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The diagnosis of carpal tunnel syndrome, a peripheral nerve disorder, at the earliest possible stage is very crucial because if left
untreated it may cause permanent nerve damage reducing the chances of successful treatment. Here a novel Fuzzy Expert System
designed using MATLAB is proposed for identification of severity of CTS. The data used were the nerve conduction study data
obtained from Kannur Medical College, India. It consists of thirteen input fields, which include the clinical values of the diagnostic
test and the clinical symptoms, and the output field gives the disease severity. The results obtained match with the expert’s opinion
with 98.4% accuracy and high degrees of sensitivity and specificity. Since quantification of the intensity of CTS is a crucial step
in the electrodiagnostic procedure and is important for defining prognosis and therapeutic measures, such an expert system can
be of immense use in those regions where the service of such specialists may not be readily available. It may also prove useful in
combination with other systems in providing diagnostic and predictive medical opinions and can add value if introduced into the
routine clinical consultations to arrive at the most accurate medical diagnosis in a timely manner.

1. Introduction

Carpal tunnel syndrome (CTS) is an entrapment type neu-
ropathy due to the compression/entrapment of the median
nerve of the wrist passing through the carpal tunnel [1].
The symptoms include weakness, numbness, parasthesia, and
in some cases pain [2]. Nerve conduction study (NCS) is
a fundamental component of electrodiagnostic evaluation,
providing valuable quantitative and qualitative understand-
ing of neuromuscular functions, especially the ability of
electrical conduction of the motor and sensory nerves. NCS
can be used for the confirmation of CTS as well as the
quantification of the disease severity [3], thereby aiding in
treatment decisions. Medication for one to two months is
reasonable in mild to moderate CTS. Worsening or lasting
clinical symptoms in spite of conservative treatment and
clearly abnormal electro-diagnostic studies clearly indicate
severe CTS which may have to be referred for surgical
evaluation [4, 5].The diagnosis at the earliest possible stage is
very essential since long-standing CTSmay cause permanent

nerve damage and generally reduces the chances of successful
surgical treatment [6, 7]. Surgery to correct CTS has a high
success rate (about 90%) and most people relieved of their
CTS symptoms with conservative/surgical management have
minimal residual nerve damage. The diagnosis is usually
made by a specialist neurologist, and this task involves basic
symptoms elicitation and analysis of the NCS data using a
combination of the patient’s case history, current symptoms,
and various electrophysiological findings [8].

The use of mathematical sciences, engineering principles,
and computer technology in the diagnosis and treatment
of various illnesses has highly increased nowadays. In spite
of being highly complex and uncertain, intelligent systems
such as fuzzy logic, artificial neural networks, and genetic
algorithmhave beenwidely employed in the field ofmedicine
[9]. Fuzzy logic, a multivalued logic similar to human
thinking and interpretation, is highly suitable and applicable
for developing knowledge-based systems in medicine for
interpretation of medical findings, diagnosis and treatment
selection [10, 11]. A Fuzzy Expert System (FES) is a type of
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rule-based form of artificial intelligence using a collection
of membership functions and rules to reason about data
[12]. Our aim was to develop such an FES using fuzzy
logic controller which could diagnose the stage of CTS,
from the clinical symptoms and the NCS data, and thereby
help the clinician in deciding the treatment options as soon
as possible. The reason of choosing fuzzy logic for the
development of such a system lies in the fact that fuzziness,
described as the vagueness in the description of events or
phenomena, is generally found wherever human decisions,
judgment, or evaluation plays an important role. Diagnosis
or classification of a disease is often done by the specialist
using a set of rules and the designed system involves the
collection of these rules, together with an inference engine
for evaluating the rule base for a given set of inputs. This
method allows imprecision in the user inputs as well as in
the rule base specification. Fuzzy logic mimics the cognitive
decision making ability of the specialist and enables the less
experienced junior doctors to arrive at a better diagnosis as
it keeps the expert knowledge in an intelligent system to be
used efficiently by others. So such an expert system can be
of immense use in those areas where the service of such
specialists may not be available and its use is recommended
to shorten the time and improve the accuracy of diagnosis in
patients with suspected CTS [13, 14].

2. Materials and Methods

2.1. Database Description. In the above study we had used 135
NCS data obtained from the electronicmedical records of the
KannurMedical College, Kerala, India, to check the accuracy
of the developed FES. Out of the 135 cases, 36 were normal
cases, who had normal NCS values and had no electro-
physiological evidence of CTS, 56 were patients suffering
from mild to moderate CTS, and the remaining were having
severe CTS symptoms. All the patients selected were having
isolated carpal tunnel syndrome and those with any pre
existing nerve conditions were excluded. The cases with
abnormal ulnar studies at the wrist were excluded to avoid
other types of neuropathy being misdiagnosed as CTS. The
ethical committee approval was obtained. The present study
used the following median nerve and ulnar nerve measures:
median motor and sensory latencies, median motor and
sensory velocities, ulnar motor and sensory latencies, and
ulnar motor and sensory velocities [15]. The attributes of the
data used are given in Table 1.

The following criteria were applied for identifying the
presence of CTS:

(i) median motor latency greater than 4.4ms,
(ii) median sensory latency greater than 3.84ms,
(iii) median motor and sensory velocities less than

50m/sec,
(iv) ulnar motor and sensory values will be normal

(latency: 2.54 ± .29ms, velocity: 55.7 ± 4.9m/sec).

Higher values of median latencies and lower values of
median NCVs indicate an increase in the severity of the
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Figure 1: Outline of a basic Fuzzy Expert System.

disease. The ulnar values are unaffected; that is, they remain
normal. If the ulnar values are abnormal it is an indication of
neuropathy, another peripheral nerve disorder [16, 17].

2.1.1. Procedure of NCS. NCS was performed using the
standard techniques with surface electrode recording on both
hands of each subject using constant current stimulator. The
median motor nerve at the wrist was stimulated to obtain
the median motor nerve data; the recording was done over
the abductor pollicis brevis muscle. The ulnar motor data
was obtained by stimulating the ulnar nerve at the wrist,
below the elbow, and above the elbow and recording over
the abductor digiti minimi muscle. Sensory responses were
obtained by applying stimulation at the wrist and recording
from the index finger to get the median data and the little
finger to get the ulnar data.

2.1.2. Design of Fuzzy Expert System. An expert system is a
computer program that helps in solving problems demanding
substantial human expertness by using explicitly exhibited
domain knowledge and computational decision procedures.
These are designed to make available some of the skills of an
expert to nonexperts, as they attempt to imitate the thinking
patterns and logical decisions of an expert.TheFESmakes use
of the theory of fuzzy reasoning [18]. Fuzzy inference is the
process of developing the mapping from a given input to an
output using fuzzy logic which then offers a base from which
decisions can be made or patterns perceived. The classical
logic has only two truth values, true or false, and so the
process of inference is simplified as compared to fuzzy logic,
wherewe have to be concerned not onlywith propositions but
also with their truth values. Every FES has a fuzzy inference
system that reasons using fuzzy logic membership functions,
which refers to the degree to which the value of a particular
attribute belongs to a set. The FES designed and employed in
this paper can be generalized by means of a simple structure
as shown in Figure 1.

This illustrates the typical process flow as clear-cut stages
for lucidity but in reality the process is not usually composed
of such disjoined distinct steps and many of the stages,
although present, are glazed over into one another [19, 20].

2.2. Model Development. The FES developed in this paper
employs the Mamdani type fuzzy inference technique. This
technique is performed in four steps:
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Table 1: The attributes of the nerve conduction study dataset.

Attribute no. Attribute description Attribute range Mean Standard deviation
1 Motor median latency (msec) 2–10 4.1 1.32
2 Motor median nerve conduction velocity (m/sec) 30–70 54.35 10.38
3 Motor ulnar latency (msec) 2–10 3.5 1.69
4 Motor ulnar nerve conduction velocity (m/sec) 30–70 53.76 8.9
5 Sensory median latency (msec) 2–10 3.6 1.25
6 Sensory median nerve conduction velocity (m/sec) 30–70 49.8 9.79
7 Sensory ulnar latency (msec) 2–10 3.3 1.36
8 Sensory ulnar nerve conduction velocity (m/sec) 30–70 52.76 8.67

(i) fuzzification of the input variables: done by the
fuzzification module, which translates crisp inputs
into fuzzy ones; that is, classical measurements are
converted to fuzzy values through the use of linguistic
variables;

(ii) application of the Fuzzy operator and formation of
rules for evaluation: done by a set of if-then fuzzy
rule bases or knowledge bases, consisting of a set of
conditioned fuzzy propositions;

(iii) aggregation of the rule outputs: done by the fuzzy
inference engine which has a specific inference
method—here the Mamdani type. It applies fuzzy
reasoning mechanisms to obtain outputs and carries
out the computation using fuzzy rules;

(iv) defuzzification: done by a defuzzification module
which transforms fuzzy outputs back to crisp values.

2.3. Fuzzification. The fuzzifier converts the crisp inputs
which are supplied to the system to fuzzy inputs and also
determine the degree to which these inputs belong to each of
the appropriate fuzzy sets. These fuzzy inputs are then used
in the inference engine to generate fuzzy outputs. Eliciting
knowledge from experts encounters numerous obstacles.The
experts, in spite of being highly skilled in solving problems
in their field, often feel difficulty in stating their knowledge
in an orderly and logical manner or sometimes even in
understanding their own decision making processes. For
developing diagnostic tool for CTS, data is required that is
capable of representing the disease as well as the severity
of the disease. Basically the data consists of physical signs
and symptoms of patients, medical reports, and so forth. By
consulting the specialist and by analysing the data of the
patients eight NCS values and five symptoms were finalized
as the inputs for diagnosing the severity of the disease.
The thirteen attributes which were considered here as the
input variables for the diagnostic system were crucial and
had to be considered for the diagnosis and the detection
of severity of CTS. Fuzzy values were assigned for each
of these input variables to get different fuzzy sets based
on the expertise of the specialists and knowledge from the
standard textbooks. These fuzzy mapping or membership
functions can have a variety of shapes depending on how
the expert relates different domain values to belief values.
Triangular or trapezoidal shapes can simplify computation.

The membership function parameters for the input variables
and the membership function plots for the input variables
and the output variable is shown in Table 2 and Figure 2,
respectively.

2.3.1. Rule Determination and Rule Evaluation. The basic
requirement of rule-based systems is that the expert’s knowl-
edge and thinking patterns should be specified in an explicit
manner. The development of such an expert system usually
requires a domain expert, who knows how to solve the
problem at hand but is not much informed or familiar
with computer programming, and a knowledge engineer,
well versed in the design of expert systems and computer
technology involved but with little or no knowledge of the
problem at hand. The set of rules in an FES is known as the
rule base or knowledge base.

Fuzzy rule-based systems, in addition to handling of
uncertainties, also have several additional capabilities. Here
approximate numerical values can be specified as fuzzy
numbers. The performance of an FES mainly depends on its
rule base so the optimization of the membership function
distributions stored in the data base is the most important
process. The rules in a Fuzzy Expert System are in the form
following: If 𝑥 is low and 𝑦 is medium, then 𝑧 is high,
where 𝑥 and 𝑦 are input variables, 𝑧 is an output variable,
low is a membership function (fuzzy subset) defined on 𝑥,
medium is a membership function defined on 𝑦, and high
is a membership function defined on 𝑧. The antecedent or
the preceding part (the rule’s premise) describes the degree
to which the rule applies, while the conclusion part (the rule’s
consequent) assigns a membership function to each of the
output variables. If a fuzzy rule hasmore than one antecedent,
the fuzzy operator AND or OR is used to obtain a single
value that represents the result of the antecedent evaluation.
Based on the descriptions of the input and output variables,
75 rules were constructed by selecting an item in each input
and output variable box and one connection (AND). None
was chosen as one of the variable qualities to exclude any of
the variables from a given rule. The weight was specified to
unity.

2.3.2. Aggregation of the Rule Outputs. It is the process
of the unification of the rules. The membership functions
of all the rule consequents previously clipped during rule
evaluation are taken and combined into a single fuzzy set.
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Table 2: Membership function parameters for the input variables.

Input variable Membership
function

Parameters

Motor median
latency

Low [0.0185 0.0145 0.615 3.082]
Normal [2.87 3.108 3.9 4.17]
High [3.902 4.4 5.73 6.39]

Very high [4.85 6.68 10.3 11.4]

Motor median
NCV

Very low [15.8 24.9 31.69 38.8]
Low [34.53 38 46.5 50.9]

Normal [47.95 51.7 65.1 70.7]

Motor ulnar
latency

Low [0.01 0.9732 1.54 2.03]
Normal [1.52 1.99 2.94 3.457]
High [3.082 4.51 6.21 6.66]

Motor ulnar
NCV

Low [24.1 28.6 42.1 50.86]
Normal [44.63 50.28 63.91 71.19]
High [60.61 72.74 75.91 90.71]

Sensory median
latency

Low [0.3763 0.6076 1.828 3.274]
Normal [2.01 2.38 3.25 3.746]
High [3.61 3.92 5.481 6.95]

Very high [6.252 6.89 8.42 10]

Sensory median
NCV

Very low [15 19.5 25.5 29.37]
Low [25.5 30.3 34.1 44.89]

Normal [40.3 45.6 85.2 87.8]

Sensory ulnar
latency

Low [0.234 0.678 1.395 2.07]
Normal [1.8 2.15 2.86 3.26]
High [2.9 3.17 5.23 7.427]

Very high [5.905 7.06 9.59 13.2]

Sensory ulnar
NCV

Low [22.4 33.6 42.56 48.75]
Normal [42.24 45.74 62.12 66.37]
High [62.62 68.7 71.5 82.7]

Pain

Absent [0.014 0.029 0.03611 0.264]
Mild [0.102 0.283 0.5304]

Moderate [0.266 0.5 0.7844]
Severe [0.5304 0.743 1.001 1.19]

Numbness

Absent [0.0103 0.0132 0.0357 0.253]
Mild [0.0886 0.253 0.456]

Moderate [0.253 0.456 0.6892]
Severe [0.456 0.7315 1.04 1.36]

Weakness

Absent [0.013 0.024 0.0463 0.2235]
Mild [0.0595 0.247 0.4802]

Moderate [0.226 0.5172 0.779]
Severe [0.483 0.795 1.04 1.36]

Atrophy

Absent [0.0136 0.014 0.0833 0.2817]
Mild [0.0675 0.266 0.5146]

Moderate [0.29 0.5 0.8188]
Severe [0.522 0.8241 1.03 1.35]

Parasthesia

Absent [0.036 0.04 0.09392 0.36]
Mild [0.1 0.364 0.5913]

Moderate [0.361 0.56 0.8003]
Severe [0.602 0.8029 1.05 1.37]

In this process a number of clipped consequent membership
functions are changed into one fuzzy set for each output

variable. The inference methodology used is the Mamdani
inference method. In Mamdani inference method rules are
of the following form.
𝑅
𝑖
: if 𝑥
1
is 𝐴
𝑖1
and ⋅ ⋅ ⋅ and 𝑥

𝑟
is 𝐴
𝑖𝑟
then 𝑦 is 𝐶

𝑖
for 𝑖 =

1, 2, . . . , 𝐿, where 𝐿 is the number of rules, 𝑥
𝑗
(𝑗 = 1, 2, . . . , 𝑟)

are the input variables, 𝑦 is the output variable, and 𝐴
𝑖𝑗

and 𝐶
𝑖
are fuzzy sets that are characterized by membership

functions𝐴
𝑖𝑗
(𝑥
𝑗
) and𝐶

𝑖
(𝑦), respectively.The consequence of

each rule is characterized by a fuzzy set𝐶
𝑖
.The final output of

a Mamdani system is one or more arbitrarily complex fuzzy
sets which usually need to be defuzzified.

2.3.3. Defuzzification of the Output. Though the concept of
fuzziness helps the rule evaluation during the intermediate
steps, the final desired output for each variable is generally a
single number, that is, a crisp value. However, the aggregate
of a fuzzy set constitutes a range of output values, and so it
must be defuzzified in order to resolve a single output value
from the set. The defuzzification method used here was the
centroid calculation, which returns the center of area under
the curve. The defuzzified value was calculated based on the
following equation:

𝑑CA (𝐶) =
∫
𝑐

−𝑐
𝐶 (𝑧) 𝑧 𝑑𝑧

∫
𝑐

−𝑐
𝐶 (𝑧) 𝑑𝑧

, (1)

where 𝑑CA(𝐶) is the defuzzified value and 𝐶 is the member-
ship function. Every rule was examined for a given set of
input values using the AND operation and the rule which
satisfied the operational logic was used to generate the output
for the inference system. The output given by each rule was
aggregated and then defuzzified using centroid calculation
to generate a single output which was a single number
representing the severity of CTS.

After setting up the fuzzy inference system (FIS) the
next step was building the system with fuzzy logic controller
(FLC) with Rule Viewer block. This implements the FIS
with the Rule Viewer in simulink. Once we create the fuzzy
system we can readily embed our system directly into a
simulation and integrate it with the FIS. For the Mamdani
FIS, the FLC block automatically generates a hierarchical
block diagram representation of the FIS. This automatic
model generation ability is called the fuzzy wizard. The block
diagram representation only uses built-in Simulink blocks
and, therefore, allows for efficient code generation. The FLC
with rule viewer block is an extension of the fuzzy logic
controller block. It allows us to visualize how rules are fired
during simulation. We had also included a subsystem along
with the FLCwhich consists of an embeddedMatlab program
and other blocks along with the display blocks. When the
simulation is run the diagnosis appears as display along with
its membership function.

3. Results

3.1. Testing of the System. After the setup of the fuzzy infer-
ence system and its implementation in Simulink, the system
was tested with various input values. The FES developed is
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Figure 2: Continued.
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Figure 2: Continued.
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Figure 2:Membership function plots for the various input and output variables. (a)MotormedianNCV. (b)Motormedian latency. (c)Motor
ulnar NCV. (d) Motor ulnar latency. (e) Sensory median NCV. (f) Sensory median latency. (g) Sensory ulnar NCV. (h) Sensory ulnar latency.
(i) Pain. (j) Numbness. (k) Weakness. (l) Atrophy. (m) Parasthesia. (n) Output variable—disease diagnosis.

shown in Figure 3. In the first part with the given inputs, the
result is shown as “severe CTS” in the diagnosis (severity)
block and the membership function shown is 0.7045 which
means the diagnosis is severe CTS with a membership func-
tion 0.7045. The second part shows the Diagnosis (Severity)
block; in that the display is showing that the output is
having zero membership functions for “normal” and “mild”,
membership function for “moderate” is 0.2955, and that for
“severe” is 0.7045. So this block does a maximization and
finally provides the main block with the output as “Severe
CTS” and its membership function as equal to 0.7045. The
third part shows a small part of the implementation of the
FIS wizard since the entire model is too large.

Based on the rules the inference system calculated the
severity of CTS by following AND connection and then
defuzzification of the generated output using the centroid
method. In fuzzy logic the truth of a statement is matter of
degree so the AND connection performed a min operation.
Based on the AND operation every rule was examined for
a given set of input values and the rule which satisfied the
operational logic was used to generate the output for the
inference system.

3.2.The Rule Viewer. Based on these rules the roadmap of the
whole FIS rule viewer is obtained as shown in Figure 4. Rule
Viewer shows the active rules, the individual membership
functions, and how they are influencing the results. It displays
a guideline of the entire fuzzy inference process. In Figure 4
the fourteen plots shown represent the antecedents and
consequent of each rule. Each rule consists of a row of plots,
and each column gives the value of a particular variable. On
the left of each row we can see the rule numbers displayed.

The first thirteen columns of plots show the if part of each
rule and the fourteenth column of plots shows the then part
of each rule.Theplots which are blank in the if part of any rule
represent the depiction of “none” for the variable in the rule.

The last plot in the fourteenth column of plots corresponds
to the aggregates weighted decision for the given inference
system and it depends upon the input values of the system.
Though during the intermediate steps of rule evaluation we
are dealingwith fuzzy values, the final output for each variable
is in a crisp form. So the aggregate of the fuzzy sets are
defuzzified in order to resolve upon a single output value
from the set. The defuzzification method used is the centroid
method, and it returns the center of area under the curve
which is displayed as a bold vertical line on this plot. On the
topmost part above each column, the current values of each
of the input variables are displayed. The variables and their
current values are displayed on top of the columns. The Rule
Viewer provides us with a visual display of the interpretation
of the entire fuzzy inference process and it also expresses how
the shape of certain membership functions determines the
overall result. The Rule Viewer can be looked upon as a sort
of microview of the FIS since it shows one computation at a
time, in great detail.

3.3.The Surface Viewer Plot. The surface viewer plot is shown
in Figure 5. It renders a 3D surface from two input variables
and the output of a FIS. It displays the dependency of the
output on any one or two of the inputs; that is, it generates and
plots an output surface map for the system. The Rule Viewer
and the surface viewer are strictly read-only tools and cannot
be used for editing. The Surface Viewer lets us select any two
inputs and any one output for plotting.

The surface viewer clearly shows that the severity of CTS
increases when both themotor and the sensory latency values
increase. It also shows that when the motor or the sensory
NCV value becomes very low the severity of the disease
increases.

3.4. Accuracy of the System. Using the developed FES we
tested the 135 NCS data which had normal, mild, moderate,
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Table 3: Distribution of clinician’s diagnosis (actual) against FES (predicted) diagnosis.

Predicted diagnosis
Normal Mild to moderate CTS Severe CTS Total

Actual diagnosis
Normal 33 3 0 36
Mild to moderate CTS 2 53 1 56
Severe CTS 0 1 42 43

Total 35 57 43 Accuracy = 98.46%

Table 4: Diagnostics tests.

Sensitivity Specificity Positive predictive value Negative predictive value
Normal 94.28% 97% 91.66% 97.9%
Mild to moderate CTS 93% 97.4% 94.6% 95%
Severe CTS 97.67% 98.9% 97.7% 96.8%

Figure 4: Rule viewer.

and severe cases. The accuracy of the system was thus found
out with the consultation of the expert; the FES showed a
fairly good accuracy of 98.46% as shown in Table 3. It is
also seen from Table 4 that the severe CTS stage has the
highest sensitivity rate and specificity rate for the given FES
diagnostic system. Sensitivity measures the proportion of
actual positives which are correctly identified as such; that is,
it relates to the test’s ability to identify positive results while
specificity measures the proportion of negatives which are
correctly identified, that is, the ability of the test to identify
negative results. The positive predictive value of a test shows
how likely it is that a particular patient has the disease given
that the test result is positive, and the negative predictive value
gives the measure of how likely it is that the patient does not
have the disease given that the test result is negative.

4. Conclusion

Diagnosis and management of diseases are indeed a difficult
task that cannot be acquired from textbooks or classroom
knowledge alone. It has to be acquired slowly through years
of observation and experience. This is because most clinical
scenarios have a vagueness varying in degree associated
with them. During assessment the patients often describe
their symptoms using superlatives such as “never, rarely,
sometimes, often, most of the times, and always” and each
specific symptommay also appear graded as “mild,moderate,
or severe.” This emphasizes the reality that almost all the

symptoms are experienced and described in a dissimilar
manner by individual patients. Medical problems, therefore,
cannot be generalized or analyzed using binary logic, that
is, with a “yes” or a “no,” and an analytical program is
required. Fuzzy logic, which has the ability ofmerging human
heuristics into computer-assisted decisionmaking, is the best
solution to the problem.

Thisworkwas undertakenwith an aim to design an expert
system for the diagnosis of CTS and its severity using fuzzy
logic which will be helpful for the patient to take proper
curative measures before the severity increases. The results
obtained from the system reveal that the diagnostic system
is giving expected results and its efficacy has been endorsed
by the specialist doctor in the field. The system developed
was not meant to replace the specialist, yet it can be used to
assist a general practitioner or specialist in diagnosing and
predicting patient’s condition. The rules given in the expert
system actually replicate the type of decision making done in
the trained mind of a specialist.

In comparison to pertinency of fuzzy logic in medicine
[21, 22] the concept is still new in the field of neurosciences.
This was clearly highlighted from the fact that the con-
tribution to the literature on fuzzy logic was much less
from neurosciences [23] compared to other disciplines of
medicine [24–27]. But the utility of fuzzy logic and other
such techniques in various branches of neurosciences has
been attaining popularity in the last decade. In our recent
works [28, 29] we had shown how artificial neural networks
and computer programs could be used successfully for the
diagnosis of peripheral nerve disorders such as CTS and
neuropathy.

Employing the use of computer-aided techniques in
medical applications could reduce the cost, time, human
expertise, and medical error. In the arena of medical diag-
nosis it acts as a powerful tool to help doctors to examine
and model clinical data and make use of them for a number
of medical applications. The significance of the developed
FES lies in the fact that management of CTS depends fully
on the severity of the disease and it requires the knowledge
and experience of a specialist/neurologist to give a correct
diagnosis regarding the severity of CTS, so the developed
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Figure 5: Surface Viewer plot of severity of CTS between different input attributes. (a) Sensory motor NCV and sensory motor latency
(SM-NCV: SM-L). (b) Sensory motor NCV and motor median latency (SM-NCV: MM-L). (c) Sensory motor NCV and motor median NCV
(SM-NCV: MM-NCV). (d) Motor median latency and sensory motor latency (MM-L: SM-L). (e) Sensory motor latency and motor median
NCV (SM-L: MM-NCV). (f) Motor median NCV and motor median latency (MM-NCV: MM-L).

expert system enables the less experienced junior doctors to
arrive at a better diagnosis as it keeps the expert knowledge
in an intelligent system to be used efficiently by others.

But the major drawback of these studies, which make use
of the NCS data is the inherent shortcomings of the inter-
pretation of the results, which include lack of standardization

and absence of population-based reference intervals.Thus we
conclude that studies involving the use of such a Fuzzy Expert
System in providing diagnostic and predictive medical opin-
ions are highly promising for the future. They can add value
if embedded into the routine clinical consultations and used
judiciously but can never completely replace the clinician.
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