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Abstract

Background: Cancer is a somatic evolutionary disease and adenocarcinomas of the stomach and gastroesophageal
junction (GC) may serve as a two-dimensional model of cancer expansion, in which tumor subclones are not evenly
mixed during tumor progression but rather spatially separated and diversified. We hypothesize that precision
medicine efforts are compromised when clinical decisions are based on a single-sample analysis, which ignores the
mechanisms of cancer evolution and resulting intratumoral heterogeneity. Using multiregional whole-exome
sequencing, we investigated the effect of somatic evolution on intratumoral heterogeneity aiming to shed light on
the evolutionary biology of GC.

Methods: The study comprised a prospective discovery cohort of 9 and a validation cohort of 463 GCs.
Multiregional whole-exome sequencing was performed using samples form 45 primary tumors and 3 lymph node
metastases (range 3–10 tumor samples/patient) of the discovery cohort.

Results: In total, the discovery cohort harbored 16,537 non-synonymous mutations. Intratumoral heterogeneity of
somatic mutations and copy number variants were present in all tumors of the discovery cohort. Of the non-
synonymous mutations, 53–91% were not present in each patient’s sample; 399 genes harbored 2–4 different non-
synonymous mutations in the same patient; 175 genes showed copy number variations, the majority being
heterogeneous, including CD274 (PD-L1). Multi-sample tree-based analyses provided evidence for branched
evolution being most complex in a microsatellite instable GC. The analysis of the mode of evolution showed a high
degree of heterogeneity in deviation from neutrality within each tumor. We found evidence of parallel evolution
and evolutionary trajectories: different mutations of SMAD4 aligned with different subclones and were found only in
TP53 mutant GCs.
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Conclusions: Neutral and non-neutral somatic evolution shape the mutational landscape in GC along its lateral
expansions. It leads to complex spatial intratumoral heterogeneity, where lymph node metastases may stem from
different areas of the primary tumor, synchronously. Our findings may have profound effects on future patient
management. They illustrate the risk of mis-interpreting tumor genetics based on single-sample analysis and open
new avenues for an evolutionary classification of GC, i.e., the discovery of distinct evolutionary trajectories which
can be utilized for precision medicine.
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Background
Gastric cancer (GC) is the fifth most common cancer in
the world [1]. In Western countries, the prognosis is dis-
mal due to diagnoses in advanced disease stages often
limiting therapeutic options. Compared with non-small
cell lung cancer, targeted palliative therapeutic options
are still limited in GC, though they demonstrated signifi-
cant efficacy in a more recent umbrella trial [2]. An inte-
grative genomic analysis of the Cancer Genome Atlas
Research Network proposed a roadmap for patient strati-
fication and trials of targeted therapies by categorizing
GC into four subtypes: Epstein-Barr virus-associated
(EBV), microsatellite unstable (MSI), chromosomal un-
stable (CIN), and genomically stable (GS) GC [3]. Vari-
ous validation studies lead to the identification of a
marked intratumoral heterogeneity, which stands to
compromise the development and usage of targeted
therapies in GC [4–9]. These observations suggest that
processes of somatic evolution are an important part of
GC biology. Different tumor subclones coexist and con-
tribute to genetic and phenotypic diversity. However, the
modes of evolution operative in GC are largely un-
known. Somatic evolution, i.e., the temporal/phylogen-
etic order and spatial distribution of mutations, is an
important determinant of intratumoral heterogeneity. In
a reductionist view, GC may serve as a two-dimensional
model of cancer expansion, which can be used to shed
light on its evolutionary biology, and to unravel obstacles
and chances for precision medicine. Using multiregional
whole-exome sequencing of primary GCs, we confirmed
the presence of a substantial intratumoral and interme-
tastatic heterogeneity, which applies to variant allele fre-
quencies, the type of single-nucleotide variation, and
copy number variation. We found evidence of a neutral
and non-neutral cancer expansion model in GC and of
evolutionary trajectories leading to parallel evolution,
which may pave the way to an “evolutionary classifica-
tion” of GC.

Methods
Study population and histology
Discovery cohort (Table 1)
Between 2016 and 2017, we prospectively enrolled nine
patients with an adenocarcinoma of the stomach or

esophagogastric junction into the discovery cohort at the
University Hospital Schleswig-Holstein, Campus Kiel.
All patients were Caucasian patients from Northern
Germany treated in a single center. The inclusion cri-
teria were appropriate size of the primary tumor (diam-
eter > 3 cm) to enable multiregional tissue sampling
without compromising the surgical pathological evalu-
ation of the resection specimen. Immediately after the
tumor was resected, the specimens were delivered on ice
to the Department of Pathology. Depending on the size
of the primary tumor, between 3 and 6 samples were
punched out of the primary tumor using a core needle
biopsy and frozen at − 80 °C until further use. Macro-
scopic pictures were taken from the surgical resection
specimens before and after tissue sampling in order to
facilitate anatomical reconstruction of the sampling pro-
cedure (Additional file 1: Figure S1). A total of 45 sam-
ples were obtained from the primary tumors. In a single
case, three samples were collected from three separate
lymph node metastases. Finally, 48 tumor samples and
nine tissue samples of the corresponding non-neoplastic
stomach mucosa, i.e., 57 tissue samples in total, were
forwarded to whole-exome sequencing (Table 1).

Validation cohort
The validation cohort was collected from the archive of
the Department of Pathology, University Hospital
Schleswig-Holstein, Campus Kiel. The cohort included
463 patients who had undergone either a total or partial
gastrectomy for adenocarcinoma of the stomach or eso-
phagogastric junction between 1997 and 2009 and
met all inclusion and none of the exclusion criteria. All
tissue samples originated from routine therapeutic sur-
geries, for all of which the patients had given written in-
formed consent. The following patient characteristics
were retrieved: type of surgery, age at diagnosis, gender,
tumor size, tumor localization, tumor type, depth of in-
vasion, number of lymph nodes resected and number of
lymph nodes with metastases. Patients were included if
an adenocarcinoma of the stomach or esophagogastric
junction was histologically confirmed. Exclusion criteria
were defined as (1) histology identified a tumor type
other than adenocarcinoma, and (2) patients had
undergone perioperative or neoadjuvant chemo- or
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Table 1 Clinicopathological patient characteristics of the gastric cancer test cohort consisting of nine men (mean age 68 years;
range 50–85 years)

Case Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 Case #7 Case #8 Case #9

Localization Cardia Cardia Antrum/
Corpus

Antrum Fundus Cardia Cardia Cardia Antrum

Neoadjuvant
treatment

Yes Yes No No No No Yes No Yes

Laurén
phenotype

Intestinal Mixed Mixed Mixed Diffuse Intestinal Intestinal Mixed Diffuse

Tumor size [cm] 3.8 4.4 12.9 4.0 4.8 4.1 6.7 6.2 3.7

Epstein-Barr
virus status

Negative Negative Negative Negative Negative Negative Negative Negative Negative

Microsatellite
status

MSS MSS MSS MSS MSS MSI MSS MSS MSS

HER2 status Negative Negative Positive Positive Negative Negative Negative Negative Negative

pT category ypT3 ypT3 pT3 pT3 pT3 pT3 ypT3 pT2 ypT3

pN category ypN1 (1/29) ypN1 (2/51) pN3a (13/17) pN2 (3/19) pN3b (28/46) pN0 (0/19) ypN0 (0/12) pN0 (0/25) ypN2 (4/22)

pM category X X X X X X X X X

Grading n.a. n.a. G3 G3 G3 G2 n.a. n.a. n.a.

Number of
tumor samples
sequenced

4 3 6 5 10 5 4 6 5

Non-
synonymous
mutations (total
valid)

184 373 714 348 425 3111 181 369 242

Copy number
variations
(number of
genes)

6 22 65 11 98 3 5 1 0

Tumor sample Number/percentage of non-synonymous mutations present only in a single sample

1 sample 71 (38.6%) 159 (42.6%) 350 (49.0%) 133 (38.2%) 211 (49.6%) 1262 (40.6%) 112 (61.9%) 235 (63.7%) 140 (57.8%)

Number/percentage of same non-synonymous mutations present in ≥ 2 samples

2 samples 25 (13.6%) 59 (15.8%) 78 (10.9%) 15 (4.3%) 29 (6.8%) 360 (11.6%) 24 (13.3%) 25 (6.8%) 30 (12.4%)

3 samples 58 (31.5%) 155 (41.6%) 31 (4.3%) 11 (3.2%) 27 (6.4%) 180 (5.8%) 18 (9.9%) 9 (2.4%) 23 (9.5%)

4 samples 30 (16.3%) 8 (1.1%) 26 (7.5%) 17 (4.0%) 148 (4.8%) 27 (14.9%) 14 (3.8%) 28 (11.6%)

5 samples 25 (3.5%) 163 (46.8%) 13 (3.1%) 1161 (37.3%) 17 (4.6%) 21 (8.7%)

6 samples 222 (31.1%) 18 (4.2%) 69 (18.7%)

7 samples 24 (5.6%)

8 samples 15 (3.5%)

9 samples 25 (5.9%)

10 samples 46 (10.8%)

Per patient Clonality

Clonal (non-
synonymous)

2 (2.0%) 80 (50.0%) 62 (23.9%) 1 (0.9%) 1 (1.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Subclonal (non-
synonymous)

98 (98.0%) 80 (50.0%) 197 (76.1%) 110 (98.2%) 76 (98.7%) 1083 (100%) 48 (100%) 81 (100%) 106 (100%)

Not assessable
(non-
synonymous)

0 (0%) 0 (0%) 0 (0%) 1 (0.9%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Total (non-
synonymous)

100 160 259 112 77 1083 48 81 106
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radiotherapy. Each resected specimen had undergone
gross sectioning and histological examination by trained
and board-certified surgical pathologists. For outcome
analyses, the dates and causes of patients’ deaths were
obtained from the Epidemiological Cancer Registry of
the state of Schleswig-Holstein, Germany, thereby distin-
guishing between tumor-related deaths and deaths from
other causes. Follow-up data of those patients who were
still alive were retrieved from hospital records and gen-
eral practitioners. All patient data were pseudonymized
after study inclusion.

DNA sequence analysis (discovery cohort)
Genomic DNA was extracted from frozen tissue using
the QIAamp DNA mini kit (Qiagen, Hilden, Germany).
Cryosections were prepared prior to DNA isolation to
guarantee tumor cell content. DNA Exome libraries
were prepared using the Nextera Rapid Capture Enrich-
ment Kit, CEX version (Coding Exome Oligos; Illumina,
San Diego, USA). Sequencing was performed on a
Hiseq4000 instrument (Illumina) with 1% phiX (v3, Illu-
mina) spike-in at 2*75 bp paired-end settings with the
150 bp SBS chemistry. The purity- and ploidy status of
the discovery cohort (per case) are shown in Additional
file 2: Table S1. Sequencing statistics are summarized in
Additional file 2: Table S2.

DNA isolation from formalin-fixed and paraffin-embedded
tissue specimens
Genomic DNA was extracted from formalin-fixed and
paraffin-embedded tissue using the QIAamp DNA mini
kit (Qiagen, Hilden, Germany). Tissue sections were
manually microdissected prior to DNA isolation to en-
sure a tumor cell content of higher than 80%. The integ-
rity and amplifiability of the isolated DNA was evaluated
by a qualitative size-range PCR assay.

Primary data analysis
Raw fastq data were quality-trimmed, and adapter se-
quences were removed using bbduk from the BBTools
suite version 36.32 (http://sourceforge.net/projects/
bbmap) with the following parameters: minlen=25

qtrim=rl trimq=10 ktrim=r k=25 mink=11 hdist=1 over-
write=true tbo=t tpe=t. The Burrows-Wheeler aligner
0.7.15 (https://arxiv.org/abs/1303.3997) with default par-
ameter settings was used to align the sequencing reads
to the human reference genome (hs37d5). Duplicate
reads were marked with sambamba 0.6.3 [10] and indel
realignment was performed using ABRA version 0.97
[11]. FastQC 0.11.5 (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and Qualimap 2.2 [12]
were used to perform quality checks on the fastq and
bam files respectively.

Somatic mutation calling
Paired tumor-normal variant calling was performed
using VarDict 1.5.1 [13] with the following parameters:
mapping quality Q = 10, base quality phred score q = 20,
minimum allele frequency f = 0.01, and number of nu-
cleotides to extend for each segment x = 2000. Addition-
ally, the read position filter P = 0.9 and maximum
number of reads with mismatches m = 4.25 were sup-
plied to var2vcf_paired.pl with further downstream fil-
tering steps to improve detection of low frequency
variants as described by Brad Chapman (http://bcb.io/2
016/04/04/vardict-filtering/). ANNOVAR [14] was used
to annotate variants utilizing refGene, cosmic84, clinvar_
20170905, icgc21, nci60, exac03, exac03nontcga, snp142,
avsnp150, 1000g2015aug_all, ljb26_all, dbnsfp33a, and
intervar_20180118 databases. Homopolymer regions
were marked using vcfpolyx from the jvarkit suite
(https://github.com/lindenb/jvarkit). Variants were
retained if the following criteria were met: allele fre-
quency (AF) ≥ 5%, total read depth ≥ 10 in either the
tumor or the normal sample, variant depth in tumor
sample ≥ 2, no strand bias, AF > 10% in homopolymer
regions. Variants in blacklisted regions described by Fu-
entes et al. [15] as well as ENCODE [16] were filtered
out. In addition, annotation-based filtering was utilized
to retain only coding, non-synonymous variants with
ExAC AF < 0.01 [17]. Variants unknown to either COS-
MIC or ICGC were retained only if they occurred within
one of the 719 genes of the COSMIC Cancer Gene Cen-
sus (https://cancer.sanger.ac.uk/census, downloaded June

Table 1 Clinicopathological patient characteristics of the gastric cancer test cohort consisting of nine men (mean age 68 years;
range 50–85 years) (Continued)

Case Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 Case #7 Case #8 Case #9

Clonal
(synonymous)

1 (6.0%) 32 (15.9%) 26 (10.1%) 2 (1.3%) 1 (5.7%) 0 (0%) 1 (0.4%) 0 (0%) 0 (0%)

Subclonal
(synonymous)

159 (94.0%) 168 (83.6%) 231 (89.9%) 157 (98.7%) 174 (99.4%) 825 (97.6%) 229 (99.6%) 168 (100%) 257 (99.6%)

Not assessable
(synonymous)

0 (0%) 1 (4.9%) 0 (0%) 0 (0%) 0 (0%) 2 (2.4%) 0 (0%) 0 (0%) 1 (0.4%)

Total
(synonymous)

160 201 257 159 175 827 230 168 258
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12, 2018) [18] (https://dcc.icgc.org/). An additional vari-
ant recovery process on the list of filtered variants was
implemented on a per-patient basis to recover variants
from individual samples with AF < 5% if they were
present in at least one other sample of the same patient
with AF ≥ 5%. Tumor purity and ploidy were computa-
tionally estimated using Sequenza [19]. Clonality and
cancer cell fraction (CCF) for each variant was deter-
mined using Palimpsest [20]. In brief, CCF is computed
by adjusting the variant allele fraction for the tumor pur-
ity and the absolute copy number at each locus in tumor
and normal cells. Mutations were classified as subclonal
if the upper boundary of the 95% confidence interval
was below the threshold of 0.95. COSMIC Mutational
Signatures Version 2 were inferred using the R package
deconstructSigs [21].

Copy number profiling
Allele-specific copy number calling was done using
CNVkit 0.9.5 [22]. A pooled normal reference was cre-
ated from the nine matched non-neoplastic stomach
mucosa samples. The initial segments were called with a
conservative significance threshold of t = 1e−6 and low
coverage segments were dropped. Segments were then
used along with raw variant calls from VarDict, the esti-
mated tumor purity, to call major and minor copy num-
ber variants and annotated by ANNOVAR based on the
refGene database. Calls were considered as deletions
when total copy number was 0, and as amplifications
when total copy number was at least 6.

Tumor mutation burden, microsatellite instability, and
viral sequence analysis
Tumor mutation burden was calculated for each sample
in terms of the number of non-synonymous variants per
1Mb and scaled according to the exome panel size.
Microsatellite instability (MSI) status was determined by
MSIsensor [23] with a threshold of < 10% for MSS
(microsatellite stable), < 10% and > 30% for MSI-L (low),
and > 30% for MSI-H (high). To screen for viral integra-
tion events, unmapped reads were aligned against a
sequence database of 198 human viruses (EBV, human
papilloma virus, herpes simplex virus, among others).

Phylogenetic analysis
Patient-specific multiregional trees from CCF data were
constructed using LICHeE [24]. Since LICHeE is limited
to constructing trees based on single-nucleotide varia-
tions (SNV) only, copy number variants (CNV) were
manually incorporated into the SNV-based trees. Driver
CNVs as identified by Cancer Genome Interpreter were
added to the SNV-based trees; for some patients, this
did not result in any changes to the tree nodes, whereas
for some patients the internal tree nodes were redrawn

to reflect the additional CNVs. In addition, we con-
structed maximum parsimony trees based on a binary
matrix of SNVs per patient using a branch-and-bound
algorithm with PHYLIP (Felsenstein, J. 2005. PHYLIP
(Phylogeny Inference Package) version 3.6. Distributed
by the author; Department of Genome Sciences, Univer-
sity of Washington, Seattle).

Assessment of neutrality
Variant allele frequency (VAF) histograms were used to
test the neutral model of cancer evolution as described
by Williams et al. [25] using their neutralitytestr
package.
To reduce the probability that apparent deviation from

neutrality is caused by increase in allelic frequency due
to gene duplication events, all variant alleles that had
likely undergone gene doubling were removed, as shown
by Williams et al. [25]. All detected non-synonymous
and synonymous mutations were included since a larger
number of passenger mutations whose frequency had
been increased by advantageous mutation supports the
detection signs of selection [26].
We conducted our analysis on VAFs without the pur-

ity correction, assuming that sample purity affects all
variant frequencies equally. Therefore, a correction is
unlikely to increase the resolution of our analysis. In
addition, spatial constraints can introduce sampling bias
into patterns of the clonal selection of the tumor [27];
therefore, the analyses also included the average fre-
quency of mutations from all available samples.

Validation analyses using Sanger sequencing,
pyrosequencing, and digital polymerase chain reaction
In order to validate the heterogeneous mutational pat-
terns, Sanger sequencing analysis of ASXL3, TP53 (exon
5 and 8), and SMAD4 (exon 2, 9 and 11) was done using
the PyroMark PCR Kit (Qiagen). PCR products were
purified using the NucleoSpin® Gel and PCR Clean-up
(Machery-Nagel, Düren, Germany) and sequenced by
dye terminator cycle sequencing (BigDye Terminator
v1.1 Cycle Sequencing kit, Applied Biosystems, Darm-
stadt, Germany) with universal M13- or PCR Primers.
The sequencing products were purified using the DyeEx
96 Kit (Qiagen) and analyzed on a Genetic Analyzer
3500 (Applied Biosystems). Pyrosequencing, using the
PyroMark PCR Kit (Qiagen) and the PyroMark Gold
Q24 Reagents (Qiagen), was done to detect SNPs in
BRCA1, BRCA2, CDH1, CTNNB1, KRAS, MLH1,
MUTYH, PIK3CA, POLE, and RNF43. The PyroMark
Q24 System and PyroMark analysis software (both Qia-
gen) were used for analysis. To validate low frequent
mutations in ARID1A, ARID1B, AKT1, CLOCK, FLT4,
IKBKB, IKZF3, LRP1B, MAP2K4, MCM8, PAX5,
PRRC2A, and TP53BP digital PCR were done using the
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ddPCR™ Supermix for Probes (No dUTP) and the
QX200™ Droplet Digital™ PCR System (both Biorad) fol-
lowing the manufacturer’s instructions. The primer se-
quences used are listed in Additional file 2: Table S3.
Additional file 2: Table S4 summarizes the validated
mutations.

Histology
Tissue specimens used for histology and immunohisto-
chemistry were fixed in formalin and embedded in
paraffin. Deparaffinized sections were stained with
hematoxylin and eosin. Histological examination of pri-
mary tissue sections was carried out for all cases (discov-
ery and validation cohort) to assure if inclusion criteria
were met. Tumors were classified according to the Lau-
rén classification [28]. pTNM stage of all study patients
was determined according to the eighth edition of the
UICC guidelines [29].

Immunohistochemistry and scoring of SMAD4 and p53
immunostaining
Immunohistochemistry was carried out with antibodies
directed against SMAD4 (dilution 1:50; monoclonal
rabbit; 50, Cell Signaling Technology Europe, Frankfurt
am Main, Germany), PD-L1 (dilution 1:100, E1L3N, Cell
Signaling Technology), and p53 (dilution 1:100, clone
DO-7, Novocastra, Leica Microsystems GmbH, Wetzlar,
Germany), using whole tissue sections. Immunostaining
was performed with the autostainer Bond™ Max System
(Leica Microsystems GmbH, Wetzlar, Germany). The
immunoreaction was visualized with the Bond™ Polymer
Refine Detection Kit (brown labelling; Novocastra; Leica
Microsystems, Wetzlar, Germany).
Scoring of each tumor for SMAD4 and p53 expression

was assessed by determining a histoscore (H-score), fol-
lowing a semi-quantitative approach combining both the
immunostaining intensities (subsequently referred to as
IHC scores) and the percentages of positive cells of the
tumor. The IHC score was based on tumor cells showing
either strong (3+), intermediate (2+), or weak (1+) stain-
ing of SMAD4 in the cytoplasm and nucleus, respect-
ively, or of p53 in the nucleus. Tumor cells without
detectable cytoplasmic or nuclear staining were scored
with 0. The percentage of positive tumor cells (approxi-
mated to the nearest 10) showing the defined staining
intensities (3+, 2+, 1+, 0) was gauged with respect to all
tumor cells visible on each tissue specimen and always
added up to a total of 100% tumor cells. Finally, a H-
score was calculated according to the formula: H-score
= [0 × percentage of immunonegative tumor cells] + [1
× percentage of weakly stained tumor cells] + [2 × per-
centage of intermediately stained tumor cells] + [3 ×
percentage of strongly stained tumor cells]. The max-
imum possible H-score was 300, if all cells of a given

tumor sample showed a strong staining: [0 × 0%] + [1 ×
0%] + [2 × 0%] + [3 × 100%] = 300. The multipliers
within the formula yielded an improved stratification of
the H-scores: tumor samples with a predominantly high
staining intensity and such samples with a predominantly
low staining intensity were more distinctively separated.
The H-score of p53 was divided into four quartiles as de-

scribed previously [30]. The outer (Q1: H-score ≤ 15 and
Q4: H-score ≥ 189) and inner quartiles (Q2: H-score = 16–
91 and Q3: H-score = 92–188) were joined to form two new
groups: “Q1/Q4” and “Q2/Q3”. Here, the “Q1/Q4” group
was assumed to indicate cases with mutated TP53 [30].

MDM2 fluorescence in situ hybridization
Analysis of MDM2 amplification was done by fluores-
cence in situ hybridization using the Vysis MDM2/CEP
12 FISH Probe Kit (Abbott Diagnostika MediSense,
Wiesbaden, Germany) following standard procedures.
The results of FISH were evaluated by screening the en-
tire tissue sections. Subsequently, MDM2 and centromer
12 signals were counted in at least 20 representative ad-
jacent cancer cell nuclei within the invasive region. The
presence of FISH clusters was noted and the ratio of
MDM2/centromer 12 signals was calculated. The gene
count was calculated by dividing the number of MDM2
gene signals by the number of cancer cell nuclei studied.

Assessment of further clinicopathological characteristics
H. pylori [31], Epstein-Barr virus [4], microsatellite
(MSI) [6], HER2 status [9], and TP53 genotype [30] were
assessed as described previously.

Statistical methods
SPSS version 24.0 (IBM Corp., Armonk, NY, USA) was
used for statistical analyses. The correlation between
non-ordinal clinicopathological patient characteristics
and SMAD4 was tested with Fisher’s exact test. T cat-
egory, N category, UICC stage, and tumor grading as
variables of ordinal scale were tested with Kendall’s tau-
test. Median survival with 95% confidence intervals was
determined by the Kaplan-Meier method. Differences
between median survivals were tested with the log-rank
test. A multivariate survival analysis (Cox regression)
was performed. A p value of ≤ 0.05 was considered to be
significant. All p values are given uncorrected. The
Siemes (Benjamini-Hochberg) procedure was applied to
compensate for false discovery rate. Any P values that
lost significance are marked.

Results
Patient cohort for whole-exome sequencing (discovery
cohort)
The clinicopathological characteristics of the discovery
cohort are summarized in Table 1. A total of 45 samples

Röcken et al. Genome Medicine          (2021) 13:177 Page 6 of 19



were obtained from the primary tumors. In a single case,
three samples were collected from three separate lymph
node metastases (in total 3 to 10 tumor samples per
case; Table 1; Fig. 1). Including the non-neoplastic stom-
ach mucosa, we finally obtained whole-exome sequences
from 57 tissue samples (4 to 11 samples per case). For
further details on sequencing data, see Supplemental
Results (Additional file 3: Results R1) [32, 33].

Gastric cancer shows substantial genetic variability within
its lateral expansion and between primary tumor and
lymph node metastases
In a reductionist view, GC may serve as two-
dimensional model of lateral cancer expansion, i.e.,
along the planes of the stomach wall, shedding some
light on the evolutionary biology of GC, and helping
to unravel obstacles of precision medicine. First, we

explored intratumoral heterogeneity of GC specimens
obtained from different sites of the lateral expansion
of the primary tumors and from different lymph node
metastases. The discovery cohort harbored 16,537
non-synonymous mutations (i.e., missense, nonsense
and frameshift; Additional file 2: Table S5-S6). In the
individual patient, the number of non-synonymous
mutations ranged from 181 to 3111 (median: 369),
and in the individual tumor sample, it ranged from
49 to 2348 (median: 159). The highest mutational
burden was found in the MSI GC (Table 1; Fig. 2A).
Between 8.7 and 46.8% of the non-synonymous muta-
tions were found in all samples of the same patient
(Table 1). The vast majority of non-synonymous mu-
tations (53.2-91.3%) was not present in each sample
of the individual patient. With regard to all non-
synonymous mutations (n = 4413 genes), the vast

Fig. 1 Discovery cohort and multiregional trees. Schematic representation of the nine patients from the discovery cohort. Multiregional trees
provide evidence of somatic evolution. Text in green and red indicate amplifications and deletions; italics represent predicted drivers, while
others are known drivers as determined by Cancer Genome Interpreter. Variants denoted by an asterisk are those that are present in more than
one branch of a tree and could not be satisfactorily resolved into a single branch
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Fig. 2 (See legend on next page.)
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majority, i.e., 3272 (74.1%) genes, were not found in
every sample (Table 1).
In a single case, additional sequence data were ob-

tained from three separate lymph node metastases. Simi-
larly, the number and type of non-synonymous
mutations varied between each lymph node metastasis
and between the primary tumor and the three lymph
node metastases. Interestingly, 172 mutations present in
the primary were not detected in the lymph node metas-
tases, while 58 mutations found in the lymph node me-
tastases were absent in the samples obtained from the
primary tumor (Additional file 2: Table S7). Collectively,
these data show that the lateral expansion of GC is asso-
ciated with substantial genetic variability, and lymph
node metastases may stem synchronously from different
areas of the primary tumor. Thus, the analysis of a single
sample, including lymph node metastases, may miss be-
tween 53.2 and 91.3% of the mutations present in GC.

Intratumoral heterogeneity also applies to copy number
variations
Previously, it has been shown that intratumoral hetero-
geneity also applies to copy number variations (CNV)
and we next assessed the extent of intratumoral hetero-
geneity along the lateral expansion for CNVs [7, 9, 34].
A total of 219 genes showed CNVs. The number of
genes with CNVs per case ranged from 0 to 98 (Add-
itional file 2: Table S8; Fig. 2B). The highest number was
found in case #5. Interestingly, this case did not have
any obvious drivers in terms of SNVs and showed strong
amplifications in MDM2, CD274 (PD-L1), JAK2, MYC,
and NOTCH2 as well as deletions in POLE1 and
TGFBR2 in individual samples. Across all samples, we
found examples for HER2 (validated independently by in
situ hybridization; case #3 and #4), MYC (case #5), and
CDK12 (case #3 and #4) amplifications as well as
CDKN2A (case #2, #3, #4 and #8), TP53 (case #3), and
PTEN (Case #3 and #4) losses (Additional file 2: Table
S8). The homogeneous amplification of MDM2 and the
heterogeneous amplification of CD274 (PD-L1) in case
#5 were validated independently by in situ hybridization
(MDM2) and immunohistochemistry (PD-L1; Fig. 2C–J).

Only in three cases (#3, #4 and #5), a total of 16 genes
showed CNVs in all samples of the individual patient.
The vast majority of CNVs was not present in every
sample and single-sample analysis may miss between
71.4 and 100% of the CNVs present in a tumor. These
data show that genetic heterogeneity of CNVs along the
lateral expansion is substantial and does not apply only
for genes of tyrosine kinase receptors but also for other
putative druggable targets such as PD-L1 (Additional file
2: Table S8; Fig. 2G–J).

Genetic variability along the lateral expansion
compromises the discovery of clonal mutations
The analysis of a single tissue specimen carries a risk of
mis-interpreting subclonal mutations as clonal (“clonal
illusion”) or to miss important mutations, which are
relevant for disease progression and therapy response
[35]. In view of the marked intratumoral heterogeneity
along the lateral expansion present in our discovery co-
hort, we then assessed the risk of clonal illusion. We an-
alyzed the cancer cell fraction (CCF) on a per-sample
basis and on a per-patient basis (Table 1; Additional file
2: Table S9). On a per-sample basis, the percentage of
clonal SNVs ranged from 1 to 99% for non-synonymous
mutations (Additional file 2: Table S5) and from 0 to
98.6% for synonymous mutations (Additional file 2:
Table S6). However, when clonality was assessed on a
per-patient basis (all data for each patient were com-
bined into a “single sample”), the number of clonal mu-
tations ranged from 0 to 80 (median 1.0) for non-
synonymous mutations and from 0 to 32 (median 1.0)
for synonymous mutations (Table 1). However, the TP53
mutations in case #1, #2, and #3 were classified as clonal
in the per-sample and in the per-patient analysis. These
data show that a single-sample analysis cannot reliably
assess the true clonality status of a somatic mutation
and that the vast majority of the mutational landscape of
GC is subclonal.
To further assess the reliability of the clonality assess-

ment, we estimated the number of samples required for
correct identification of clonal mutations by using the
approach described by Opasic et al. [36] and Werner

(See figure on previous page.)
Fig. 2 Intratumoral heterogeneity and Copy number variation. A Non-synonymous mutations were unevenly distributed among patients and
patient samples. Each row represents a patient sample and each column represents one non-synonymous mutation. B Copy number variation
analyses showed marked intratumoral heterogeneity (maroon denotes amplification and dark blue deletion). C–J Case #5 yields homogeneous
amplifications in MDM2 (all ten samples) and a heterogeneous amplification of CD274 (PD-L1; 2/10 samples including a single lymph node
metastasis). MDM2 amplification was confirmed independently in all samples, i.e., primary tumor (C, F; non-neoplastic mucosa as a reference in D)
and all lymph node metastases (E). Amplification of CD274 was associated with strong PD-L1 immunostaining only in a single sample (I) and only
in a single lymph node metastasis. All other samples were immunonegative for PD-L1 (J). The PD-L1-positive tumor area (G) showed a
phenotype, different from the remainder (H). Primary tumor (C); corresponding non-neoplastic mucosa (D); lymph node metastasis corresponding
to sample G13390 (E, G, I) and a sample of the primary tumor without CD274 amplification (PD-L1-immunonegative; F, H, J). Fluorescence in situ
hybridization (orange signal: MDM2, green signal: reference centromere; C–F); H&E staining (G; H) and anti-PD-L1-immunostaining (I, J). Original
magnifications 1000-fold (C–F), 400-fold (G–J)
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et al. [37]. First, the “balance factor” g was assessed for
every individual tumor by fitting the information gain
with each multiregion sample to a theoretical curve.
Next, the information from the fully reconstructed mul-
tiregional trees and the branch-defining subclonal alter-
ations were used (Fig. 3A). Six (case #1, #2, #3, #4, #8,
#9) tumors were considered to be highly unbalanced,
which implies that the number of “truly” clonal muta-
tions was indeed low. A reliable identification of these
mutations would require the sequencing of many add-
itional tumor samples. In one patient (case #6) with a
fairly balanced phylogenetic tree (g = 0.56), five samples
were sufficient for the identification of truly clonal mu-
tations with a probability > 90%. For two other patients
(case #5 and #7) with low estimated values of g (g = 0.2
and g = 0.01) we could be fairly certain (> 98% probabil-
ity) that mutations from the root of the multiregional
tree were indeed clonal using the existing number of
samples (Fig. 1). No difference was found between pa-
tients receiving perioperative treatment and therapy-
naïve patients (data not shown). Collectively, these data
show that the assessment of clonality depends on the ex-
tent of interindividual variability of intratumoral hetero-
geneity along the lateral expansion, hence the number of

samples studied, and that even multiregional sequencing
carries a risk of mis-interpreting clonality (Table 1).

Different modes of cancer evolution might be operating
in GC
Cancer is an evolutionary disease and the main driver of
intratumoral heterogeneity [39, 40]. It is conceptually
similar to the evolution of asexual microorganisms and
four models of evolution are discussed [41]: (1) in the
“sequential” or “linear” model mutations are acquired
linearly in a step-wise process with selective sweeps oc-
curring after driver mutations have been acquired; (2)
the “branched” evolution corresponds to a scenario
where multiple clones with increased fitness and new
driver mutations diverge from a common ancestor and
evolve in parallel; (3) “neutral” evolution is an extreme
case of “branching” evolution in which there is no selec-
tion of fitness changes during the lifetime of the tumor.
In the neutral model, cancers acquire all tumor-driving
alterations responsible for cancer expansion in the first
malignant cell. Thereafter, the cancer expands and neu-
tral variation is generated, reflected by a large number of
(probably non-functional) passenger mutations that are
responsible for the extensive and common intratumoral

Fig. 3 Clonality and neutrality in the discovery cohort. A Clonality was assessed as described [36, 38]. Cases #1, #2, #3, #4, #8, and #9 are highly
unbalanced and additional samples would be needed for correct estimation of clonality. In three cases (cases #5, #6, and #7), we could be fairly
certain that mutations from the root of the phylogenetic tree were indeed clonal using the existing number of samples. B, C The neutral model
assumes that there are no selective differences, such that the number of mutations of a certain allelic frequency declines as the inverse of that
frequency [38]. Here, we show the agreement between each tumor sample and this neutral expectation. B Illustrates neutrality analysis of the
samples from case #3. Left column: variant allele frequency histogram. Dark gray shade marks interval used for comparison with the neutral
model. Central column: shows increment in the cumulative number of mutation with inverse allelic frequency 1/f (black dots) and linear model
best fit (red line). Light gray marks samples that are in agreement with the neutral model R2 ≥ 0.98. Right column: normalized cumulative
distribution of mutations and theoretical model. Distance between distributions was quantified using a Kolmogorov-Smirnov test. While the
figure for the combined VAF shows deviations from neutrality, here mostly driven by sample G04283, some parts of the tumor could still evolve
under neutral conditions. C Summarizes neutrality analyses for cases #1 to #5, #7 to #9. Case #6 (MSI) was not included in the neutrality analysis
as a large, likely clonal, peak covered the most of the frequency range obfuscating the distribution of subclonal mutations. The agreement is
quantified by the Kolmogorov-Smirnov test, where the Kolmogorov distance between the empirical and the theoretical distribution is shown for
each sample. The normalized cumulative number of putatively subclonal mutations in a frequency area below the clonal peak was used where a
power-law distributed subclonal tail of mutations would be expected in the model of neutral evolution. The lines represent the standard
deviation of the Kolmogorov distance across samples per patient
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heterogeneity also found in our discovery cohort; finally,
(4) “punctuated” evolution or the “Big Bang” model of
evolution refers to a model where a large number of
genomic alterations occur in short bursts of time, at the
earliest stages of tumor progression (“Big Bang”) with
heterogeneity being high at tumor initiation and one/few
dominant clones expand to form the tumor mass.
There is emerging evidence that modes of evolution

may undergo transitions over time, or that multiple
modes may be operating concurrently for different clas-
ses of mutations [41]. In the next set of data analyses,
we explored the risk of mis-interpreting the mode of
evolution by single-sample analysis. We compared the
variant allele frequency (VAF) histograms with the neu-
tral model of cancer evolution as described initially by
Williams et al. [38] (Fig. 3B; Additional file 1: Figure S2).
The VAF histograms (Fig. 3B; Additional file 1: Figure

S2) show that the majority of VAF distributions found in
individual samples is compatible with a neutral expect-
ation, i.e., no selection. However, there is a high degree
of heterogeneity in deviation from neutrality within each
tumor, and VAF profiles collected from individual sam-
ples can lead to very different results for the evolution-
ary dynamics of cancer compared to the combination of
all samples (Fig. 3C). These findings support the conten-
tion that different modes of evolution (e.g., neutral vs.
non-neutral) might be operating concurrently in differ-
ent parts of the same GC.

Multi-sample tree-based analyses
The temporal phylogenetic order and spatial distribution
of mutations not only provides insights into cancer evo-
lution, but also might provide evidence of parallel evolu-
tion and epistatic interactions and infer clues about their
tumor biological relevance, e.g., for tumor progression.
Therefore, we next generated multiregional trees based
on driver SNVs and CNVs. As shown in Fig. 1, all tu-
mors of our cohort provided evidence of branched som-
atic evolution, with the most complex being the MSI
GC, confirming data published recently by von Loga
et al. [8]. In addition, we inferred maximum parsimony
trees in accordance with Lee et al. (Additional file 1: Fig-
ure S3) [5]. The authors observed a common phylogeny
pattern of five cases with GC in which the primary gen-
ome is branched from a trunk while all the lymph node
genomes (n = 3 for each of the 5 cases) cluster in a sep-
arate branch. We did not observe this pattern for the
single sample (case #5) for which lymph node data was
available. In contrast to Lee et al. [5], in case #5 the
lymph node metastases did not cluster together in a sep-
arate, distinct branch, but rather clustered with different
individual samples from the primary tumor (Fig. 1; Add-
itional file 2: Table S7). This further substantiates that
lymph node metastases may stem from different areas of

the primary tumor, “synchronously.” Comparing the
multiregional trees with the maximum parsimony trees
following the Lee et al. [5] methodology, one can ob-
serve similar trees with differences attributed to method-
ology as well as the additional CNV data included in the
multiregional trees. Generating LICHeE-based multire-
gional trees including passenger mutation and/or syn-
onymous mutations generated similar relationships in
the trees (data not shown).
It was interesting to note that the SMAD4 mutations

of four cases with TP53 mutations (i.e., cases #1, #2, #3,
and #4) were subclonal and that different mutations of
SMAD4 aligned with different subclones (Fig. 1).

Multiregional sequencing and pathway analysis provide
evidence of parallel evolution
Since tumor progression and spatial separation of tumor
subclones support parallel evolution, i.e., different sub-
clones evolving in parallel acquire distinct mutations in
the same gene (e.g., SMAD4) and/or pathway (e.g.,
TGFβ-pathway), we next sought our data set for further
evidence of parallel evolution: 369 genes of our discovery
cohort harbored two to four different non-synonymous
mutations in the same patient (Additional file 2: Table
S10), some of which could be due to parallel evolution.
We next assigned non-synonymous mutations and
CNVs to pathways, which have been linked to GC biol-
ogy, i.e., the SWI/SNF, TGFβ, Hippo, sonic hedgehog,
NOTCH, WNT and JAK-STAT (Additional file 2: Table
S11), and generated multi-sample trees. The listed path-
ways had been chosen based on domain expertise as
driver aberrations tend to occur less frequently in mul-
tiple genes within a given pathway thereby compromis-
ing pathway enrichment analyses.
The MSI GC showed the highest number of mutations

(n = 10) in a single pathway, while the remainder
showed alterations in 1–5 genes per pathway (Fig. 4;
Additional file 2: Table S11). Interestingly, while exclud-
ing the MSI GC, we noted pathway-related clustering of
mutations in individual cases, e.g., the SWI/SNF (case
#1, #2, #3, #4), TGFβ (case #1, #2, #3, #4), and NOTCH
pathway (case #5) (Fig. 4; Additional file 2: Table S11).
Recently, Park et al. [42] demonstrated in animal

models that SMAD4 cooperates with p53 loss to pro-
mote the development and metastatic progression of
GC. In support of the findings, our pathway analysis
shows that four of five cases with TP53 mutations (in-
cluding all three cases with clonal TP53 mutation) also
had alterations in the TGFβ-pathway. Furthermore,
SMAD4 mutations and losses were only found in TP53
mutant cases (Additional file 2: Table S11). In addition,
all TP53 mutant cases showed alterations in the SWI/
SNF pathway validating and extending findings made by
Frankell et al. [43]. He et al. [44] provided evidence that
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members of the SWI/SNF pathway regulate cellular sen-
escence via the p53/p21 and p16/pRB pathways. Collect-
ively, these findings support the contention that parallel
evolution is operative in GC and may affect the same
gene or occur within different genes of the same path-
way. It also points towards deterministic trajectories,
where a specific ordering of mutations is advantageous
for the tumor [35]: cancer progression in TP53 mutant
GCs depends on subsequent alterations in the TGFβ
and SWI/SNF pathway.

Decreased or lost expression of SMAD4 is associated with
an overall worse patient outcome and correlates
significantly with p53 expression
However, if deterministic trajectories are operative and
lead to parallel evolution in spatially separated areas of
the tumor, this might not inevitably be of biological rele-
vance: epistatic interaction and parallel evolution could
be neutral, at least partially. To test this, we next ex-
plored the putative significance of SMAD4 alterations
on patient prognosis. Using a validation cohort, we
aimed to test the hypothesis that a decreased or lost ex-
pression of SMAD4 would correlate with clinicopatho-
logical patient characteristics in a Caucasian study

population. SMAD4 and p53 expression were studied
using whole tissue sections and a validation cohort of
463 GCs (Fig. 5; Table 2; for further details see Add-
itional file 3: Results S1).
A decreased expression of cytoplasmic SMAD4 (Q1-3

vs. Q4) was associated with advanced local tumor
growth (T category), UICC stage, and MSI status (Table
2). A decreased nuclear expression of SMAD4 signifi-
cantly correlated with p53-status assessed by immuno-
histochemistry (p = 0.003; Table 2).
The entire validation cohort showed a median overall

survival (OS) of 15.0 months and a median tumor-
specific survival (TSS) of 16.6 months. Patient prognosis
significantly depended on the Laurén phenotype, T, N,
M, L, V, Pn, and R category, UICC stage, lymph node ra-
tio, and cytoplasmic SMAD4 expression. Patients with
cytoplasmic SMAD4 loss showed significantly lower me-
dian OS (13.4 months, 95% C.I. 11.3–15.5; p = 0.001)
and TSS (14.7 months, 95% C.I. 12.0–17.3; p = 0.002)
compared with retained SMAD4 expression (OS: 22.4
months, 95% C.I. 8.7–36.0; TSS: 30.3 months, 95% C.I.
15.5–45.0) (Fig. 5F). The correlation between nuclear
SMAD4 expression and OS (p = 0.035) and TSS (p =
0.038) lost significance after multiple testing (Fig. 5F).

Fig. 4 Pathway analysis. Assignment of mutations to pathways, i.e., the SWI/SNF, TGFβ, Hippo, sonic hedgehog, NOTCH, WNT, and JAK-STAT
pathway, also showed marked intratumoral heterogeneity and provided evidence of parallel evolution
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However, on multivariate analyses, loss of cytoplasmic
SMAD4 expression (HR 1.378; 95%CI 1.022–1.828; p =
0.035) was an independent prognosticator of OS (Add-
itional file 2: Table S12).
The TP53 genotype (exons 4–10) was available from

105 patients (34 cases with and 71 without a mutation
or with a silent mutation; Table 2) [30]. Kaplan-Meier
curves showed no differences in OS or TSS for cytoplas-
mic SMAD4 expression and TP53 genotype (Additional
file 1: Figure S5). Interestingly, patients with TP53 muta-
tion and any loss of nuclear SMAD4 expression showed
a lower median survival compared with TP53 wildtype
patients [median OS 9.9 months (95%C.I. 8.2–11.5
months) vs. 13.2 months (95%C.I. 0.0–28.1 months);
median TSS 9.9 months (95%C.I. 6.6–12.9 months) vs.
13.2 months (95%C.I. 7.9–18.6 months)]. However, due
to low case numbers, this did not reach statistical signifi-
cance (Additional file 1: Figure S5).
To the contrary, the expression of p53 had been stud-

ied previously in the same validation cohort and was
shown not to correlate with local tumor growth, nodal
spread, or patient prognosis [30].

Discussion
The heterogeneity of malignant tumors is a major bar-
rier to drug development and long-term disease control
[45]. However, comprehensive data on intraprimary and
intermetastatic genetic heterogeneity in GC are scarce.
Lee et al. [5] performed whole-exome sequencing of 15
pairs of primary GC and their matched lymph node me-
tastases in an Asian patient population and noted a sub-
stantial variation in the extent of mutational overlap or
mutational heterogeneity between primary and lymph
node metastasis genomes. However, Lee et al. [5] studied
only a single specimen from the primary tumor and did
not explore the risk of sampling error in the primary
tumor nor heterogeneity in the lateral expansion. Pecta-
sides et al. [7] analyzed patterns of heterogeneity in two
independent patient cohorts. In the first cohort, again
only a single biopsy sample was obtained from the pri-
mary tumor of 11 patients and was compared with syn-
chronous metastatic biopsies. In a second cohort, more
than 100 samples were obtained from the primary tu-
mors and metastatic sites of 26 patients and forwarded
to targeted sequencing of a limited number of genes and

Fig. 5 SMAD4 is heterogeneously expressed in gastric cancer and a decreased expression correlates with patient survival (validation cohort).
References for immunostaining analysis according to H-score. Staining intensities ranged from 0 (A; nuclear and cytoplasmic negative) to 3+ (D,
nuclear and cytoplasmic strong expression) with 1+ (B; nuclear and cytoplasmic weak expression) and 2+ (C; nuclear and cytoplasmic moderate
expression) in between. Black-and-white expression of SMAD4 describes tumors with clearly demarcated areas of complete loss of nuclear and
cytoplasmic SMAD4 expression next to areas with retained expression (E). Anti-SMAD4 immunostaining, hematoxylin counterstain; × 400 (A–D)
and × 100 (E) magnifications. F Kaplan-Meier curves depicting patients’ survival according to SMAD4 status (Q1–3 vs. Q4; for further details see
Suppl. Results). Kaplan-Meier curves demonstrating correlations between cytoplasmic SMAD4 (top row) and nuclear (bottom row) loss in tumor
cells and overall as well as tumor-specific survival
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Table 2 SMAD4 expression in the validation cohort and correlation with clinicopathological patient characteristics (*insignificant
after correction for multiple testing)

SMAD4 cytoplasmatic
expression

SMAD4 nuclear expression

Total
valid

Q123 Q4 HScore 0
present

HScore 0 absent

n (%) n (%) n (%) p value n (%) n (%) p value

Total Total 463 (100) 366 (79.1) 97 (20.9) 263 (56.8) 200 (43.2)

Gender Female 178 (38.4) 144 (80.9) 34 (19.1) 0.482 90 (50.6) 88 (49.4) 0.034

Male 285 (61.6) 222 (77.9) 63 (22.1) 173 (60.7) 112 (39.3)

Age group < 68 years 232 (50.1) 190 (81.9) 42 (18.1) 0.139 131 (56.5) 101 (43.5) 0.925

≥ 68 years 231 (49.9) 176 (76.2) 55 (23.8) 132 (57.1) 99 (42.9)

Localization Proximal stomach 145 (31.0) 123 (84.8) 22 (15.2) 0.049 93 (64.1) 52 (35.9) 0.033*

Distal stomach 318 (69.0) 243 (76.4) 75 (23.6) 170 (53.5) 148 (46.5)

Laurén phenotype Intestinal 237 (51.2) 186 (78.5) 51 (21.5) 0.313 149 (62.9) 88 (37.1) 0.026

Diffuse 147 (31.7) 122 (83.0) 25 (17.0) 73 (49.7) 74 (50.3)

Mixed 31 (6.7) 24 (77.4) 7 (22.6) 19 (61.3) 12 (38.7)

Unclassifiable 48 (10.4) 34 (70.8) 14 (29.2) 22 (45.8) 26 (54.2)

Grading G1 / G2 107 (23.1) 82 (76.6) 25 (23.4) 0.499 62 (57.9) 45 (42.1) 0.824

G3 / G4 356 (76.9) 284 (79.8) 72 (20.2) 201 (56.5) 155 (43.5)

pT category T1a / T1b 58 (12.5) 38 (65.5) 20 (34.5) 0.011* 32 (55.2) 26 (44.8) 0.923

T2 53 (11.4) 38 (71.7) 15 (28.3) 28 (52.8) 25 (47.2)

T3 182 (39.3) 150 (82.4) 32 (17.6) 108 (59.3) 74 (40.7)

T4a / T4b 170 (36.7) 140 (82.4) 30 (17.6) 95 (55.9) 75 (44.1)

pN category N0 132 (28.5) 99 (75.0) 33 (25.0) 0.151 69 (52.3) 63 (47.7) 0.399

N1 63 (13.6) 48 (76.2) 15 (23.8) 39 (61.9) 24 (38.1)

N2 85 (18.4) 70 (82.4) 15 (17.6) 49 (57.6) 36 (42.4)

N3a/b 182 (39.4) 148 (81.3) 34 (18.7) 106 (58.2) 76 (41.8)

M category M0 376 (81.2) 291 (77.4) 85 (22.6) 0.079 217 (57.7) 159 (42.3) 0.471

M1 87 (18.8) 75 (86.2) 12 (13.8) 46 (52.9) 41 (47.1)

UICC stage IA / IB 79 (17.1) 55 (69.6) 24 (30.4) 0.011* 40 (50.6) 39 (49.4) 0.832

IIA / IIB 99 (21.4) 77 (77.8) 22 (22.2) 59 (59.6) 40 (40.4)

IIIA / IIIB / IIIC 197 (42.6) 158 (80.2) 39 (19.8) 118 (59.9) 79 (40.1)

IV 87 (18.8) 75 (86.2) 12 (13.8) 46 (52.9) 41 (47.1)

Lymph node ratio Low (< 0.189) 226 (48.9) 175 (77.4) 51 (22.6) 0.426 126 (55.8) 100 (44.2) 0.639

High (≥ 0.189) 236 (51.1) 190 (80.5) 46 (19.5) 137 (58.1) 99 (41.9)

pL category L0 216 (48.8) 167 (77.3) 49 (22.7) 0.645 112 (51.9) 104 (48.1) 0.069

L1 227 (51.2) 180 (79.3) 47 (20.7) 138 (60.8) 89 (39.2)

pV category V0 393 (88.9) 308 (78.4) 85 (21.6) 0.856 225 (57.3) 168 (42.7) 0.446

V1 49 (11.1) 38 (77.6) 11 (22.4) 25 (51.0) 24 (49.0)

R status R0 400 (87.3) 311 (77.8) 89 (22.3) 0.170 230 (57.5) 170 (42.5) 0.479

R1 / R2 58 (12.7) 50 (86.2) 8 (13.8) 30 (51.7) 28 (48.3)

HER2 status Negative 397 (91.9) 320 (80.6) 77 (19.4) 0.657 227 (57.2) 170 (42.8) > 0.999

Positive 35 (8.1) 27 (77.1) 8 (22.9) 20 (57.1) 15 (42.9)

H. pylori status Negative 330 (84.6) 261 (79.1) 69 (20.9) 0.092 189 (57.3) 141 (42.7) 0.207

Positive 60 (15.4) 41 (68.3) 19 (31.7) 29 (48.3) 31 (51.7)
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not the whole exome [7]. They found discrepant patho-
genic alterations between primary tumors and paired
metastatic lesions in 45% of the patients. Among alter-
ations in receptor tyrosine kinases, 9 of 12 cases (75%)
were discordant across all matched samples [7]. Von
Loga et al. [8] recently studied four MSI GCs by multire-
gional sequencing and found an extreme intratumoral
heterogeneity as well as evidence of parallel evolution in this
special, but rare subtype of GC. As shown here, MSI GC
may not be representative for more prevalent types of GC.
Thus, our study extends previous studies, e.g., on gas-

tric adenomas [46], particularly by including also more
prevalent types of GC. We show that the lateral expan-
sion of GC is associated with substantial genetic variabil-
ity, and lymph node metastases may stem synchronously
from different areas of the primary tumor. Single-sample
analysis of the primary tumor as well as of lymph node
metastases may miss between 53.2 and 91.3% of the mu-
tations present in a single GC. In a subset of genes the
genotype is also variable and single-sample analysis may
miss signs of parallel evolution and hence underestimate
the importance of genes/pathways. In this respect, it is
interesting to note that a comparison of the prevalences
of gene mutations obtained by multiregional sequencing
provides figures quite different from those obtained by
single-sample analysis (e.g., 8% SMAD4 mutations in the
TCGA data set, 15% in a series of 551 esophageal adeno-
carcinomas, and 33% in our dataset; Additional file 2:
Table S13) [3, 43]. These differences illustrate the risk of
mis-interpreting the significance of individual genes and

pathways in GC biology when findings are based only on
single-sample analyses. Thus, multiregional sequencing
also provides insights into cancer biology, which are
missed by single-sample analysis.
This, for instance, applies to the classification of

clonality. The presence of a particular gene mutation in
every tissue sample of a given tumor does not necessar-
ily represent clonality and has been referred to as “clonal
illusion” [35]. Our bioinformatic approach demonstrates
that only a minority of the homogeneously distributed
mutations could be classified with reasonable certainty
as truly clonal (Table 1) and that the assessment of
clonality is a function of the existing mutational land-
scape of the tumor, which shows interindividual variabil-
ity, and the number of samples available: in six cases, a
correct assessment of clonality would require the ana-
lysis of additional samples for an accurate annotation,
particularly in highly unbalanced tumors (Fig. 3). Thus,
even multiregional sequencing carries a risk of mis-
interpreting clonality.
Cancer is an evolutionary disease and four models are

discussed in this context, i.e., the “sequential,”
“branched,” “neutral,” and “punctuated” model [41].
Here we tested the neutral model and showed that the
compatibility with neutrality was variable between differ-
ent samples from the same tumor contradicting the con-
cept of a single mode of expansion for the entire tumor.
This observation may also lend support to the hypoth-
esis that different modes of evolution might be operating
within a single tumor. However, it has to be kept in

Table 2 SMAD4 expression in the validation cohort and correlation with clinicopathological patient characteristics (*insignificant
after correction for multiple testing) (Continued)

SMAD4 cytoplasmatic
expression

SMAD4 nuclear expression

Total
valid

Q123 Q4 HScore 0
present

HScore 0 absent

n (%) n (%) n (%) p value n (%) n (%) p value

EBV status Negative 428 (95.5) 341 (79.7) 87 (20.3) 0.273 242 (56.5) 186 (43.5) 0.821

Positive 20 (4.5) 14 (70.0) 6 (30.0) 12 (60.0) 8 (40.0)

MSI status MSS 412 (92.2) 332 (80.6) 80 (19.4) 0.008* 236 (57.3) 176 (42.7) 0.375

MSI 35 (7.8) 21 (60.0) 14 (40.0) 17 (48.6) 18 (51.4)

p53 status Quartile 1/Quartile 4 226 (49.8) 186 (82.3) 40 (17.7) 0.163 145 (64.2) 81 (35.8) 0.003

Quartile 2/Quartile 3 228 (50.2) 175 (76.8) 53 (23.2) 115 (50.4) 113 (49.6)

Overall survival [months] Total / events / censored 451 347 / 289 /
68

94 / 62 / 32 0.001 257 / 210 /
47

194 / 141 /
53

0.035*

Median survival 13.4 ± 1.1 22.4 ± 7.0 14.9 ± 1.4 15.6 ± 1.9

95% C.I. 11.3–15.5 8.7–36.0 12.2–17.6 12.9–17.1

Tumor-specific survival [months] Total / events / censored 423 333 / 236 /
97

90 / 51 / 39 0.002 240 / 173 /
67

183 / 114 /
69

0.038*

Median survival 14.7 ± 1.4 30.3 ± 7.5 15.5 ± 1.6 18.4 ± 2.7

95% C.I. 12.0–17.3 15.5–45.0 12.4–18.5 13.1–23.8
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mind that even multiregional sequencing only provides a
snapshot of a highly dynamic disease process and pro-
vides no information regarding the temporal and micro-
environmental constraints. Intratumoral heterogeneity
resulting from somatic evolution might be attributable
to ongoing genetic and heritable epigenetic alterations
and selection might be operative in certain but not all
microenvironments, i.e., different histoanatomical layers
of the stomach wall, within lymph nodes or a metabolic
environment mediated by chaotic angiogenesis, immune
response, and various other factors [47]. In this respect,
the discovery of a subclonal amplification of CD274
(PD-L1), which was associated with a strong expression
of PD-L1 (Fig. 2), in a chemotherapy-naïve case is highly
intriguing and shows that tumor subclones can acquire
distinctive immune evasion capabilities in the absence of
preceding perioperative chemotherapy.
Somatic evolution of GC has several major clinical im-

plications regarding the assessment of putative subclonal
genetic events as well as tissue-based precision medicine.
While clonal events might lead to cancer initiation, at
later disease stages the initiating genetic lesions may no
longer ensure cell survival or might have little influence
on patient prognosis [47]. In a preceding study, we were
unable to relate p53-alterations in GC with patient out-
come [30]. By generating multiregional trees, we identi-
fied subclonal SMAD4 mutations in four cases of the
discovery cohort. Subsequent validation of the biological
significance of the SMAD4 expression in a large Cauca-
sian patient population provided strong evidence of the
prognostic value of SMAD4 loss. It turned out to be an
independent prognosticator of OS and TSS at least for
cytoplasmic expression of SMAD4. SMAD4 shuttles be-
tween the cytoplasm and nucleus. Immunostaining usu-
ally is cytoplasmic, while nuclear staining can also be
detected in non-mutant cases, as also shown here.
SMAD4 mutations affect both, cytoplasmic and nuclear
staining [48]; however, only loss of cytoplasmic immuno-
staining was an independent prognosticator of patient
survival in our cohort. Interestingly, Kaplan-Meier ana-
lyses using only cases with a known TP53 genotype
showed that patients with any loss of nuclear SMAD4
expression had a lower median OS and TSS (Additional
file 2: Figure S5). These data suggest that loss of nuclear
staining is also prognostically relevant in TP53 mutant
cases. Further studies are warranted to clarify the dis-
tinctive role of cytoplasmic and nuclear SMAD expres-
sion in GC biology.
To some extent, similar findings on the prognostic sig-

nificance of SMAD4 in GC were made in three Asian
cohorts [49–51] and a two Caucasian cohorts [43, 52],
however, with some differences and some major
limitations: The number clinicopathological patient
characteristics was limited in all preceding studies and

none included resection, H. pylori, EBV, MSI, and p53
status [43, 49–52]. Resection status and MSI are import-
ant predictors of patient survival and we are the first to
demonstrate that cytoplasmic SMAD4 loss remains an
independent prognosticator of OS and TSS even when
the resection status and MSI are included in multivariate
analyses. The majority of the preceding studies tested
not for false discovery rates [49–52]. In addition, the
overall prognosis of GC in Asian patients is substantially
different from GC in Caucasian patients and findings
made in Asian patient populations cannot be translated
untested into Caucasian cohorts [53]. One of two studies
exploring SMAD4 in Caucasian patients was limited to a
series of 151 cases without multivariate analyses [52].
The second study on Caucasian patients correlated
SMAD4 genotype with patient outcome and did not as-
sess the expression pattern [43]. Thus, our study is the
first extended exploration of the tumor biological signifi-
cance of SMAD4 in a large and well characterized Cau-
casian patient population confirming the independent
prognostic significance of SMAD4 expression in GC.
The subclonal alteration of SMAD4 points towards an-

other highly interesting issue: it was almost exclusively
found in TP53 mutant GCs. Tumor-initiating genetic
events may influence subsequent evolutionary trajector-
ies and may lead to parallel evolution, in which the fit-
ness state of specific subclones depends on mutations in
the same gene (SMAD4) or pathway (e.g., TGFβ signal-
ing pathway). While these subclonal mutations could be
missed by the analysis of a single bulk tissue sample (as
shown here), identification of the clonal ground state
may provide highly valuable information with regard to
the future (most likely) subclonal alterations necessary
for tumor progression. Tumor progression could depend
on epistatic genetic interactions in which the functional
effects of genetic mutations are determined by their tem-
poral order leading to evolutionary trajectories [54]. Evo-
lutionary trajectories might also partially explain the
intratumoral heterogeneity: 369 genes harbored two to
four different non-synonymous mutations in the same
patient. Some might be irrelevant passenger mutations
(according to the neutral model), but some might repre-
sent other evolutionary trajectories (i.e., deterministic
temporal order of mutations) and the analysis of add-
itional patient cohorts is urgently needed to identify fur-
ther trajectories in GC [43]. Each individual subclonal
mutation merits in-depth validation studies to explore
its putative role in cancer biology since subclonal muta-
tions could be neutral or clinically relevant, as has been
shown here concerning SMAD4.
With regard to TP53 mutant cases, we also noted sub-

clonal alterations of members of the SWI/SNF pathway.
This finding is in line with our recent study in which
loss of ARID1A correlated inversely with MSI and EBV
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status in GC [55], molecular subtypes of GC usually
showing a low prevalence of TP53 mutations [3]. Thus,
alterations of the SWI/SNF pathway may point to an
additional trajectory in TP53 mutant GCs. Parallel som-
atic evolution might also explain the intratumoral het-
erogeneity of PIK3CA mutations in EBV-associated GCs
[4]. Thus, the four molecular subtypes of GC might be
extended by the identification of subtype-specific evolu-
tionary trajectories and further studies on this topic are
urgently needed.
Summing up, in a reductionist view, we show that the

lateral expansion of GC is associated with substantial
genetic variability, and lymph node metastases may stem
synchronously from different areas of the primary
tumor. We confirm that single-sample analysis, includ-
ing lymph node metastases, may miss between 53.2 and
91.3% of the mutations present in GC. This also applies
to CNVs of genes involved in immune evasion strategies,
e.g., PD-L1. We found evidence of parallel evolution,
which applies to single genes as well as to pathways. The
assessment of clonality depends on the extent of interin-
dividual variability of intratumoral heterogeneity, and
hence the number of samples studied. Thus, multire-
gional sequencing and the generation of multiregional
trees also carry a risk of mis-interpreting clonality. Mul-
tiple modes of evolution (e.g., neutral vs. non-neutral)
could be operating concurrently in GC. We found evi-
dence of biologically relevant evolutionary trajectories in
GC, which is probably a driver of parallel evolution: can-
cer progression in TP53 mutant GCs is linked to subse-
quent (putative subclonal) alterations in the TGFβ and
SWI/SNF pathway.

Conclusions
Looking into the future of precision medicine and based
on the findings of our study, a combined approach using
the identification of druggable targets by comprehensive
molecular analysis, unveiling the mode of tumor expan-
sion (neutral vs. non-neutral) and the discovery of dis-
tinct evolutionary trajectories may aid in finding the best
treatment for a particular tumor and also ultimately may
lead to an evolutionary classification of GC.
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