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Abstract. The protein alpha-Synuclein (�-Syn) is a key contributor to the etiology of Parkinson’s disease (PD) with aggrega-
tion, trans-neuronal spread, and/or depletion of �-Syn being viewed as crucial events in the molecular processes that result in
neurodegeneration. The exact succession of pathological occurrences that lead to neuronal death are still largely unknown and
are likely to be multifactorial in nature. Despite this unknown, �-Syn dose and stability, autophagy-lysosomal dysfunction,
and inflammation, amongst other cellular impairments, have all been described as participatory events in the neurodegenera-
tive process. To that end, in this review we discuss the logical points for gene therapy to intervene in �-Syn-mediated disease
and review the preclinical body of work where gene therapy has been used, or could conceptually be used, to ameliorate
�-Syn induced neurotoxicity. We discuss gene therapy in the traditional sense of modulating gene expression, as well as the
use of viral vectors and nanoparticles as methods to deliver other therapeutic modalities.
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BACKGROUND

Parkinson’s disease (PD) is a neurodegenerative
disorder clinically characterized by cardinal motor
symptoms which can be attributed to the loss of
striatal dopaminergic tone and subsequent loss of
dopaminergic neurons in the substantia nigra. Post-
mortem evaluation of PD patient brains has revealed
the presence of proteinaceous cytosolic inclusions,
termed Lewy bodies (LB), and thread-like fibrils in
cellular processes, termed Lewy neurites (LN), in
neurons throughout various brain regions. Genetic
studies linked the protein alpha-Synuclein (�-Syn)
to familial forms of the disease and subsequent stud-
ies identified �-Syn as a major component of LBs [1].
Moreover, point mutations and gene multiplications
of SNCA alter the aggregation potential of �-Syn and
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cause PD in a dose-dependent manner [2, 3], thus,
indisputably linking �-Syn to the disease process.

The exact function(s) of �-Syn is still largely
unknown. �-Syn, located in synaptic terminals and
neuronal nuclei in the central and peripheral nervous
systems is typically viewed as a neuronal protein
involved in neurotransmission. However, the protein
is also expressed in a variety of non-neuronal tissues
including cells from a hematopoietic origin [4], sug-
gesting a function that extends beyond the nervous
system. Under normal conditions �-Syn is a natively
unfolded and soluble monomer, with its existence
as a tetramer debated [5, 6]. However, during the
process of pathogenesis, �-Syn misfolds and forms
aggregates along with other proteins, forming LN
and LB, collectively referred to as Lewy pathology
(LP). Aberrant neuronal accumulation of �-Syn has
also been identified in dementia with Lewy bodies
(DLB), and oligodendroglial accumulation of �-Syn
is seen in multiple system atrophy (MSA) (reviewed
further in [7, 8]). How the same protein is able to
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cause different diseases in different cell types still
remains unclear; however, the link of �-Syn aggre-
gation has collectively united these diseases under
the umbrella term synucleinopathies and highlights
�-Syn as a central therapeutic target [9].

�-SYNUCLEIN IN PD PATHOLOGY

By comparing the brains from patients presenting a
spectrum of PD-associated symptoms and LP, Braak
and colleagues conceived a model for the etiology of
PD, in which the LP begins in the brainstem and/or
olfactory bulb and extends rostral or caudally to other
brain regions over time [10]. This model led to the
creation of the Braak hypothesis, which in its lat-
est iteration proposes that �-Syn pathology of PD
starts in the gut (possibly initiated by an unknown
pathogen) or the olfactory bulb and spreads towards,
and within, the CNS in a prescribed temporal and spa-
tial distribution. As pathology progresses, neuronal
dysfunction, possibly related to �-Syn pathology per
se, gives result to prodromal symptoms, and even-
tually classical parkinsonism ensues following the
involvement of the basal ganglia. This idea has given
rise to several lines of research: 1) PD prodrome; or
the presence of premotor disease (i.e., Braak Stages
1 and 2); 2) PD co-pathology; the extent to which �-
Syn pathology is informed by pathologies other than
LP (e.g., tau [11]), and 3) PD as a prion-like disorder.
Nonetheless, one commonality that ties these areas of
research together is the presence of �-Syn pathology
in one form or another.

RATIONALE FOR GENE
THERAPY-MEDIATED TARGETING
�-SYN IN DISEASE: TOXIC
GAIN-OF-FUNCTION

A prion-like misfolding [12] and propagation of �-
Syn non-monomeric species that eventually become
insoluble aggregates is proposed as an event neces-
sary for neurodegeneration [13]. The idea of active
propagation has been supported by studies showing
that injections of �-Syn fibrils can recruit adjacent
neurons along the olfactory tract [14] or vagus nerve
[15, 16]. With propagation proposed to occur through
exosomes or via neuronal release and endocytosis,
directly between neurons, as well as through the
involvement of microglia [17]. However, the results
as it relates to the propagation of �-Syn from the
periphery per se have been mixed [18–20], with some
studies reporting absent or transient pathology, and

most studies demonstrating sustained CNS pathol-
ogy following a peripheral inoculation requiring an
additional “hit” such as a mutant �-syn transgenic
background [21].To this end, it is important to note
the limitations of these animal models, as they do not
reflect “normal” PD pathophysiology in the sense that
an injection of supraphysiological concentrations of
�-Syn is required [17].

Although the exact role of �-Syn in disease rem-
ains largely unknown, the chief presumption is that
�-Syn aggregation causes neurodegeneration via a
direct toxic gain-of function. Recent work has high-
lighted that not fibrils per se, but the entire process
of LB formation-including fibrilization, posttrans-
lational modifications, and interaction with mem-
branous organelles is the key driver of toxicity, by
disrupting essential cellular functions and inducing
synaptic dysfunction, as well as mitochondrial toxic-
ity [22]. As such, a variety of therapeutic modalities
have been conceived to target �-Syn protein levels
and aggregate formation.

GENE THERAPY INTERVENTIONS
BASED ON �-SYN

Based on the assumption that �-Syn pathology
is a cause and not a consequence of disease, anti-
Synuclein strategies have emerged as the indisputable
disease-modifying therapeutic strategy, akin to a
similar framework of anti-amyloid interventions in
Alzheimer’s disease. The overarching goal aims to
reduce the load of �-Syn pathology through a variety
of means-either by targeting the process of aggrega-
tion or by targeting the consequences of aggregation.
Thus far, the only clinical anti-Synuclein strate-
gies have utilized active or passive immunization
[23, 24]. Although available results to date have
failed to meet the primary objective, the analysis of
secondary outcome measures have signaled improve-
ment. Nonetheless, numerous modalities aimed at
utilizing gene therapy to target �-Syn pathology are
in various stages of preclinical investigation.

In the strictest sense, gene therapy is defined
as technique that modifies an individual’s genetic
makeup to treat or cure disease. Below we discuss
�-Syn gene therapy strategies based on existing pre-
clinical gene therapy studies, as well as considering
conceptual strategies based on basic research into
�-Syn biology.

As depicted in Fig. 1, there are several logi-
cal points whereby one could utilize gene therapy
to target �-Syn pathology: 1) Target extracellu-
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Fig. 1. Conceptual points of intervention in �-Syn gene therapy. There are numerous conceptual points of gene therapy intervention aimed
at preventing or ameliorating toxic effects that arise as a result of �-Syn oligomerization or depletion in disease. 1) A growing body of data
suggests a peripheral origin of Lewy pathology which spreads rostrally to the CNS, and thereafter throughout the PD brain. Although the
exact mechanism by which this occurs is still unknown, it is thought to involve extracellular �-Syn which would serve as a substrate for
immunotherapy. 2) The surface proteins LAG3, TLR2, and Cx32 can interact with �-Syn and may mediate neuronal uptake of pathological
forms of the protein. Accordingly, targeting these receptors either via immunotherapy or genetically (e.g., via RNAi) is a potential means
to prevent trans-neuronal spread of pathology. 3) A chief strategy thus far has been to utilize various genetic means such as anti-sense
oligonucleotides, RNA interference, or CRISPR-based technology to lower the overall dose of the protein and thus reducing the ability of �-
Syn to aggregate. 4) A second approach to reduce aggregation is to directly stabilize the monomeric, soluble, form of �-Syn using chaperones
or intrabodies. Along the same lines, enhancing the clearance of intracellular �-Syn aggregates via the enhancement of autophagy/lysosomal
function, can also serve as to minimize the degree of aggregation. 5) Finally, in the process of aggregation the soluble pool of �-Syn is
depleted, resulting in a potentially toxic loss-of function. Supplementation of non-aggregatable forms of the protein can then be introduced
to restore crucial protein function. Used with permission from Barrow Neurological Institute, Phoenix, Arizona.

lar �-Syn (the presumptive prion pathogen) using
immunotherapy; 2) Blocking or reducing expression
of receptors that may facilitate cell-to-cell propaga-
tion; 3) Use RNAi or similar technologies to decrease
overall levels of �-Syn; 4) Utilize strategies that stabi-
lize the monomeric (functional) form of the protein or
enhance clearance of aggregated protein; 5) Promote
cellular processes that are impaired due to �-Syn
aggregation; 6) Target inflammation; 7) A toxic loss-
of function hypothesis will be discussed in detail

below, but with this idea in mind, one therapeutic
approach may be to maintain monomeric forms of
the protein.

GENE THERAPY TO PREVENT �-SYN
PATHOLOGY PROPAGATION

As mentioned above, the main approach to target
extracellular �-Syn, and thus cell-to-cell spread, has
taken place via classic immunotherapy [23]. How-
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ever, vectorized immunotherapy, in which antibodies
are directly delivered to the CNS using viral vec-
tors, is being explored in attempts to enhance target
engagement within the parenchyma. This approach is
under development by Voyager Therapeutics, alth-
ough the status of these studies is unknown. Nonethe-
less, with the advent and success of mRNA vaccines
in the era of COVID-19, similar immune-based gene
therapy approaches targeting �-Syn are likely to fol-
low. Moreover, the use of gene therapy to directly
produce intrabodies within target cells holds signif-
icant promise in reducing �-Syn related pathology
[25, 26].

The exact cell surface receptor(s) involved in fib-
ril internalization are unknown, but some potential
candidates for anti-propagation therapies have been
proposed: Connexin-32 (Cx32) [27], Toll-Like recep-
tor 2 (TLR2) [28], and Lymphocyte-activation gene
3 (LAG3) [29], although the relevance of the latter
in neurodegeneration is debated [30]. These proteins
represent viable gene therapy targets by either RNA
interference (RNAi) or CRISPR-based approaches to
ameliorate symptoms of neurodegeneration.

GENE THERAPY TO REDUCE
EXPRESSION OF �-SYN

Targeted gene silencing of �-Syn has been per-
formed with various approaches including antisense
oligonucleotides (ASOs), short interfering RNA
(siRNAs), short hairpin RNA (shRNA) and zinc fin-
ger nucleases, with both liposomal and viral vectors
as the delivery modality [31–34]. More recently,
CRISPR-based technologies have also been utilized
to modulate �-Syn expression via transcriptional
regulation through the endonuclease deficient dCas9-
based system [35]. While, many studies suggest
�-Syn silencing may prove beneficial [31, 36–38]
in preventing �-Syn toxicity a number of studies
from our group, in rodent and non-human primates,
show nigrostriatal degeneration as a direct result of
�-Syn knockdown [32, 39, 40]. The source of this dis-
crepancy is unknown but may be attributed towards
compensatory increases in �-Syn and �-Syn levels,
which may share a common redundant function with
�-Syn [41]. The compensatory effect of these pro-
teins may be facilitated by differences in the kinetics
and duration of �-Syn suppression (e.g., contrasting
the work by Benskey [32] with that of Zharikov [36],
the former describing a much more rapid removal of
nigrostriatal �-Syn and nigrostriatal degeneration).

Thus, the strategy of reducing the soluble form of
�-Syn should carefully consider the potential toxic
effects of an excessive reduction of the physiological
levels of �-Syn below a certain threshold necessary
for normal function (see more below).

GENE THERAPY STRATEGIES TO
STABILIZE THE MONOMERIC
(FUNCTIONAL) FORM OF THE PROTEIN
OR ENHANCE CLEARANCE OF
AGGREGATED PROTEIN

The stabilization of monomeric species of �-Syn,
or the breakdown of fibrils are possible strategies to
reduce �-Syn aggregation, ultimately protecting the
soluble pool of this peptide. This has been achieved by
different molecules, such as catecholamines, natural
phenols, or synthetic compounds [42–44]. In essence,
this approach exploits the intrinsic biochemical char-
acteristics and the complex structure of �-Syn. These
include binding to the negatively charged C-terminus
domain (e.g., catecholamines), or interference with
the intramolecular long-range interaction between
N- and C-terminus by N-terminus residues (e.g.,
CLR01), or binding to the hydrophobic sites of the
oligomeric species (e.g., Anle138b) [45–48]. A direct
effect of stabilizing the monomeric form of the pro-
tein provides an environment that thermodynamically
favors soluble �-Syn and leads to the amelioration or
prevention of the �-Syn nucleation process [43, 44].

Although small molecules have been in the fore-
front of stabilizing monomeric �-Syn, several gene
therapy candidates, which may serve analogous fun-
ctions, have emerged. Intrabodies (nanobodies) engi-
neered against the non-amyloidogenic portion (NAC)
of �-Syn can both inhibit misfolding, as well as
enhance the clearance of the protein, reducing tox-
icity both in in vitro and in vivo synucleinopathy
models [25, 26]. Similarly, overexpression of chaper-
ones such as HSP-70 can ameliorate �-Syn-mediated
toxicity, presumably by preventing fibril formation
[49–51].

Impairments in the autophagy-lysosomal pathway
(ALP) have been linked to PD. The most common
genetic risk factors for PD are Gaucher disease vari-
ants (GBA), which cause the loss of function of the
lysosomal glucocerebrosidase enzyme (GCase) [52].
In vitro, the accumulated GCase substrate, glycosyl-
ceramide, acts like a scaffold promoting the aggrega-
tion of �-Syn oligomers and fibrils [53]. Conversely,
�-Syn pathology can inhibit GCase activity [54],
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thus, suggesting a feed-forward loop linking �-Syn
and GCase [55]. To this end, numerous gene therapy-
based approaches have been employed to imp-
rove ALP function. Overexpression of GCase itself
can reduce �-Syn aggregation and toxicity [56, 57].
Similarly, overexpression of proteins aimed at
strengthening ALP such as: Beclin-1 [58], the
transcription factor EB (TFEB; a key regula-
tor of ALP) [59], and LAMP2a [60] reduces
nigral toxicity in various models of �-Syn
pathology. Moreover, the microRNA miR-124 reg-
ulates numerous genes involved in ALP, and
its expression is deregulated in PD. Accord-
ingly, ectopic modulation of this microRNA is
viewed as a potential modality in targeting �-Syn
pathology [61, 62].

GENE THERAPY FOR UNIFORMITY
ALLEVIATE INFLAMMATION

Several reports implicate the immune system in
the pathophysiology of sporadic PD [63, 64].
Microglial activation [65, 66], T-cell activation [67],
and increased inflammatory cytokine production
[68], are documented in sporadic PD patients, as well
as in MSA animal models and MSA patients [69].
Several factors including genetics, and infectious
agents can trigger an immune-mediated inflamma-
tory response. Activated microglia can stimulate
T-cells to produce and directly release inflammatory
cytokines including L-1�, IL-2, IL-6, EGF, and TGF-
� and TGF-� [67]. The results of such inflammatory
processes are now thought to directly contribute
towards neurodegeneration. Moreover, the neurode-
generative process per se could activate microglia
and further exacerbate neuronal death [66]. Once
the degenerative neuroinflammatory process starts,
the blood-brain barrier is weakened, becoming per-
meable to peripheral immune cells. This amplifies
the inflammatory response and facilitates the transi-
tion toward a chronic inflammatory state. The large
body of work that is immunology confers numerous
potential gene therapy targets: One can envision to
manipulate proteins that are 1) directly involved in
�-Syn-mediated inflammatory processes, or 2) those
that are general participants in inflammation. For
example, overexpression of fractalkine [70] or a dom-
inant negative form of TNF [71] attenuates microglial
activation, and protects against �-Syn overexpression
or treatment with the parkinsonian 6-OHDA toxin,
respectively. Despite a conceivably long list of poten-

tial genetic targets in neuroinflammation, few studies
have used gene therapy to manipulate these targets.
One reason may reside in the difficulty in targeting
immune cells in the brains using conventional vec-
tors. For example, microglial cells remain relatively
refractory to infection with common viral vectors.
Furthermore, it is becoming increasingly appreciated
that subpopulations of glia exist within diseased tis-
sue, exhibiting divergent roles (e.g., neuroprotective
versus neurotoxic) in the disease process. Targeting
such glial subpopulations will thus require a new gen-
eration of viral vectors with much improved precision
and efficacy.

SUPPLEMENTING SOLUBLE �-SYN TO
RETAIN FUNCTION: THE LOSS-OF
FUNCTION HYPOTHESIS

The chief preclinical focus in PD is directed to-
wards the direct toxic effect of �-Syn aggregation,
while very little attention has been given to poten-
tial toxic effects resulting from �-Syn depletion due
to aggregation; namely the loss-of-function (LOF)
hypothesis. As described above, multiple studies
have demonstrated toxic effects due to rapid �-Syn
removal in PD-susceptible populations of neurons.
Moreover, several lines of evidence show that
monomeric soluble �-Syn is depleted during the pro-
cess of aggregation resulting in a de facto physical
LOF [72, 73], where the monomers are sequestered
in a non-native conformation within solid amyloid
fibrils. Despite the difference in mechanism, both
genetic and physical LOF will confer the same patho-
physiological consequences as a result of �-Syn
depletion.

Despite the lack of universal agreement on its pre-
cise function, a wealth of studies implicates a role
for �-Syn in a variety of essential processes, includ-
ing synaptic vesicle trafficking and neurotransmitter
release [74], immune cell maturation and function [4,
75, 76], DNA repair [77], and dopamine biosynthe-
sis [78]. Thus, it is not inconceivable that a protein
with crucial function(s) and with an abundant expres-
sion pattern throughout the body, when perturbed, can
have deleterious consequences to the cell, as well as
the organism as a whole.

Several pathological factors can push a protein
over the physical nucleation barrier via different
pathways and trigger amyloid aggregation. Protein
overexpression due to gene duplication and triplica-
tion can lower the nucleation barrier increasing the
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probability of spontaneous nucleation. Furthermore,
adding preformed nuclei (seeds/prions) will catalyze
amyloid transformation by bypassing the nucleation
step altogether. Moreover, exogenous surfaces such
as nanoparticles or microbes can catalyze nucle-
ation by increasing local protein concentration and
inducing conformational changes via heterogeneous
nucleation [79]. Many proteins exposed to such cat-
alytic pathways of nucleation will end up in the
non-functional amyloid state, while not necessarily
becoming more toxic in the process. Thus, although
controversial, LOF needs to be considered as a
potential pathogenic mechanism in PD. To that end,
strategies that aim to stabilize monomeric forms of
the protein, or to remove the nucleation seed (i.e.,
aggregated Synuclein) are ideal therapeutic candi-
dates. Moreover, supplementation in the form of
non-aggregatable forms of the protein should also be
considered.

CONCLUSIONS

Without doubt, �-Syn is a key etiopathological
participant in PD and other synucleinopathies, and
at the center of the role of �-Syn in disease is the
propensity of this protein to form stable aggregates.
The structure and formation of such �-Syn aggre-
gates confers detrimental effects on neurons and
depending on the vulnerability of specific neuronal
sub-population neurodegeneration occurs. Nonethe-
less, the specific mechanism by which the neuron
is impacted, whether it is toxic gain or loss of
function, and whether �-Syn-mediated toxicity is
heterogenous in nature remains elusive. Still, in the
last decade, numerous preclinical gene-therapy tar-
gets have emerged, representing conceptually distinct
potential points of intervention as it relates to var-
ious molecular processes in neurons. At the same
time, CNS gene therapy has made great strides, and
PD has a rich history utilizing gene therapy, with 25
trials currently listed on clinicaltrials.gov involving
PD, albeit none have been aimed at modulating �-
Syn. Current and completed studies have focused on
the neuroprotective effects of neurotrophic factors
glial cell line-derived neurotrophic factor (GDNF,
NCT01621581) and neurturin (CERE-120) [80], as
well as to increase enzymatic levels such as glutamic
acid decarboxylase (GAD) [81], aromatic L-amino
acid decarboxylase (AADC; NCT03065192), or a
combination of enzymes with lentiviral delivery of
tyrosine hydroxylase, AADC, and GTP cyclohydro-

lase 1 (Prosavin; [82]). While clinical trials have
yielded varying degrees of clinical improvements
in PD motor symptoms, gene therapy studies have
proven long-term safety [83]. With the concomitant
development of novel, more efficient means of deliv-
ery, we are likely to see �-Syn-specific gene therapies
in the years to come.
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