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ABSTRACT
Background  Out-of-hospital seizure detection aims 
to provide clinicians and patients with objective 
seizure documentation in efforts to improve the clinical 
management of epilepsy. In-patient studies have found 
that combining different modalities helps improve the 
seizure detection accuracy. In this study, the objective was 
to evaluate the viability of out-of-hospital seizure detection 
using wearable ECG, accelerometry and behind-the-ear 
electroencephalography (EEG). Furthermore, we examined 
the signal quality of out-of-hospital EEG recordings.
Methods  Seventeen patients were monitored for up 
to 5 days. A support vector machine based seizure 
detection algorithm was applied using both in-patient 
seizures and out-of-hospital electrographic seizures in 
one patient. To assess the content of noise in the EEG 
signal, we compared the root-mean-square (RMS) of the 
recordings to a reference threshold derived from manually 
categorised segments of EEG recordings.
Results  In total 1427 hours of continuous EEG was 
recorded. In one patient, we identified 15 electrographic 
focal impaired awareness seizures with a motor 
component. After training our algorithm on in-patient 
data, we found a sensitivity of 91% and a false alarm rate 
(FAR) of 18/24 hours for the detection of out-of-hospital 
seizures using a combination of EEG and ECG recordings. 
We estimated that 30.1% of the recorded EEG signal was 
physiological EEG, with an RMS value within the reference 
threshold.
Conclusion  We found that detection of out-of-hospital 
focal impaired awareness seizures with a motor 
component is possible and that applying multiple 
modalities improves the diagnostic accuracy compared 
with unimodal EEG. However, significant challenges remain 
regarding a high FAR and that only 30.1% of the EEG data 
represented usable signal.

INTRODUCTION
Out-of-hospital seizure detection is a rapidly 
emerging field aiming to provide patients 
and clinicians with objective seizure docu-
mentation.1 2

Out-of-hospital monitoring implies that the 
patients use the wearables in a home envi-
ronment, including during everyday activ-
ities. As opposed to the sedentary setting in 
an epilepsy monitoring unit (EMU), out-of-
hospital monitoring provides multiple sources 

of signal noise, degrading of the electrode 
connection to the skin and external electrical 
noise.3–5 Furthermore, psychological factors 
such as reluctance from the patients to use 
visible wearables, particularly around other 
people, have previously been described and 
could affect the outcome.4 6

Selecting the right combination of biosig-
nals for out-of-hospital long-term seizure 
detection is an important area of research.1 2 7 
A recent study investigated the feasibility of 
behind-the-ear electroencephalography 
(EEG) based detection of focal impaired 
awareness seizures (FIAS) in an out-of-
hospital population and found a sensitivity 
of 23%. However, the study reported that 
patients are willing to use the device for 
months of recording, but 64% of the out-of-
hospital EEG signal were excluded due to low 
signal quality.5

Using a multimodal approach may improve 
the detection accuracy and provide seizure 
correlates from alternative biomarkers, which 
we could detect during periods of poor EEG 
signal quality.8 9

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Multimodal seizure detection is feasible in an in-
patient population.

WHAT THIS STUDY ADDS
	⇒ Wearable electroencephalography (EEG), ECG and 
accelerometry can detect correlates of seizure activ-
ity in an out-of-hospital environment. Furthermore, a 
support vector machine trained on in-patient data, 
out-of-hospital data or both can detect out-of-
hospital focal impaired awareness seizures with a 
motor component.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study helps inform future research on seizure 
detection in epilepsy by highlighting the advantages 
of different modalities and informing on the chal-
lenges regarding EEG signal quality in an out-of-
hospital setting.
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We conducted an exploratory trial on long-term out-
of-hospital multimodal seizure detection using a combi-
nation of accelerometry (ACM), ECG and behind-the-ear 
EEG.

In a preparatory in-patient study for out-of-hospital 
testing, we found that our device combination could 
detect seizure correlates, including rhythmic ictal 3–4 Hz 
EEG activity and ictal heart rate (HR) changes.9

We now present results on out-of-hospital seizure detec-
tion. Furthermore, we quantify the noise contamination 
in the EEG signal.

METHODS
Study population
Patients admitted to the EMU or visiting the outpatient 
epilepsy clinic at Zealand University Hospital between 
March 2020 and August 2021 were screened for eligibility. 
Furthermore, we invited patients from the in-patient 
study to participate.9 We recruited adult patients with an 
estimated high seizure frequency to promote the chance 
of seizure events during the 5-day monitoring period.

Study devices
Behind-the-ear EEG was recorded with a TrackIT T4a 
(Lifelines, UK) with a sampling rate of 500 Hz and 
using patch-electrodes (Neuroline, Ambu, Denmark). A 
photograph of the study setup can be found in online 
supplemental figure 1. The ECG and sternum ACM were 
recorded with a Faros 180 (Bittium, Finland) using a self-
adhesive patch electrode (FastFix, Bittium, Finland) and 
a sampling rate of 500 Hz for the ECG and 25 Hz for the 
ACM.

Data collection
The patients were asked to use the devices for five consec-
utive days, with an option to prolong after 5 days or retry 
at another time. The patients were instructed on the use 
of the devices, including correctly changing electrodes 
multiple times during the day or when otherwise deemed 
necessary. They were asked to follow their regular daily 
routines during the recording period. Furthermore, they 
were reminded that the devices could be removed if they 
did not want to wear them in any given setting (eg, during 
work) or during physical exercise and showering. All 
patients were asked to keep a seizure diary. Patients with 
exclusively nocturnal seizures used the devices during the 
night only.

Data review
All recordings were reviewed for electroencephalo-
graphic seizure patterns in the time domain by one of the 
authors (JMN) using the EDFbrowser V.1.91, blinded to 
the entries of the seizure diary.

Secondarily, the data segments corresponding to all 
entries in the seizure diaries were reviewed in the time 
domain. All potential seizure events were compared with 
previously validated seizures when available from either 

the preparatory in-patient study or from clinical EEG 
recordings.9

Data preprocessing and analysis
Data synchronisation
The EEG and ECG recordings were manually synchronised 
by identifying R-peak artefacts in the EEG and aligning 
them with the corresponding R-peaks in the ECG. We 
then adjusted the alignment using a cross-correlation-
based method, in which the EEG epochs with visible 
R-peak artefacts were aligned with the ECG signal using 
the MATLAB version 2021a (MathWorks, USA) xcorr 
function. We determined and adjusted the temporal 
alignment by maximising the cross-correlation value. This 
process was repeated in multiple segments throughout 
the recording to adjust for temporal drift. However, the 
process was limited by the number of EEG segments with 
contaminant ECG.

EEG preprocessing
We performed all preprocessing and visualisations using 
MATLAB version 2021a (MathWorks, USA). We imported 
the recordings using the EEGLAB toolbox and custom 
scripts.10 We filtered the EEG using a 0.5–70 Hz band-
pass filter and a 48.5–51.5 Hz notch filter. Followingly, 
we segmented the EEG into 2 s epochs with 50% overlap 
and then EEG features were extracted as described 
in our preparatory in-patient study.9 We extracted the 
following features: Skewness, kurtosis, root-mean square 
(RMS), zero crossings, sample entropy and power in the 
alpha, beta, delta, theta and gamma bands. However, we 
added further subdivisions of the frequency bands as the 
alpha, theta and gamma-band were split into low alpha 
(7–10 Hz) and high alpha (10–12 Hz), low theta (3–5 Hz) 
and high theta (5–7 Hz), and low gamma (30–48 Hz) and 
high gamma (52–80 Hz).11

ECG and ACM preprocessing
R-peaks were detected using an algorithm derived 
from the Pan-Tompkins algorithm.12 The HR variability 
measures Modified Cardiac Sympathetic Index (ModCSI) 
and ModCSI with the magnitude of the slope were calcu-
lated using R V.4.2 and using a moving window of 100 
R-peaks as described by Jeppesen et al.13 14 Measures of 
mean and SD were calculated from the ACM signal.

Automatic seizure detection
A support-vector machine based classifier was trained 
for cross-modal seizure detection. It was implemented as 
described in a previous study with two minor changes.9 To 
account for class imbalance, we applied undersampling 
of the majority class (epochs without seizure activity) in 
combination with synthetic minority oversampling tech-
nique.15 All features were standardised by subtracting the 
mean and dividing by the SD, resampled to 1 Hz and the 
data were split into folds. One fold for each seizure with 
fold limits set as the middle point between consecutive 
seizures, so each fold contained temporally continuous 
seizure and non-seizure data.

https://dx.doi.org/10.1136/bmjno-2023-000442
https://dx.doi.org/10.1136/bmjno-2023-000442
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A minimum seizure duration (MSD) threshold was 
applied, defining the minimum duration in seconds for a 
positive prediction to be classified as a seizure. The classi-
fier was run using MSD values of 5–60 s with increments of 
5 s and on the whole dataset from the individual patient.

First, in order to assess whether out-of-hospital data 
can be used to train the classifier, we used a leave-one-out 
cross-validation method, meaning that the training data 
consisted of all except one of the out-of-hospital folds and 
the remaining fold was used as the test data (figure 1). 
We repeated this process in iterations so all folds, hence 
all seizures, were used in the training and test data. The 
results from each iteration were then aggregated.

Second, we trained the classifier on all the in-patient 
recordings from a previous study in the same patient and 
tested on out-of-hospital recordings, thereby evaluating 
whether the seizure detection algorithm can be trained 
on in-patient data to detect out-of-hospital seizures 
(figure  1).9 Using the same algorithm, we then trans-
ferred one out-of-hospital fold from the test data to the 
training data (figure 1). The algorithm was then tested on 
the remaining out-of-hospital data and evaluated using 
metrics of sensitivity and false alarm rate (FAR) per 24 
hours. Subsequently, F1-scores were calculated, allowing 
us to compare different combinations of modalities using 
a single metric.

This process was rerun in iterations with one unique 
out-of-hospital fold transferred each time to ensure that 
all out-of-hospital folds were both applied in the training 
data and in the test data. The length of each fold varied 
and to account for this variation, the results from each 

iteration were aggregated using the weighted mean so 
that results on FAR from a longer fold weighted more 
than those from a shorter fold. We then re-ran this 
process with the transfer of first three and then five out-
of-hospital folds, to evaluate the added effect of transfer-
ring more than one fold to the training set.

During the whole process, the classifier was trained and 
evaluated using different combinations of modalities.

EEG noise assessment
We expected significant noise to interfere with the EEG 
signal, particularly from movement, muscle artefacts, and 
poor electrode adhesion (loss of signal). It was expected 
that the amplitude exhibited by physiological EEG activity 
would be predominantly within a specific range.

We visually identified 60 two-second segments of phys-
iological EEG, loss of signal and high-amplitude noise 
and calculated the RMS value of those segments. The 
RMS range of each category was used to determine two 
reference thresholds: a lower and an upper threshold. 
The range within these thresholds should encompass the 
EEG group while having a minimum overlap with the 
low and high amplitude groups. We then calculated the 
RMS for all out-of-hospital recordings in 2 s windows and 
compared it to the reference thresholds. Each 2 s window 
was categorised as smaller than the lower threshold limit, 
within the threshold range or larger than the upper 
threshold limit, which can be interpreted as either 
probable no signal, EEG or high amplitude artefacts, 
respectively.

Figure 1  Flow chart of the methods used to obtain and preprocess the data and for training and testing the seizure detection 
algorithm. The two approaches used for training and testing the algorithm is shown in the sections labelled 1 and 2. The in-
patient data used in section 2 was obtained during epilepsy monitoring unit (EMU) recordings from the same individual which 
were recorded in a previous study.9 The recordings from the EMU study were preprocessed the same way as the out-patient 
recordings. ACM, combination of accelerometry; EEG, electroencephalography.
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RESULTS
Seventeen patients (nine female; median age: 29 years; 
range 18–59 years) were monitored, and three of the 
patients were monitored twice, yielding 1427 hours of 
recorded data. Additional demographic data are available 
in table  1. Two patients, who had exclusively nocturnal 
seizures (P3 and P17), asked to use the devices during 
the night only. Furthermore, two patients later reported 
to have only used the devices intermittently (P7 recorded 
31% and P14 recorded 53% of the intended monitoring 
period). We did not systematically gather information on 
the reasons for intermittent usage of the devices. However, 
one patient reported that the devices were cumbersome 
during sleep while another patient reported that the elec-
trodes were uncomfortable due to the summer heat.

Data review
Fifteen electrographic seizures, without corresponding 
seizure diary entries, were identified in one patient. These 
electrographic seizures were compared with the patient’s 
previously video-EEG recorded seizures and found to be 
similar in evolution, duration and magnitude (figure 2).

Furthermore, 6 patients had a total of 13 entries in 
their seizure diaries but without corresponding seizure 
correlates identified in the recordings.

Seizure detection algorithm results
The algorithm was evaluated to accommodate 
two different scenarios, first a scenario where only 

out-of-hospital data were available, and second a scenario 
where both in-patient and out-of-hospital data were 
available.

First, the seizure detection algorithm was trained and 
tested using only data from the out-of-hospital recordings 
(figure 3). Using a combination of all modalities yielded 
a sensitivity of 100%, an FAR of 10 per 24 hours and an 
F1-score of 0.75.

Second, the algorithm was trained on the in-patient 
data and tested on the out-patient data (figure  4 and 
table 2).

When using the combination of ECG and EEG we 
found a sensitivity of 91%, FAR of 18 per 24 hours and 
F1-score of 0.58, demonstrating that training the algo-
rithm on in-patient data only slightly reduces the perfor-
mance when compared with out-of-hospital training 
and testing. Furthermore, we found that including five 
out-of-hospital folds to the training set, improved the 
sensitivity to 100%, the FAR to 12 per 24 hours and the 
F1-score to 0.71 (figure  4—second row and table  2—
fourth row).

Considering unimodal ECG, we found an improvement 
in sensitivity from 96% to 100%, the FAR from 47 to 28 
per 24 hours and the F1-score from 0.37 to 0.51 when 
adding one out-of-hospital fold. Furthermore, we found 
that adding five out-of-hospital folds to the training set, 
further reduced the FAR to 21 per 24 hours (figure 4—
fourth row and table 2).

Table 1  An overview of seizure localisation, semiology and self-reported events. reported per patient

ID Age by decade Sex Syndrome or region of onset Semiology Self-reported events*

1 20s M TLE FIAS None

2 50s F TLE FIAS and GTCS None

3 20s F Probable frontal lobe FIAS None

4 40s F TLE FIAS None

5 20s M Unknown FIAS and GTCS 1†

6 50s F Unknown Prob. FIAS None

7 40s F TLE FIAS None

8 40s F TLE FAS, FIAS and GTCS 4

9 30s F Unknown Prob. myoclonias 1

10 20s M TLE FIAS/FAS 3

11 10s M JME GTCS and Myo. None

12 20s M JME GTCS and Myo. None

13 50s M TLE FIAS 2

14 40s F TLE FIAS and FAS None

15 10s F TLE FIAS and GTCS None

16 20s M Probable TLE FIAS and GTCS 2

17 10s M Unknown GTK and prob. FIAS None

*Self-reported seizure events during the monitoring period.
†The participant was unsure whether the EEG device was attached during the episode.
EEG, electroencephalography; F, female; FAS, focal aware seizure; FIAS, focal impaired awareness seizure; GTCS, generalised tonic-clonic 
seizure; JME, Juvenile myoclonic epilepsy; M, male; TLE, temporal lobe epilepsy.
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EEG noise assessment results
On manual review of the EEG, a large number of artefacts 
mixed with the EEG and recurring periods of no signal 
(low amplitude) or high amplitude artefacts without 
recognisable physiological EEG were evident.

The upper and lower RMS threshold limits of physio-
logical EEG in our recordings were determined as 8.15 
µV and 45.35 µV, respectively.

Figure 5 shows all recordings, and the colouring indi-
cates the categorisation of each 2 s window according to 
the thresholds. Examples of signals representing each of 

the categories are presented in figure 6. A total of 30.8% 
of the recordings had an RMS value within the threshold 
range (green) with a range of 1%–72% in the individual 
recordings, and thus representing useable EEG segments. 
Furthermore, 42.2% had an RMS value smaller than the 
lower threshold (blue) which indicates loss of signal 
(figure 6—example 2). While 27% of the recordings had 

Figure 2  Time-domain comparison of an in-patient video-EEG validated seizure with an out-of-hospital electrographic seizure. 
Top panel shows an in-patient seizure as recorded with bteEEG. Middle panel shows the same seizure as recorded with EMU 
EEG. The start and stop times refer to the onset and end of the seizure, as reported by the clinical neurophysiologist based on 
both the ictal electrographic and behavioural changes seen in the in-patient EMU video-EEG recordings. Bottom panel shows 
an out-of-hospital electrographic seizure as recorded with the bteEEG. EEG, electroencephalography; EMU, epilepsy monitoring 
unit.

Figure 3  Receiver operating characteristic curves of the 
automatic seizure detection of the electrographic seizures 
identified in one patient. The classifier was trained and tested 
using only out-of-hospital recordings. ACM, combination 
of accelerometry; EEG, electroencephalography; FAR, false 
alarm rate (per 24 hours); MSD, minimum seizure duration.

Figure 4  Receiver operating characteristic curves of the 
automatic seizure detection of the electrographic seizures 
identified in one patient. In the left column, the classifier was 
trained on in-patient data from.9 In the middle column, the 
classifier was trained on in-patient data with the addition 
of one out-of-hospital fold. In the right column 5 out-of-
hospital folds were added. *Number of out-of-hospital 
folds in the training set out of the total number of out-of-
hospital folds. ACM, combination of accelerometry; EEG, 
electroencephalography; FAR, false alarm rate (per 24 hours); 
MSD, minimum seizure duration.
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an RMS value larger than the upper threshold (red), 
which is seen in recordings with a predominance of move-
ment or muscle artefacts (figure 6—example 3).

The RMS of the recorded dataset fluctuated greatly with 
different interpatient patterns (figure  5). Most notably, 
seven recordings (ID number 1–1, 2–1, 3–1, 6–1, 14–1, 
16–1 and 17–1) had less than 15% EEG with an RMS 
within the threshold range.

In the nocturnal recordings (22:00–7:00 hours) 30.5% 
was within the threshold range, which is comparable 
to the 30.8% in the entire recording. However, 52.9% 
was below the lower threshold compared with 42.2% in 
the entire recordings, and 16.6% was above the upper 
threshold compared with 27% in the entire recordings.

DISCUSSION
In this pilot study, we examined out-of-hospital seizure 
detection using a wearable combination of ECG, ACM 
and behind-the-ear EEG.

Manual review of long-term recordings is a time-
consuming task, emphasising the need for automatic 
assistance.16 17 We demonstrate that we can train a detec-
tion algorithm separately on both out-of-hospital and 
in-patient recordings and apply it in an out-of-hospital 
setting.

Applying only out-of-hospital recordings for the training 
and testing, we found a sensitivity of 100% and FAR of 10 
per 24 hours using all modalities. This is comparable to 
our preparatory in-patient study, in which the algorithm 
yielded a sensitivity of 91% and FAR of 20 per 24 hours for 
the same patient.9 A recent study investigated the feasi-
bility of out-of-hospital detection of FIAS using behind-
the-ear EEG in 16 patients and found a sensitivity of 23%.5 
However, FIASs have more subtle ictal correlates making 
them more difficult to detect and they used self-reported 
seizures as the seizure reference standard which, given 
the known imprecision of seizure diaries, could have 
negatively affected the results.5 18

Table 2  Selected results from the automatic detection of electrographic seizures in one patient

Folds 
transferred*

All modalities
(Sens.—FAR
F1-score)

EEG and ECG
(Sens.—FAR
F1-score)

EEG
(Sens.—FAR
F1-score)

ECG
(Sens.—FAR
F1-score)

ECG and ACM
(Sens.—FAR
F1-score)

0 90%—21/24 hours
0.54

91%—18/24 hours
0.58

91%—29/24 hours
0.46

96%—47/24 hours
0.37

94%—64/24 hours
0.30

1 83%—27/24 hours
0.45

91%—20/24 hours
0.55

90%—38/24 hours
0.40

100%—28/24 hours
0.51

95%—57/24 hours
0.32

3 87%—23/24 hours
0.50

95%—19/24 hours
0.58

89%—25/24 hours
0.49

100%—26/24 hours
0.53

87%—32/24 hours
0.43

5 87%—20/24 hours
0.54

100%—12/24 hours
0.71

95%—34/24 hours
0.44

100%—21/21 hours
0.58

93%—24/24 hours
0.52

*Refers to the number of out-of-hospital seizures that was transferred to the training set of the algorithm.
ACM, combination of accelerometry; EEG, electroencephalography; FAR, false alarm rate (per 24 hours); Sens, sensitivity (%).

Figure 5  Visualisation of one channel from all the recordings. An RMS threshold range of physiological EEG was established 
from manually reviewed EEG epochs. Then RMS was calculated for all the EEG recordings in 2 s windows and each window 
was categorised and coloured according to the threshold. EEG, electroencephalography; RMS, electroencephalography.
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For unimodal ECG, adding one out-of-hospital fold 
to the training set improved the sensitivity from 96% 
to 100%, the FAR from 47 to 28 per 24 hours and the 
F1-score from 0.37 to 0.51. In comparison, a previous 
in-patient study on ECG-based seizure detection yielded 
a sensitivity of 87% and an FAR of 0.9 per 24 hours for 
the detection of mainly focal seizures in a population 
with known ictal autonomic changes (ictal HR increase or 
decrease of >50 beats per minute).19 Considering a multi-
modal setup, unimodal ECG could conceivably provide 
a reliable signal for seizure detection during periods of 
poor EEG signal quality.

Signal quality is an important aspect when considering 
the feasibility of long-term out-of-hospital behind-the-ear 
EEG recordings. We estimated the proportion of physio-
logical EEG in all the EEG recordings, thus assessing the 
viability of out-of-hospital EEG recording using our setup. 
An RMS threshold is a commonly applied pre-processing 
step to exclude artefacts in EEG analysis.20

We found that 69.2% of the EEG recordings had an 
RMS value outside of our reference threshold range. We 
interpreted this finding as giving a low likelihood, that the 
signal is physiological EEG. This could be caused by insuf-
ficient electrode care, physical activity or that the EEG 
electrodes were disconnected. During nocturnal record-
ings, we saw a switch from high amplitude artefacts to no 
detectable signal (low amplitude), which could be due to 
fewer movement artefacts but a higher number of loose 
unchecked electrodes. A previous study investigated the 
signal quality of a wireless single-channel EEG electrode 
using a threshold-based signal-to-noise ratio method.4 21 
They found that of 405 days of recordings, 21.4% were 
classified as good, 33.3% as acceptable and 45.3% as 
marginal.4 We experimented with a similar maximum 
bandwidth-based method.21 However, through qualita-
tive review of a portion of the results we found that the 

method was insensitive to high amplitude low frequency 
artefacts commonly observed during distortion of our 
electrode wires. Although we used a different method 
and device, we found that 30.1% of the recordings had 
an RMS value within our threshold. Furthermore, a 
behind-the-ear another recent EEG-based study on out-
of-hospital detection of FIAS found that 64% of the 
recordings had to be excluded from the review process 
due to low signal quality.5 In conclusion, three consecu-
tive studies, including this study, found considerable chal-
lenges regarding out-of-hospital EEG signal quality, which 
conceivably compromises the seizure detection capabili-
ties. However, different electrode configurations such as 
EEG electrodes in the ear canal or novel adhesives may 
provide reliable out-of-hospital EEG recordings.22 23

Patient acceptance of wearable devices is important 
for compliance and a step towards clinical feasibility. In 
our previous study, patients were interviewed regarding 
their experiences from using the devices out-of-hospital. 
A general finding was that the devices put their epilepsy 
condition in a spotlight, meaning that they were more 
attentive to their symptoms, but also to the fact that the 
devices made their condition visible to their surround-
ings.24 However, we find that only two patients reported 
to use the devices intermittently despite planning to use 
them continuously. This finding is in line with a previous 
study which established feasibility of months of out-of-
hospital EEG recordings using behind-the-ear EEG.5

Limitations
Out-of-hospital monitoring can only document electro-
graphic seizures but not whether these represent clinical 
seizures as that would require documentation of the ictal 
symptoms. We relied on within-patient seizure similarity 
of ictal EEG patterns (ie, seizure signature) (figure 2) as a 
method for acknowledgement of electrographic seizures 

Figure 6  A 20 s examples of EEG categorised according to the EEG thresholds. Note the different scale of the y-axis in 
example 3. Example 1: EEG signal with an RMS within the threshold range. visually subtle R-peak artefacts. Example 2: EEG 
signal with an RMS below the lower threshold limit, perhaps indicating loss of electrode skin contact. Example 3: EEG signal 
with an RMS above the upper threshold limit. perhaps movement artefacts at 1, 7 and 12 s. EEG, electroencephalography; 
RMS, electroencephalography.
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without video documentation.16 22 25 However, this method 
may miss clinically relevant seizures that diverge from the 
stereotyped in-patient seizures or misidentify subclinical 
electrographic seizures as clinical seizures. Furthermore, 
comparing in-patient seizures with out-of-hospital electro-
graphic seizures could introduce confirmation bias to the 
review process.

We recorded electrographic seizures in one patient with 
15 FIAS with a motor component. We applied these seizures 
to examine the validity of our seizure detection algorithm, 
however the results cannot be generalised to other patients 
or seizure types. Future research could advantageously be 
done in a population with refractory epilepsy, for example, 
during presurgery workup to record more seizures, allowing 
for a more precise description of seizure characteristics in 
each individual patient. The RMS method for assessment of 
the EEG signal is sensitive to high amplitude artefacts, for 
example, movement or muscle artefacts, however, it will not 
detect artefacts with an amplitude in the range of normal 
EEG. The results should be interpreted as a crude estima-
tion of the noise saturation in the EEG recordings. Future 
research should explore the impact of real-world artefacts 
and signal quality deterioration on the performance of the 
seizure detection algorithm.

We only identified FIAS with a motor component which 
provided an ictal high amplitude EMG pattern which, 
applying the RMS method, would probably be labelled 
as high amplitude artefacts. Consequently, applying this 
method during preprocessing should be carefully consid-
ered. Additionally, considering the ictal EMG pattern, the 
seizures could arguably have been detected using simpler 
devices such as an EMG-armband.26

CONCLUSION
In this pilot study, we found that our seizure detection 
algorithm can detect out-of-hospital FIAS with a motor 
component, both when trained on out-of-hospital and 
in-patient recordings. However, the detected seizures had 
pronounced EEG correlates, and we were unable to iden-
tify more subtle seizures. Furthermore, an FAR of 10 per 
24 hours or more may be unsuitable for clinical imple-
mentation without tools for manual review of all detec-
tions and reversal of false detections. We encountered 
significant challenges when considering the data quality 
of wearable EEG, which could hinder the scalability of 
our proposed setup to larger sample sizes or longer moni-
toring durations. This poses a major practical barrier to 
implementing long-term out-of-hospital seizure detection 
using our approach. The inefficiency in scaling due to 
data quality concerns is a significant hurdle that needs 
to be addressed in order to make our proposed setup 
feasible for out-of-hospital application.

 

Significance
Automatic out-of-hospital seizure detection using multi-
modal measurements is possible in practice and may 

prove useful for long-term monitoring, although signifi-
cant challenges remain.
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