–72,161

Metabolites Lactate, palmitic acid Metabolic alterations HIV-1, HSV-1, Zika virus, VSV Ldha–/– mice express increased levels of 
type I interferon on infection with RNA 
viruses

73,74,77, 

162,163

NRAMP1, lactoferrin Iron depletion Mycobacterium tuberculosis, 
S. Typhimurium, Leishmania 
donovani, Streptococcus 
mutans

Lactoferrin binds CpG DNA and 
impedes stimulation through TLR9

80,81, 

84,123

Degenerative mechanisms

Autophagy – Viral proteins, 
organelle dysfunction, 
protein aggregates

M. tuberculosis,  
S. Typhimurium, Sindbis virus

Increased interferon expression 
and inflammasome activation in 
autophagy-defective cells; excess IL-1β 
production and lung inflammation 
in autophagy-deficient mice after 
infection and sterile challenge

9,89,96, 

126,164

Phagocytosis – Opsonization Staphylococcus aureus, 
Salmonella spp., Mycobacteria 
spp., Aspergillus spp.

Patients with CGD have increased 
inflammasome activity and IL-1β 
production

165,166

LC3-associated 
phagocytosis

– Not known S. Typhimurium, Listeria 
monocytogenes, Burkholderia 
pseudomallei

LC3-deficient mice fail to clear 
dead cells and develop lupus-like 
inflammatory disease

102,123, 

167,168

Proteasomal 
degradation

– Cytosolic capsids and 
capsid–IgG complexes

Adenovirus, turnip yellow 
mosaic virus

Patients with PRAAS-associated 
mutations in proteasome genes have 
strong interferon signatures

105–107, 

111,148,149

Nucleic acid 
degradation

– Cytosolic RNA  
and DNA

Endogenous retroviruses, 
murine coronaviruses

Patients with defective TREX1 have 
increased interferon expression and 
develop Aicardi–Goutières syndrome

117,118,137

APOBEC3, apolipoprotein B mRNA-editing complex 3; BST2, bone marrow stromal antigen 2 (also known as tetherin); CGD, chronic granulomatous disease; 
dsRNA, double-stranded RNA; HCV, hepatitis C virus; HSV-1, herpes simplex virus type 1; IFITMs, interferon-induced transmembrane proteins; ISG, 
interferon-stimulated gene; Ldha, lactate dehydrogenase A; LPS, lipopolysaccharide; NRAMP1, natural resistance-associated macrophage protein 1; PRAAS, 
proteasome-associated autoinflammatory syndromes; RISC, RNA-induced silencing complex; RNAi, RNA interference; RSV, respiratory syncytial virus; SAMHD1, 
SAM domain and HD domain-containing protein 1; SP, surfactant protein; TLR, Toll-like receptor; VSV, vesicular stomatitis virus; YBX1, Y-box binding protein 1.
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Fig. 4 | Constitutive control of microbial replication by restriction factors and autophagy. a | Restriction factors that control herpesvirus and retrovirus 
infections, including their targets in the viral replication cycle. Restriction factors interfere with viral replication by either blocking a specific and essential step 
in the viral replication cycle (for example, viral gene transcription or release of progeny virus) or depletion of factors that are essential for replication (such as 
deoxynucleoside triphosphates). b | Blockade of viral and bacterial replication by autophagy. Various ubiquitin E3 ligases (such as SMURF1, LRSAM1 and 
TRIM23) and ubiquitin-binding proteins (such as p62, optineurin and NDP52) have been identified to conjugate ubiquitin to microbial surfaces, which targets 
them for loading into autophagosomes. Also, cytosolic exposure of glycans by pathogen-damaged vesicles can be recognized by galectin 8 for targeting to 
autophagosomes. APOBEC3, apolipoprotein B mRNA-editing complex 3; BST2, bone marrow stromal antigen 2 (also known as tetherin); DBR1, RNA lariat 
debranching enzyme 1; IFI16, interferon-γ-inducible protein 16; IFITM, interferon-induced transmembrane protein; MTOC, microtubule-organizing centre; 
ND10, nuclear domain 10; SAMHD1, SAM domain and HD domain-containing protein 1; SIRT6, sirtuin 6; SNORA31, small nucleolar RNA, H/ACA box 31.
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homeostasis-altering molecular processes and associated 
pathological inflammation (Box 1).

Outlook
In this article, we have described the role and mode of 
action of a large panel of constitutive mechanisms used 
by the immune system to exert immediate control of 
infections and endogenous dangers independently of the  
inducible mechanisms that are activated through PRRs 
and antigen-specific receptors. Although many such 
constitutive responses have been known for years, 
greater understanding of the mechanisms involved 
and renewed interest in fields such as restriction factor 
biology and immunometabolism are spurring further 
work in the area. With the identification of constitu-
tive mechanisms that have non-redundant roles in 
host defence, we now know that these immune mech-
anisms are not just redundant, non-specific players 
in immunology11,12. This should stimulate interest in 
understanding the roles played by constitutive immune 
mechanisms in host defence in vivo, which might 
include the identification of new primary immune dis-
orders. Improved knowledge of the host cell type and 
tissue specificities of constitutive immune mechanisms 
in relation to susceptibility to infections could greatly 
improve our understanding of human immunology. 
Such work will start to provide answers to the funda-
mental question of how the immune system determines 

the degree of threat caused by an infection and bal-
ances that with the appropriate strength of the immune 
reaction.

Finally, as we gain further insights into the various 
host responses that are activated during immunologi-
cal challenge, it will be interesting to explore the idea 
that the immune system has a defensive layer of activ-
ities that have been selected to eliminate danger with-
out engaging the PRR system (Box 3). In this respect, 
it is interesting to note that in addition to the consti-
tutive mechanisms described in this Review, there 
are various sensing systems that use transcriptional 
programmes to induce host defence independently of 
PRRs and with the ability to control inflammation. They 
include the NRF2–KEAP1, hypoxia-inducible factor 1α and  
bone morphogenetic protein–SMAD pathways10,151–153. 
In addition, the constitutive host defence exerted by 
commensal bacteria through several mechanisms, 
including niche competition, warrants more attention. 
With more and more data emerging on the importance 
of constitutive mechanisms in immunology, there is a 
need to understand this phenomenon in more detail. 
Such work may advance our understanding of one of 
the most interesting questions in immunology, namely 
how to eliminate danger in a rapid, efficient and specific 
manner without causing excess damage to the host.

Published online 11 August 2020

NRF2–KEAP1
Nuclear factor erythroid 
2-related factor 2 (NRF2) 
senses oxidative stress, 
whereupon it is released from 
Kelch-like ECH-associated 
protein 1 (KEAP1) to 
translocate to the nucleus 
and induce gene expression.

Hypoxia-inducible factor 1α
A transcription factor that is 
activated by hypoxia to induce 
the expression of genes with 
hypoxia-responsive elements 
in their promoters.

Bone morphogenetic 
protein–SMAD
Bone morphogenetic proteins 
are growth factors that signal 
through SMAD proteins to 
induce gene transcription.

1.	 Medzhitov, R. Origin and physiological roles  
of inflammation. Nature 454, 428–435  
(2008).

2.	 van der Poll, T., van de Veerdonk, F. L., Scicluna, B. P. 
& Netea, M. G. The immunopathology of sepsis and 
potential therapeutic targets. Nat. Rev. Immunol. 17, 
407–420 (2017).

3.	 Coban, C., Lee, M. S. J. & Ishii, K. J. Tissue- 
specific immunopathology during malaria  
infection. Nat. Rev. Immunol. 18, 266–278  
(2018).

4.	 Takeuchi, O. & Akira, S. Pattern recognition receptors 
and inflammation. Cell 140, 805–820 (2010).

5.	 Iwasaki, A. & Medzhitov, R. Control of adaptive 
immunity by the innate immune system. 
Nat. Immunol. 16, 343–353 (2015).

6.	 Flajnik, M. F. & Kasahara, M. Origin and evolution  
of the adaptive immune system: genetic events and 
selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).

7.	 Iversen, M. B. et al. An innate antiviral pathway acting 
before interferons at epithelial surfaces. Nat. Immunol. 
17, 150–158 (2016).

8.	 Yamane, D. et al. Basal expression of interferon 
regulatory factor 1 drives intrinsic hepatocyte 
resistance to multiple RNA viruses. Nat. Microbiol. 4, 
1096–1104 (2019).

9.	 Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N. 
& Randow, F. The TBK1 adaptor and autophagy receptor 
NDP52 restricts the proliferation of ubiquitin-coated 
bacteria. Nat. Immunol. 10, 1215–1221 (2009).

10.	 Eddowes, L. A. et al. Antiviral activity of bone 
morphogenetic proteins and activins. Nat. Microbiol. 
4, 339–351 (2019).

Box 3 | A new concept of damage-limiting immune mechanisms?

In addition to the constitutive immune mechanisms described in this Review, several pathways are activated in response to 
infections and sterile challenge that function independently of pattern recognition receptors (PRRs) and antigen-specific 
receptors to control infection. These include the NRF2–KEAP1, hypoxia-inducible factor 1α and bone morphogenetic 
protein–SMAD pathways10,151–153. These pathways differ from the constitutive immune mechanisms by engaging 
transcriptional programmes to execute their activities10,151–153. Some of these pathways have also been reported to exert 
negative control of PRR signalling151,152,179,180, which shows that they share both antimicrobial and immunoregulatory 
functions with the constitutive immune mechanisms. For example, NRF2-deficient mice have increased susceptibility to 
certain viral infections152, and NRF2 also negatively regulates cyclic GMP–AMP synthase (cGAS)–stimulator of interferon 
gene (STING) signalling180. As we gain more information about the actions of constitutive immune mechanisms and 
PRR-independent transcriptional pathways in early host defence, we believe that the immunological community should 
consider whether these diverse mechanisms share features that distinguish them from other immune pathways. It is 
possible that the constitutive immune mechanisms described in this Review are part of a larger group of damage-limiting 
immune mechanisms that can be defined by fulfilling all of the following criteria:

1.	 Function independently of PRRs and antigen-specific receptors

2.	R espond to the presence of specific microbial or host stress-related molecules

3.	�E liminate danger in a non-inflammatory manner, and limit PRR activation by removing PRR ligands and/or inhibiting 
PRR signalling

4.	E liminate danger through specific effector functions that target defined host or microbial structures and activities

Whereas the physical and chemical barrier functions of the immune system fulfil criteria 1 and 3, they do not satisfy 
criteria 2 and 4. Similarly, PRRs and antigen-specific receptors fulfil criteria 2 and 4, but do not fulfil criteria 1 and 3. 
Although it is speculative at present, we think that the idea of damage-limiting immune mechanisms may serve as a useful 
guide for future experimental and clinical research.

NaTure RevIeWS | ImmunOLOgy

R e v i e w s

	  volume 21 | March 2021 | 147



11.	 Zhang, S. Y. et al. Inborn errors of RNA lariat 
metabolism in humans with brainstem viral infection. 
Cell 172, 952–965 (2018).  
Zhang et al. identify a genetic defect in a novel 
restriction mechanism that protects against viral 
brainstem infections.

12.	 Lafaille, F. G. et al. Human SNORA31 variations  
impair cortical neuron-intrinsic immunity to HSV-1  
and underlie herpes simplex encephalitis. Nat. Med. 
25, 1873–1884 (2019).  
This work identifies SNORA31 as an 
interferon-independent small antiviral nucleolar 
RNA conferring protection against herpes simplex 
encephalitis.

13.	 Nish, S. & Medzhitov, R. Host defense pathways:  
role of redundancy and compensation in infectious 
disease phenotypes. Immunity 34, 629–636  
(2011).

14.	 Ausubel, F. M. Are innate immune signaling pathways 
in plants and animals conserved? Nat. Immunol. 6, 
973–979 (2005).

15.	 Matzinger, P. Tolerance, danger, and the extended 
family. Annu. Rev. Immunol. 12, 991–1045  
(1994).

16.	 Liston, A. & Masters, S. L. Homeostasis-altering 
molecular processes as mechanisms of inflammasome 
activation. Nat. Rev. Immunol. 17, 208–214 (2017).

17.	 Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. 
& Hoffmann, J. A. The dorsoventral regulatory gene 
cassette spätzle/Toll/cactus controls the potent 
antifungal response in Drosophila adults. Cell 86, 
973–983 (1996).

18.	 Poltorak, A. et al. Defective LPS signaling in C3H/HeJ 
and C57BL/10ScCr mice: mutations in Tlr4 gene. 
Science 282, 2085–2088 (1999).

19.	 Crow, Y. J. & Manel, N. Aicardi-Goutieres syndrome 
and the type I interferonopathies. Nat. Rev. Immunol. 
15, 429–440 (2015).

20.	 Dinarello, C. A., Simon, A. & van der Meer, J. W. 
Treating inflammation by blocking interleukin-1 in a 
broad spectrum of diseases. Nat. Rev. Drug Discov. 
11, 633–652 (2012).

21.	 Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., 
Edberg, S. & Medzhitov, R. Recognition of commensal 
microflora by toll-like receptors is required for intestinal 
homeostasis. Cell 118, 229–241 (2004).

22.	 Barton, E. S. et al. Herpesvirus latency confers 
symbiotic protection from bacterial infection.  
Nature 447, 326–329 (2007).

23.	 Marie, I., Durbin, J. E. & Levy, D. E. Differential viral 
induction of distinct interferon-alpha genes by positive 
feedback through interferon regulatory factor-7. 
EMBO J. 17, 6660–6669 (1998).

24.	 Bauernfeind, F. G. et al. Cutting edge: NF-kappaB 
activating pattern recognition and cytokine receptors 
license NLRP3 inflammasome activation by regulating 
NLRP3 expression. J. Immunol. 183, 787–791 
(2009).

25.	 Yan, N., Regalado-Magdos, A. D., Stiggelbout, B., 
Lee-Kirsch, M. A. & Lieberman, J. The cytosolic 
exonuclease TREX1 inhibits the innate immune 
response to human immunodeficiency virus type 1. 
Nat. Immunol. 11, 1005–1013 (2010).

26.	 Luecke, S. et al. cGAS is activated by DNA in  
a length-dependent manner. EMBO Rep. 18,  
1707–1715 (2017).

27.	 Gehrig, S. et al. Identification of modifications  
in microbial, native tRNA that suppress 
immunostimulatory activity. J. Exp. Med. 209,  
225–233 (2012).

28.	 Rice, G. I. et al. Gain-of-function mutations in IFIH1 
cause a spectrum of human disease phenotypes 
associated with upregulated type I interferon 
signaling. Nat. Genet. 46, 503–509 (2014).

29.	 Kagan, J. C., Magupalli, V. G. & Wu, H. SMOCs: 
supramolecular organizing centres that control  
innate immunity. Nat. Rev. Immunol. 14, 821–826 
(2014).

30.	 Hamerman, J. A. et al. Negative regulation of TLR 
signaling in myeloid cells–implications for autoimmune 
diseases. Immunol. Rev. 269, 212–227 (2016).

31.	 Carey, C. M. et al. Recurrent loss-of-function mutations 
reveal costs to OAS1 antiviral activity in primates.  
Cell Host Microbe 25, 336–343 (2019).

32.	 Lim, J. K. et al. Genetic variation in OAS1 is a risk 
factor for initial infection with West Nile virus in man. 
PLoS Pathog. 5, e1000321 (2009).

33.	 Li, H. et al. Identification of a Sjogren’s syndrome 
susceptibility locus at OAS1 that influences isoform 
switching, protein expression, and responsiveness  
to type I interferons. PLoS Genet. 13, e1006820 
(2017).

34.	 Laguette, N. et al. SAMHD1 is the dendritic-  
and myeloid-cell-specific HIV-1 restriction factor 
counteracted by Vpx. Nature 474, 654–657 (2011).  
This work identifies SAMHD1 as an HIV-1 
restriction factor that functions through a 
mechanism dependent on the phosphohydrolase 
activity of the enzyme.

35.	 Gariano, G. R. et al. The intracellular DNA sensor 
IFI16 gene acts as restriction factor for human 
cytomegalovirus replication. PLoS Pathog. 8, 
e1002498 (2012).

36.	 Orvedahl, A. et al. HSV-1 ICP34.5 confers 
neurovirulence by targeting the Beclin 1 autophagy 
protein. Cell Host. Microbe 1, 23–35 (2007).

37.	 Harris, R. S., Hultquist, J. F. & Evans, D. T. The 
restriction factors of human immunodeficiency virus.  
J. Biol. Chem. 287, 40875–40883 (2012).

38.	 Duggal, N. K. & Emerman, M. Evolutionary conflicts 
between viruses and restriction factors shape 
immunity. Nat. Rev. Immunol. 12, 687–695 (2012).

39.	 Bishop, K. N., Holmes, R. K., Sheehy, A. M. &  
Malim, M. H. APOBEC-mediated editing of viral RNA. 
Science 305, 645 (2004).  
This study describes the identification of 
APOBEC-mediated RNA editing as a mechanism 
restricting HIV-1 replication.

40.	 Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits 
retrovirus release and is antagonized by HIV-1 Vpu. 
Nature 451, 425–430 (2008).

41.	 Goldstone, D. C. et al. HIV-1 restriction factor 
SAMHD1 is a deoxynucleoside triphosphate 
triphosphohydrolase. Nature 480, 379–382 (2011).

42.	 Glass, M. & Everett, R. D. Components of 
promyelocytic leukemia nuclear bodies (ND10) act 
cooperatively to repress herpesvirus infection. J. Virol. 
87, 2174–2185 (2013).

43.	 Merkl, P. E. & Knipe, D. M. Role for a filamentous 
nuclear assembly of IFI16, DNA, and host factors in 
restriction of herpesviral infection. mBio 10, e02621 
(2019).

44.	 Pichlmair, A. et al. IFIT1 is an antiviral protein that 
recognizes 5’-triphosphate RNA. Nat. Immunol. 12, 
624–630 (2011).

45.	 Full, F. et al. Centrosomal protein TRIM43 restricts 
herpesvirus infection by regulating nuclear lamina 
integrity. Nat. Microbiol. 4, 164–176 (2019).

46.	 Schoggins, J. W. et al. Pan-viral specificity of 
IFN-induced genes reveals new roles for cGAS in 
innate immunity. Nature 505, 691–695 (2013).

47.	 Brien, J. D. et al. Interferon regulatory factor-1 (IRF-1) 
shapes both innate and CD8+ T cell immune responses 
against West Nile virus infection. PLoS Pathog. 7, 
e1002230 (2011).

48.	 Zhou, R. & Rana, T. M. RNA-based mechanisms 
regulating host-virus interactions. Immunol. Rev. 253, 
97–111 (2013).

49.	 Hamilton, A. J. & Baulcombe, D. C. A species of small 
antisense RNA in posttranscriptional gene silencing  
in plants. Science 286, 950–952 (1999).

50.	 Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes 
are required for posttranscriptional gene silencing and 
natural virus resistance. Cell 101, 533–542 (2000).  
Mourrain et al. identify RNAi as an antiviral system 
in plants.

51.	 Lu, R. et al. Animal virus replication and 
RNAi-mediated antiviral silencing in Caenorhabditis 
elegans. Nature 436, 1040–1043 (2005).

52.	 Wang, X. H. et al. RNA interference directs innate 
immunity against viruses in adult Drosophila. Science 
312, 452–454 (2006).

53.	 Galiana-Arnoux, D., Dostert, C., Schneemann, A., 
Hoffmann, J. A. & Imler, J. L. Essential function in vivo 
for Dicer-2 in host defense against RNA viruses in 
drosophila. Nat. Immunol. 7, 590–597 (2006).

54.	 Maillard, P. V., van der Veen, A. G., Poirier, E. Z. & 
Reis, E. S. C. Slicing and dicing viruses: antiviral  
RNA interference in mammals. EMBO J. 38, e100941 
(2019).

55.	 Wang, Y. et al. Hepatitis C virus core protein is a 
potent inhibitor of RNA silencing-based antiviral 
response. Gastroenterology 130, 883–892 (2006).

56.	 Fabozzi, G., Nabel, C. S., Dolan, M. A. & Sullivan, N. J. 
Ebolavirus proteins suppress the effects of small 
interfering RNA by direct interaction with the 
mammalian RNA interference pathway. J. Virol. 85, 
2512–2523 (2011).

57.	 Yeaman, M. R. & Yount, N. Y. Mechanisms of 
antimicrobial peptide action and resistance. 
Pharmacol. Rev. 55, 27–55 (2003).

58.	 Wilson, C. L. et al. Regulation of intestinal alpha- 
defensin activation by the metalloproteinase matrilysin 
in innate host defense. Science 286, 113–117 (1999).

59.	 Chromek, M. et al. The antimicrobial peptide 
cathelicidin protects the urinary tract against invasive 
bacterial infection. Nat. Med. 12, 636–641 (2006).

60.	 Ganz, T., Metcalf, J. A., Gallin, J. I., Boxer, L. A.  
& Lehrer, R. I. Microbicidal/cytotoxic proteins  
of neutrophils are deficient in two disorders: 
Chediak-Higashi syndrome and “specific” granule 
deficiency. J. Clin. Invest. 82, 552–556 (1988).

61.	 Kumar, P., Kizhakkedathu, J. N. & Straus, S. K. 
Antimicrobial peptides: diversity, mechanism of  
action and strategies to improve the activity and 
biocompatibility in vivo. Biomolecules 8, 4 (2018).

62.	 Jenssen, H., Hamill, P. & Hancock, R. E. Peptide 
antimicrobial agents. Clin. Microbiol. Rev. 19,  
491–511 (2006).

63.	 Valore, E. V. et al. Human beta-defensin-1:  
an antimicrobial peptide of urogenital tissues.  
J. Clin. Invest. 101, 1633–1642 (1998).

64.	 Nizet, V. et al. Innate antimicrobial peptide protects 
the skin from invasive bacterial infection. Nature 414, 
454–457 (2001).

65.	 Quinones-Mateu, M. E. et al. Human epithelial 
beta-defensins 2 and 3 inhibit HIV-1 replication.  
AIDS 17, F39–F48 (2003).

66.	 Ahmed, A., Siman-Tov, G., Hall, G., Bhalla, N. & 
Narayanan, A. Human antimicrobial peptides as 
therapeutics for viral infections. Viruses 11, 704 
(2019).

67.	 Casals, C., Garcia-Fojeda, B. & Minutti, C. M.  
Soluble defense collagens: sweeping up immune 
threats. Mol. Immunol. 112, 291–304 (2019).

68.	 Meschi, J. et al. Surfactant protein D binds to  
human immunodeficiency virus (HIV) envelope protein 
gp120 and inhibits HIV replication. J. Gen. Virol. 86, 
3097–3107 (2005).

69.	 Hartshorn, K. L. et al. Reduced influenza viral 
neutralizing activity of natural human trimers  
of surfactant protein D. Respir. Res. 8, 9 (2007).

70.	 Reading, P. C. et al. Antiviral activity of the long chain 
pentraxin PTX3 against influenza viruses. J. Immunol. 
180, 3391–3398 (2008).

71.	 LeVine, A. M., Whitsett, J. A., Hartshorn, K. L., 
Crouch, E. C. & Korfhagen, T. R. Surfactant protein D 
enhances clearance of influenza A virus from the lung 
in vivo. J. Immunol. 167, 5868–5873 (2001).

72.	 Jounblat, R. et al. Binding and agglutination of 
Streptococcus pneumoniae by human surfactant 
protein D (SP-D) vary between strains, but SP-D fails 
to enhance killing by neutrophils. Infect. Immun. 72, 
709–716 (2004).

73.	 Isaacs, C. E. & Xu, W. Theaflavin-3,3’-digallate and 
lactic acid combinations reduce herpes simplex  
virus infectivity. Antimicrob. Agents. Chemother. 57, 
3806–3814 (2013).

74.	 Tyssen, D. et al. Anti-HIV-1 activity of lactic acid in 
human cervicovaginal fluid. mSphere 3, e00055 
(2018).

75.	 Sanchez, E. L. & Lagunoff, M. Viral activation of 
cellular metabolism. Virology 479-480, 609–618 
(2015).

76.	 Munger, J., Bajad, S. U., Coller, H. A., Shenk, T. & 
Rabinowitz, J. D. Dynamics of the cellular metabolome 
during human cytomegalovirus infection. PLoS Pathog. 
2, e132 (2006).

77.	 Libran-Perez, M., Pereiro, P., Figueras, A. & Novoa, B. 
Antiviral activity of palmitic acid via autophagic flux 
inhibition in zebrafish (Danio rerio). Fish Shellfish 
Immunol. 95, 595–605 (2019).

78.	 Kachroo, A. et al. An oleic acid-mediated pathway 
induces constitutive defense signaling and enhanced 
resistance to multiple pathogens in soybean.  
Mol. Plant Microbe Interact. 21, 564–575 (2008).

79.	 Nevo, Y. & Nelson, N. The NRAMP family of metal-ion 
transporters. Biochim. Biophys. Acta 1763, 609–620 
(2006).

80.	 Vidal, S. M., Malo, D., Vogan, K., Skamene, E. &  
Gros, P. Natural resistance to infection with 
intracellular parasites: isolation of a candidate  
for Bcg. Cell 73, 469–485 (1993).

81.	 Plant, J. E., Blackwell, J. M., O’Brien, A. D.,  
Bradley, D. J. & Glynn, A. A. Are the Lsh and Ity 
disease resistance genes at one locus on mouse 
chromosome 1? Nature 297, 510–511 (1982).

82.	 Supek, F., Supekova, L., Nelson, H. & Nelson, N.  
A yeast manganese transporter related to the 
macrophage protein involved in conferring resistance 
to mycobacteria. Proc. Natl Acad. Sci. USA 93,  
5105–5110 (1996).

83.	 Mayeur, S., Spahis, S., Pouliot, Y. & Levy, E. 
Lactoferrin, a pleiotropic protein in health and  
disease. Antioxid. Redox Signal. 24, 813–836  
(2016).

www.nature.com/nri

R e v i e w s

148 | March 2021 | volume 21	



84.	 Velusamy, S. K., Markowitz, K., Fine, D. H. & 
Velliyagounder, K. Human lactoferrin protects  
against Streptococcus mutans-induced caries in mice. 
Oral Dis. 22, 148–154 (2016).

85.	 Levine, B., Mizushima, N. & Virgin, H. W. Autophagy  
in immunity and inflammation. Nature 469, 323–335 
(2011).

86.	 Lim, J. J., Grinstein, S. & Roth, Z. Diversity and 
versatility of phagocytosis: roles in innate immunity, 
tissue remodeling, and homeostasis. Front. Cell. Infect. 
Microbiol. 7, 191 (2017).

87.	 Thurston, T. L. M., Wandel, M. P., von Muhlinen, N., 
Foeglein, A. & Randow, F. Galectin 8 targets damaged 
vesicles for autophagy to defend cells against bacterial 
invasion. Nature 482, 414–418 (2012).

88.	 Gros, P., Milder, F. J. & Janssen, B. J. Complement 
driven by conformational changes. Nat. Rev. Immunol. 
8, 48–58 (2008).

89.	 Orvedahl, A. et al. Autophagy protects against  
Sindbis virus infection of the central nervous system. 
Cell Host Microbe 7, 115–127 (2010).  
This study identifies an essential role for autophagy 
in antiviral defence in vitro and in vivo in mice.

90.	 Sparrer, K. M. J. et al. TRIM23 mediates virus-induced 
autophagy via activation of TBK1. Nat. Microbiol. 2, 
1543–1557 (2017).

91.	 Franco, L. H. et al. The ubiquitin ligase Smurf1 
functions in selective autophagy of Mycobacterium 
tuberculosis and anti-tuberculous host defense.  
Cell Host Microbe 21, 59–72 (2017).

92.	 Huett, A. et al. The LRR and RING domain protein 
LRSAM1 is an E3 ligase crucial for ubiquitin-dependent 
autophagy of intracellular Salmonella Typhimurium. 
Cell Host Microbe 12, 778–790 (2012).

93.	 Wild, P. et al. Phosphorylation of the autophagy 
receptor optineurin restricts Salmonella growth. 
Science 333, 228–233 (2011).

94.	 Ravenhill, B. J. et al. The cargo receptor NDP52 
initiates selective autophagy by recruiting the ULK 
complex to cytosol-invading bacteria. Mol. Cell 74, 
320–329 (2019).

95.	 Gutierrez, M. G. et al. Autophagy is a defense 
mechanism inhibiting BCG and Mycobacterium 
tuberculosis survival in infected macrophages.  
Cell 119, 753–766 (2004).  
This work provides the first description of 
autophagy as an antibacterial mechanism.

96.	 Castillo, E. F. et al. Autophagy protects against active 
tuberculosis by suppressing bacterial burden and 
inflammation. Proc. Natl Acad. Sci. USA 109, 
E3168–E3176 (2012).

97.	 Kimmey, J. M. et al. Unique role for ATG5 in neutrophil- 
mediated immunopathology during M. tuberculosis 
infection. Nature 528, 565–569 (2015).

98.	 Ricklin, D., Reis, E. S. & Lambris, J. D. Complement  
in disease: a defence system turning offensive.  
Nat. Rev. Nephrol. 12, 383–401 (2016).

99.	 Shi, L. et al. Mannose-binding lectin-deficient mice are 
susceptible to infection with Staphylococcus aureus.  
J. Exp. Med. 199, 1379–1390 (2004).

100.	Whitnack, E. & Beachey, E. H. Inhibition of 
complement-mediated opsonization and phagocytosis 
of Streptococcus pyogenes by D fragments of 
fibrinogen and fibrin bound to cell surface M protein. 
J. Exp. Med. 162, 1983–1997 (1985).

101.	Heckmann, B. L., Boada-Romero, E., Cunha, L. D., 
Magne, J. & Green, D. R. LC3-associated phagocytosis 
and inflammation. J. Mol. Biol. 429, 3561–3576 
(2017).

102.	Martinez, J. et al. Noncanonical autophagy inhibits 
the autoinflammatory, lupus-like response to dying 
cells. Nature 533, 115–119 (2016).

103.	Martinez, J. et al. Molecular characterization of  
LC3-associated phagocytosis reveals distinct roles  
for Rubicon, NOX2 and autophagy proteins.  
Nat. Cell. Biol. 17, 893–906 (2015).

104.	Wang, Y. & Le, W. D. Autophagy and ubiquitin- 
proteasome system. Adv. Exp. Med. Biol. 1206,  
527–550 (2019).

105.	Hauler, F., Mallery, D. L., McEwan, W. A., Bidgood, S. R. 
& James, L. C. AAA ATPase p97/VCP is essential for 
TRIM21-mediated virus neutralization. Proc. Natl 
Acad. Sci. USA 109, 19733–19738 (2012).  
These authors identify an important role for  
the ubiquitin–proteasome pathway in cytosolic 
neutralization of viral capsids.

106.	Tam, J. C., Bidgood, S. R., McEwan, W. A. & James, L. C.  
Intracellular sensing of complement C3 activates cell 
autonomous immunity. Science 345, 1256070 (2014).

107.	Bottermann, M. et al. Complement C4 prevents  
viral infection through capsid inactivation. Cell Host 
Microbe 25, 617–629 e617 (2019).

108.	Camborde, L. et al. The ubiquitin-proteasome  
system regulates the accumulation of Turnip yellow 
mosaic virus RNA-dependent RNA polymerase  
during viral infection. Plant Cell 22, 3142–3152 
(2010).

109.	Ruckdeschel, K. et al. The proteasome pathway 
destabilizes Yersinia outer protein E and represses its 
antihost cell activities. J. Immunol. 176, 6093–6102 
(2006).

110.	 Sahana, N. et al. Inhibition of the host proteasome 
facilitates papaya ringspot virus accumulation and 
proteosomal catalytic activity is modulated by viral 
factor HcPro. PLoS ONE 7, e52546 (2012).

111.	 Xu, Y. et al. Rice stripe tenuivirus nonstructural  
protein 3 hijacks the 26S proteasome of the small 
brown planthopper via direct interaction with 
regulatory particle non-ATPase subunit 3. J. Virol.  
89, 4296–4310 (2015).

112.	Dudnik, A., Bigler, L. & Dudler, R. Production of 
proteasome inhibitor syringolin A by the endophyte 
Rhizobium sp. strain AP16. Appl. Environ. Microbiol. 
80, 3741–3748 (2014).

113.	Groll, M. et al. A plant pathogen virulence factor 
inhibits the eukaryotic proteasome by a novel 
mechanism. Nature 452, 755–758 (2008).

114.	Zimmermann, C. et al. The abundant tegument 
protein pUL25 of human cytomegalovirus prevents 
proteasomal degradation of pUL26 and supports  
its suppression of ISGylation. J. Virol. 92, 
e01180–e01218 (2018).

115.	Chakrabarti, A., Jha, B. K. & Silverman, R. H. New 
insights into the role of RNase L in innate immunity.  
J. Interferon Cytokine Res. 31, 49–57 (2011).

116.	 Banerjee, S. et al. OAS-RNase L innate immune pathway 
mediates the cytotoxicity of a DNA-demethylating drug. 
Proc. Natl Acad. Sci. USA 116, 5071–5076 (2019).

117.	Birdwell, L. D. et al. Activation of RNase L by murine 
coronavirus in myeloid cells is dependent on basal  
Oas gene expression and independent of virus-induced 
interferon. J. Virol. 90, 3160–3172 (2016).

118.	Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. 
Trex1 prevents cell-intrinsic initiation of autoimmunity. 
Cell 134, 587–598 (2008).

119.	Mogensen, T. H. Pathogen recognition and 
inflammatory signaling in innate immune defenses. 
Clin. Microbiol. Rev. 22, 240–273 (2009).

120.	Stavrou, S., Blouch, K., Kotla, S., Bass, A. & Ross, S. R. 
Nucleic acid recognition orchestrates the anti-viral 
response to retroviruses. Cell Host Microbe 17,  
478–488 (2015).  
Stavrou et al. show that lack of the restriction 
factor APOBEC3 leads to higher load of retroviral 
nucleic acids, and increased STING-dependent IFNβ 
expression.

121.	Maelfait, J., Bridgeman, A., Benlahrech, A., Cursi, C. 
& Rehwinkel, J. Restriction by SAMHD1 limits cGAS/
STING-dependent innate and adaptive immune 
responses to HIV-1. Cell Rep. 16, 1492–1501  
(2016).  
This work shows that SAMHD1 limits lentivirus- 
induced type I interferon production and T cell 
cytotoxicity, thus providing direct evidence for 
constitutive immune responses limiting inducible 
immune activities.

122.	Marques, J. T. et al. A structural basis for discriminating 
between self and nonself double-stranded RNAs in 
mammalian cells. Nat. Biotechnol. 24, 559–565 
(2006).

123.	Britigan, B. E., Lewis, T. S., Waldschmidt, M., 
McCormick, M. L. & Krieg, A. M. Lactoferrin binds 
CpG-containing oligonucleotides and inhibits  
their immunostimulatory effects on human B cells.  
J. Immunol. 167, 2921–2928 (2001).

124.	Cheng, J. et al. Autophagy regulates MAVS signaling 
activation in a phosphorylation-dependent manner  
in microglia. Cell Death Differ. 24, 276–287  
(2017).

125.	Tal, M. C. et al. Absence of autophagy results in 
reactive oxygen species-dependent amplification  
of RLR signaling. Proc. Natl Acad. Sci. USA 106, 
2770–2775 (2009).

126.	Prabakaran, T. et al. Attenuation of cGAS-STING 
signaling is mediated by a p62/SQSTM1-dependent 
autophagy pathway activated by TBK1. EMBO J. 37, 
e97858 (2018).  
Cheng et al. (2017), Tal et al. (2009) and 
Prabakaran et al. show that autophagy directly 
inhibits signalling by the RIG-I-like receptor–MAVS 
and cGAS–STING pathways.

127.	Aden, K. et al. ATG16L1 orchestrates interleukin-22 
signaling in the intestinal epithelium via cGAS-STING. 
J. Exp. Med. 215, 2868–2886 (2018).

128.	Zhang, W. et al. Lactate is a natural suppressor of RLR 
signaling by targeting MAVS. Cell 178, 176–189.e15 
(2019).  
This report shows that lactate directly inhibits 
RIG-I-like receptor–MAVS signalling.

129.	Shim, D. W. et al. Anti-inflammatory action of an 
antimicrobial model peptide that suppresses the 
TRIF-dependent signaling pathway via inhibition of 
toll-like receptor 4 endocytosis in lipopolysaccharide- 
stimulated macrophages. PLoS ONE 10, e0126871 
(2015).

130.	Haber, J. E. Deciphering the DNA damage response. 
Cell 162, 1183–1185 (2015).

131.	Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: 
a cellular response to misfolded proteins. J. Cell. Biol. 
143, 1883–1898 (1998).

132.	Fortun, J., Dunn, W. A. Jr, Joy, S., Li, J. &  
Notterpek, L. Emerging role for autophagy in the 
removal of aggresomes in Schwann cells. J. Neurosci. 
23, 10672–10680 (2003).

133.	Holze, C. et al. Oxeiptosis, a ROS-induced caspase- 
independent apoptosis-like cell-death pathway.  
Nat. Immunol. 19, 130–140 (2018).

134.	Yu, X. H., Zhang, D. W., Zheng, X. L. & Tang, C. K. 
Cholesterol transport system: an integrated 
cholesterol transport model involved in 
atherosclerosis. Prog. Lipid Res. 73, 65–91 (2019).

135.	Mackenzie, K. J. et al. cGAS surveillance of  
micronuclei links genome instability to innate 
immunity. Nature 548, 461–465 (2017).

136.	Harding, S. M. et al. Mitotic progression following 
DNA damage enables pattern recognition within 
micronuclei. Nature 548, 466–470 (2017).

137.	Crow, Y. J. et al. Mutations in the gene encoding the 
3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres 
syndrome at the AGS1 locus. Nat. Genet. 38,  
917–920 (2006).  
Loss-of-function mutations in the gene encoding 
the DNA exonuclease TREX1 lead to constitutive 
type I interferon signalling.

138.	Rodero, M. P. et al. Type I interferon-mediated 
autoinflammation due to DNase II deficiency.  
Nat. Commun. 8, 2176 (2017).

139.	Halle, A. et al. The NALP3 inflammasome is involved 
in the innate immune response to amyloid-beta.  
Nat. Immunol. 9, 857–865 (2008).

140.	Duewell, P. et al. NLRP3 inflammasomes are required 
for atherogenesis and activated by cholesterol 
crystals. Nature 464, 1357–1361 (2010).

141.	Laplana, M., Caruz, A., Pineda, J. A., Puig, T. &  
Fibla, J. Association of BST-2 gene variants with HIV 
disease progression underscores the role of BST-2  
in HIV type 1 infection. J. Infect. Dis. 207, 411–419 
(2013).

142.	Everitt, A. R. et al. IFITM3 restricts the morbidity  
and mortality associated with influenza. Nature 484, 
519–523 (2012).

143.	Tesse, R. et al. Association of beta-defensin-1 gene 
polymorphisms with Pseudomonas aeruginosa airway 
colonization in cystic fibrosis. Genes Immun. 9, 57–60 
(2008).

144.	Shao, Y. et al. Association between genetic 
polymorphisms in the autophagy-related 5 gene 
promoter and the risk of sepsis. Sci. Rep. 7, 9399 
(2017).

145.	Yordy, B., Iijima, N., Huttner, A., Leib, D. & Iwasaki, A. 
A neuron-specific role for autophagy in antiviral 
defense against herpes simplex virus. Cell Host 
Microbe 12, 334–345 (2012).

146.	Wu, X. et al. Intrinsic immunity shapes viral resistance 
of stem cells. Cell 172, 423–438 e425 (2018).

147.	Eggenberger, J., Blanco-Melo, D., Panis, M., 
Brennand, K. J. & Tenoever, B. R. Type I interferon 
response impairs differentiation potential of 
pluripotent stem cells. Proc. Natl Acad. Sci. USA 116, 
1384–1393 (2019).

148.	Liu, Y. et al. Mutations in proteasome subunit beta 
type 8 cause chronic atypical neutrophilic dermatosis 
with lipodystrophy and elevated temperature with 
evidence of genetic and phenotypic heterogeneity. 
Arthritis Rheum. 64, 895–907 (2012).

149.	Brehm, A. et al. Additive loss-of-function proteasome 
subunit mutations in CANDLE/PRAAS patients 
promote type I IFN production. J. Clin. Invest. 125, 
4196–4211 (2015).  
These authors report that patients with mutations 
in genes encoding proteasome subunits develop 
disease with a type I interferon signature.

150.	Massaad, M. J. et al. Deficiency of base excision  
repair enzyme NEIL3 drives increased predisposition 
to autoimmunity. J. Clin. Invest. 126, 4219–4236 
(2016).

NaTure RevIeWS | ImmunOLOgy

R e v i e w s

	  volume 21 | March 2021 | 149



151.	Khor, T. O. et al. Nrf2-deficient mice have an increased 
susceptibility to dextran sulfate sodium-induced 
colitis. Cancer Res. 66, 11580–11584 (2006).

152.	Ivanciuc, T., Sbrana, E., Casola, A. & Garofalo, R. P. 
Protective role of nuclear factor erythroid 2-related 
factor 2 against respiratory syncytial virus and human 
metapneumovirus infections. Front. Immunol. 9, 854 
(2018).

153.	Peyssonnaux, C. et al. HIF-1alpha expression 
regulates the bactericidal capacity of phagocytes.  
J. Clin. Invest. 115, 1806–1815 (2005).

154.	Blondeau, C. et al. Tetherin restricts herpes simplex 
virus 1 and is antagonized by glycoprotein M.  
J. Virol. 87, 13124–13133 (2013).

155.	Smith, S. E. et al. Interferon-induced transmembrane 
protein 1 restricts replication of viruses that enter 
cells via the plasma membrane. J. Virol. 93, e02003 
(2019).

156.	Bernhardt, A. et al. Inflammatory cell infiltration  
and resolution of kidney inflammation is orchestrated 
by the cold-shock protein Y-box binding protein-1. 
Kidney Int. 92, 1157–1177 (2017).

157.	Hollenbaugh, J. A. et al. Host factor SAMHD1  
restricts DNA viruses in non-dividing myeloid cells. 
PLoS Pathog. 9, e1003481 (2013).

158.	Nakaya, Y., Stavrou, S., Blouch, K., Tattersall, P. & 
Ross, S. R. In vivo examination of mouse APOBEC3- 
and human APOBEC3A- and APOBEC3G-mediated 
restriction of parvovirus and herpesvirus infection  
in mouse models. J. Virol. 90, 8005–8012  
(2016).

159.	Girardi, E. et al. Cross-species comparative analysis of 
Dicer proteins during Sindbis virus infection. Sci. Rep. 
5, 10693 (2015).

160.	Dombrowski, Y. et al. Cytosolic DNA triggers 
inflammasome activation in keratinocytes in psoriatic 
lesions. Sci. Transl. Med. 3, 82ra38 (2011).

161.	Stamme, C., Muller, M., Hamann, L., Gutsmann, T.  
& Seydel, U. Surfactant protein a inhibits 
lipopolysaccharide-induced immune cell activation  
by preventing the interaction of lipopolysaccharide 
with lipopolysaccharide-binding protein. Am. J. Respir. 
Cell Mol. Biol. 27, 353–360 (2002).

162.	Daniels, B. P. et al. The nucleotide sensor ZBP1 and 
kinase RIPK3 induce the enzyme IRG1 to promote  
an antiviral metabolic state in neurons. Immunity 50, 
64–76 e64 (2019).

163.	Nair, S. et al. Irg1 expression in myeloid cells prevents 
immunopathology during M. tuberculosis infection.  
J. Exp. Med. 215, 1035–1045 (2018).

164.	Jessop, F., Hamilton, R. F., Rhoderick, J. F., Shaw, P. K. 
& Holian, A. Autophagy deficiency in macrophages 
enhances NLRP3 inflammasome activity and chronic 
lung disease following silica exposure. Toxicol. Appl. 
Pharmacol. 309, 101–110 (2016).

165.	Meissner, F. et al. Inflammasome activation in NADPH 
oxidase defective mononuclear phagocytes from 
patients with chronic granulomatous disease. Blood 
116, 1570–1573 (2010).

166.	Segal, B. H. et al. NADPH oxidase limits innate 
immune responses in the lungs in mice. PLoS ONE 5, 
e9631 (2010).

167.	Gluschko, A. et al. The beta2 integrin Mac-1 induces 
protective LC3-associated phagocytosis of listeria 
monocytogenes. Cell Host Microbe 23, 324–337 
e325 (2018).

168.	Gong, L. et al. The Burkholderia pseudomallei type III 
secretion system and BopA are required for evasion  
of LC3-associated phagocytosis. PLoS ONE 6, e17852 
(2011).

169.	Masters, S. L., Simon, A., Aksentijevich, I. &  
Kastner, D. L. Horror autoinflammaticus: the 
molecular pathophysiology of autoinflammatory 
disease. Ann. Rev. Immunol. 27, 621–668 (2009).

170.	Uggenti, C., Lepelley, A. & Crow, Y. J. Self-awareness: 
nucleic acid-driven inflammation and the type I 
interferonopathies. Annu. Rev. Immunol. 37,  
247–267 (2019).

171.	Jesus, A. A. & Goldbach-Mansky, R. IL-1 blockade  
in autoinflammatory syndromes. Annu. Rev. Med. 65, 
223–244 (2014).

172.	Schwartz, D. M. et al. JAK inhibition as a therapeutic 
strategy for immune and inflammatory diseases.  
Nat. Rev. Drug. Discov. 17, 78 (2017).

173.	Kim, H., Sanchez, G. A. & Goldbach-Mansky, R. 
Insights from Mendelian interferonopathies: 
comparison of CANDLE, SAVI with AGS, monogenic 
lupus. J. Mol. Med. 94, 1111–1127 (2016).

174.	Sanjuan, M. A. et al. Toll-like receptor signalling  
in macrophages links the autophagy pathway  
to phagocytosis. Nature 450, 1253–1257  
(2007).

175.	Doyle, S. E. et al. Toll-like receptors induce a 
phagocytic gene program through p38. J. Exp. Med. 
199, 81–90 (2004).

176.	Henneke, P. et al. Cellular activation, phagocytosis, 
and bactericidal activity against group B streptococcus 
involve parallel myeloid differentiation factor 
88-dependent and independent signaling pathways.  
J. Immunol. 169, 3970–3977 (2002).

177.	Hawley, K. L. et al. CD14 cooperates with complement 
receptor 3 to mediate MyD88-independent 
phagocytosis of Borrelia burgdorferi. Proc. Natl Acad. 
Sci. USA 109, 1228–1232 (2012).

178.	Peng, G., Lei, K. J., Jin, W., Greenwell-Wild, T. &  
Wahl, S. M. Induction of APOBEC3 family proteins,  
a defensive maneuver underlying interferon-induced 
anti-HIV-1 activity. J. Exp. Med. 203, 41–46 (2006).

179.	Walmsley, S. R. et al. Prolyl hydroxylase 3 (PHD3)  
is essential for hypoxic regulation of neutrophilic 
inflammation in humans and mice. J. Clin. Invest. 121, 
1053–1063 (2011).

180.	Olagnier, D. et al. Nrf2 negatively regulates STING 
indicating a link between antiviral sensing and metabolic 
reprogramming. Nat. Commun. 9, 3506 (2018).

Acknowledgements
S.R.P. is funded by the European Research Council (ERC-AdG 
ENVISION; 786602), the Novo Nordisk Foundation 
(NNF18OC0030274) and the Lundbeck Foundation (R198-
2015-171 and R268-2016-3927). T.P. is funded by the 
European Research Council (ERC-StG IDEM; 637647). S.L.M. 
acknowledges funding from a Howard Hughes Medical 
Institute–Wellcome International Research Scholarship and 
the Sylvia and Charles Viertel Foundation. T.H.M. received 
funding from Aarhus University Research Foundation 
(AUFF-E-215-FLS-8-66), the Danish Council for Independent 
Research-Medical Sciences (4004-00047B) and the 
Lundbeck Foundation (R268-2016-3927). The authors thank 
D. Olagnier for critical reading of the manuscript and  
comments and suggestions.

Author contributions
S.R.P. conceived the idea and wrote the first version of the 
manuscript together with T.H.M. All authors together fully 
developed the work, and drafted, finalized and revised the 
manuscript.

Competing interests
The authors declare no competing interests.

Peer review information
Nature Reviews Immunology thanks the anonymous reviewer(s) 
for their contribution to the peer review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.
 
© Springer Nature Limited 2020

www.nature.com/nri

R e v i e w s

150 | March 2021 | volume 21	


	Constitutive immune mechanisms: mediators of host defence and immune regulation

	Constitutive and inducible mechanisms

	PRR-activated inducible innate immune responses. 
	Diseases induced by excessive production of IL-1 and type I interferon

	Constitutive innate immune mechanisms. 
	Overlap between constitutive and inducible immune responses


	Targeting microbial replication

	Restrictions factors. 
	RNA interference. 
	Antimicrobial peptides. 
	Soluble lectins. 
	Metabolite-mediated inhibition. 

	Degenerative mechanisms

	Autophagy and phagocytosis. 
	Proteasomal degradation. 
	Nucleases. 

	Limiting inflammatory responses

	Reduction of PAMP levels. 
	Inhibition of PRR signalling. 

	Constitutive immunity beyond infection

	Constitutive immunity in human health

	Outlook

	A new concept of damage-limiting immune mechanisms?


	Acknowledgements

	Fig. 1 Constitutive innate immune responses versus inducible immune responses.
	Fig. 2 Constitutive innate immune responses negatively regulate inducible immune responses.
	Fig. 3 Overview of the regulation of microbial replication by constitutive innate immune mechanisms.
	Fig. 4 Constitutive control of microbial replication by restriction factors and autophagy.
	Table 1 Constitutive immune mechanisms in host defence.




