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Abstract 
The aim of this study was to develop a noninvasive radiomics analysis model based on preoperative multiparameter MRI to predict 
the status of the biomarker alpha thalassemia/mental retardation X-linked syndrome (ATRX) in glioma noninvasively.

Material and methods: A cohort of 123 patients diagnosed with gliomas (World Health Organization grades II–IV) who 
underwent surgery and was treated at our center between January 2016 and July 2020, was enrolled in this retrospective study. 
Radiomics features were extracted from MR T1WI, T2WI, T2FLAIR, CE-T1WI, and ADC images. Patients were randomly split 
into training and validation sets at a ratio of 4:1. A radiomics signature was constructed using the least absolute shrinkage and 
selection operator (LASSO) to train the SVM model using the training set. The prediction accuracy and area under curve and other 
evaluation indexes were used to explore the performance of the model established in this study for predicting the ATRX mutation 
state.

Results: Fifteen radiomic features were selected to generate an ATRX-associated radiomic signature using the LASSO logistic 
regression model. The area under curve for ATRX mutation (ATRX(−)) on training set was 0.93 (95% confidence interval [CI]: 
0.87–1.0), with the sensitivity, specificity and accuracy being 0.91, 0.82 and 0.88, while on the validation set were 0.84 (95% CI: 
0.63–0.91), with the sensitivity, specificity and accuracy of 0.73, 0.86, and 0.79, respectively.

Conclusions: These results indicate that radiomic features derived from preoperative MRI facilitat efficient prediction of ATRX 
status in gliomas, thus providing a novel evaluation method for noninvasive imaging biomarkers.

Abbreviations:  ADC = apparent diffusion coefficient, ALT = alternative lengthening of telomeres, ATRX = alpha thalassemia/
mental retardation X-linked syndrome, AUC = Area under curve, CE = contrast enhanced, DWI = diffusion weighted imaging, 
FOV = field of view, GLDM = gray-level dependence matrix, GLSZM = gray-level size zone matrix, ICC = intraclass correlation 
coefficient, IDH = isocitrate dehydrogenase, LASSO = least absolute shrinkage and selection operator, MRI = magnetic resonance 
imaging, mRMR = minimum redundancy maximum relevance, NEX = number of excitations, RBF = radial basis function, ROC = 
receiver operating characteristic, SVM = support vector machine, TE = echo time, TI = inversion time, TR = repetition time, VEGF 
= vascular endothelial growth factor, VOI = volume of interest.
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1. Introduction

Gliomas are the most common primary malignant brain 
tumors,[1] ranging from benign to malignant tumors, with a 
diverse array of genomic differences and clinical outcomes. So 
far, conventional magnetic resonance imaging (MRI) has been 
used as an indispensable method for noninvasive diagnosis and 
prognosis evaluation of glioma. With the development of pre-
cision medicine, the molecular testing of gliomas has become 
an important part which can help us to better understand the 
biological properties of this malignancy, improve the diagnostic 

level, and guide clinical decision making.[2–5] In 2016, the World 
Health Organization used molecular diagnosis as a new classi-
fication criteria for tumors of the central nervous system and 
introduced the alpha thalassemia/mental retardation X-linked 
syndrome (ATRX) mutation to explore the diagnostic signifi-
cance of mutant/wild-type isocitrate dehydrogenase 1 (IDH1) 
for glioma classification,[6–8] ushering a new era of differentia-
tion and treatment of brain tumors.

ATRX is located on the Xq21.1 chromosome and encodes a 
280 kDa nucleoprotein, which is involved in numerous cellu-
lar functions, including DNA recombination, repair, advanced 
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chromatin regulation, and gene transcriptional regulation.[9] 
ATRX plays an important role in chromatin modulation and 
maintenance of telomeres.[10] ATRX mutation denotes loss of 
ATRX expression, interpreted as loss of nuclear staining in the 
majority of the tumor cells in the presence of an internal posi-
tive control.[11] Human ATRX mutations are present in at least 
15 types of human tumors, including neuroblastoma, osteo-
sarcoma and pancreatic neuroendocrine tumors,[12] which can 
lead to the development of thalassemia, mental retardation, 
α-thalassemia X-linked mental retardation and other genetic 
conditions.[13] In adults, ATRX mutations occur in 71% of 
grade II-III astrocytomas, 68% of oligoastrocytomas, and 57% 
of secondary glioblastomas.[14–18] However, the role of ATRX in 
gliomas is still in its infancy. So far, studies have found ATRX 
deletions/mutations were closely associated with IDH muta-
tions[15,19,20] and tumor suppressor gene TP53 mutations.[21–23] 
Therefore, the detection of ATRX status is particularly useful 
for further guiding glioma classification and diagnosis, as well 
as pointing directions toward individualized treatment of gli-
oma patients.

Currently, the ATRX status can only be detected following 
surgery or biopsy, both are invasive methods and cannot pre-
dict the patient prognosis before surgical resection. On the other 
hand, owing to the heterogeneity of tumors, different tissue 
sampling sites may lead to different detection results.

Radiomics is a rapidly expanding research field in medical 
image analysis that involves handling numerous texture fea-
tures of radiographic images to construct an objective-driven 
prediction model.[23] Multi-features can comprehensively reflect 
the intrinsic microscopic pathological characteristics of disease, 
which then can be used to diagnose or evaluate the progno-
sis. Their potential application in clinical practice has attracted 
significant attention in recent years. On the background of the 
novel coronavirus disease 2019, a combined model consisting of 
2-dimensional curvelet transformation, meta-heuristic optimiza-
tion algorithm and deep learning technique had been proposed 
to diagnose the patient infected with coronavirus pneumonia 
from X-ray images.[24] Several attempts also have shown the 
feasibility of radiomics for predicting patient’s molecular mark-
ers. Zhang et al[25] have used random forest based on clinical 
variables and multimodal features extracted from conventional 
MRI to predict IDH genotype in high-grade gliomas. Sun et al[26] 

have used the minimum redundancy maximum relevance algo-
rithm and support vector machine (SVM) based on preopera-
tive T2-weighted images to predict vascular endothelial growth 
factor (VEGF) expression in patients with diffuse gliomas. 
Furthermore, Kickingereder et al[27] have used machine learning 
method to evaluate the association of multiparametric and mul-
tiregional MR imaging features with key molecular characteris-
tics in high-grade gliomas. These radiomics approaches lay the 
foundation for detecting ATRX status noninvasively.

In this study, we extracted a large number of radiomics features 
from preoperative MR imaging of low and high-grade gliomas 
with known ATRX status in this work. We hypothesized that a 
radiomic signature based on multiparameter MR images to pre-
dict ATRX status in patients with low and high-grade gliomas.

2. Material and Methods

2.1. Study population

This study was approved and reviewed by the institutional 
review board of the institution (The Second Hospital, Cheeloo 
College of Medicine, Shandong University). The requirement 
for informed consent was waived because we used noninva-
sive methods and data from a previous cohort study. In this 
retrospective study, we reviewed the clinical records and MR 
images of glioma patients who underwent surgical treatment at 
the Second Hospital, Cheeloo College of Medicine, Shandong 
University between January 2016 and July 2020. The patients 
were randomly assigned to training or validation set at a ratio 
of 4:1. All patients in both groups met the following inclusion 
criteria: (a) pathologically confirmed grade II, III, or IV glioma 
based on the 2016 World Health Organization classification 
(3); (b) receiving no systemic treatment, biopsy, or surgery 
before MRI scan; (c) availability of preoperative T1WI, T2WI, 
T2FLAIR, contrast-enhanced T1WI (CE-T1WI) and apparent 
diffusion coefficient (ADC) images; (d) availability of ATRX 
mutation status (detected by immunohistochemistry [IHC] 
at our hospital); and (e) availability of clinical characteristics. 
The exclusion criteria were as follows: (1) unsatisfactory image 
quality with susceptibility or motion artifacts; and (2) no ATRX 
information. A flowchart of the inclusion and exclusion criteria 
is shown in Figure 1.

Figure 1. Flowchart depicting the patients enrollment process.
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2.2. MRI data acquisition

MRI images were acquired using a 3.0 T MR system (Discovery 
750; GE Healthcare, Milwaukee, WI, USA) with an 8-channel 
head coil (GE Medical Systems). Conventional MRI and con-
trast-enhanced MRI were implemented during the examina-
tion. MRI sequence included T1WI, T2WI, T2FLAIR, diffusion 
weighted imaging (DWI), and CE-T1WI. T2WI was obtained 
with repetition time/echo time (TR/TE) = 4841/101 ms; 
field of view (FOV) = 24 × 24 cm; matrix = 192 × 192; num-
ber of excitations (NEX) = 1.5; T1WI and CE-T1WI were 
obtained with inversion time TI/TR/TE/ = 760/1750/24/ms, 
FOV = 24 × 24 cm, matrix = 320 × 320, NEX = 1. CE-T1WI 
was performed 2 minutes after intravenous administration of 
contrast agents (Magnevist, 0.1 mmol/kg, Bayer HealthCare 
Pharmaceuticals, Wayne, NJ). DWI was performed using the 
following parameters: TR/TE = 4880/78.6 ms; diffusion gradi-
ent encoding, b = 0 and 1000 seconds/mm2; FOV = 24 × 24 cm; 
matrix = 288 × 128; acquisition time = 39 seconds. 
T2FLAIR images were obtained with TR/TE = 9000/88 ms, 
FOV = 24 × 24 cm, matrix = 320 × 320, NEX = 1. These 
images were obtained with an identical section thickness of 
5 mm and section space of 1.5 mm.

2.3. Tumor segmentation and intensity normalization

The volume of interest (VOI) was manually segmented for 
all slices on the T1WI, T2WI, T2FLAIR, CE-T1WI, and ADC 
images based on a radiomics analysis platform (Radcloud, 
Huiying Medical Technology Co. Ltd.) by 2 experienced radiol-
ogists (with 12 years and 16 years of experience in neuro-oncol-
ogy imaging, respectively). Two neuroradiologists were blinded 
to the clinical data. A third senior neuroradiologist (with >20 
years of experience) made the final decision if the VOI borders 
were controversial. The regions of interest, including the tumor, 
possible edema, cystic degeneration and necrosis, were acquired 
for each patient.

In the imaging and storage of medical images, in order to 
make the intensity information consistent, the following for-
mula is used to normalize the intensity of MRI images:

f (x) =
s(x− µx)

σx

where f (x)is the normalized intensity, xis the original intensity, 
µand σare the mean value and variance, respectively. srepresents 
an optional scaling whose default is 1.[28]

2.4. Radiomics feature extraction

In this study, radiomics features were extracted from the plat-
form using the “Pyradiomics” package in Python (version 2.1.2, 
https://pyradiomics.readthedocs.io/). These features can be 
classified into 4 groups. Group 1 first-order features quantita-
tively describe the distribution of signal intensity of MR images; 
Group 2 shape properties,which reflect the 3-dimensional prop-
erties of the VOI’s shape and size; Group 3 texture features, 
which could quantify regional heterogeneity differences; Group 
4 higher-order statistical features, including the first-order sta-
tistics and texture properties after transformation of the original 
images (using directional low-pass and high-pass filtering, the 
original feature was decomposed into 8 decompositions).

To guarantee the robustness of the above features, an intra-
class correlation coefficient (ICC) cutoff was set for test-retest 
analysis. ICC >0.80 was considered as evidence of good agree-
ment, and the delineation was repeatedly identified and drawn 
by the 2 radiologists until the ICC met the requirement.[29–31]An 
example of the manual segmentation process is shown in 
Figure 2

2.5. Feature selection and classification

Because a large number of high-dimensional image features 
were extracted in the current study, we performed a feature 
dimension reduction process to select the most valuable fea-
tures for constructing a radiomics signature. To reduce the 
redundant features, First, we selected 2267 features from 
7045 features using a variance threshold method (variance 
threshold = 0.8). We then used the Select K best method to 
further select radiomics features. Finally, 15 optimal features 
were selected as the radiomics signature using the least abso-
lute shrinkage and selection operator (LASSO) algorithm, as 
shown in Figure 3.

Subsequently, we utilized a SVM classifier to establish a radio-
mics-based signature prediction model using data from the train-
ing set. Each model was trained using 5-fold cross-validation of 

Figure 2. Tumor segmentation. After the acquisition of magnetic resonance images, tumor segmentation was conducted using the image data, including T2, 
T1, T2FLAIR, ADC and CE-T1WI. The orange part in image represents the volume of interest.

https://pyradiomics.readthedocs.io/
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the training set, and the same model was applied in the valida-
tion set. Based on 5-fold cross-validation, the SVM model using 
the radial basis function (RBF) as the kernel function was used 
for training, in which the parameters C = 1 and gamma = 0.001.

2.6. Statistical analysis

The predictive performance of the model was estimated using 
the area under the curve (AUC) from receiver operating charac-
teristic (ROC) curve analysis in both the training and validation 
sets. The values of accuracy, sensitivity, and specificity values 
were calculated.

The chi-square test and Fisher exact test were performed using 
SPSS Statistics (Version 25.0; IBM, Armonk, NY) to determine 
the significance of differences in age, sex, histologic grade and 
type, and tumor location between the ATRX(–) and ATRX(+) 
groups.The level of confidence was maintained at 95%, a value 
of P < .05 was considered statistically significant.

2.7. Determination of ATRX status

All analyses of ATRX status were performed using IHC by the 
department of pathology of our institution. Nuclear ATRX-
loss was scored as ATRX mutation if tumor cell nuclei were 
unstained, whereas non-neoplastic cell nuclei, microglial cells, 
lymphocytes, and astrocytes were strongly positive according 
to reference criteria.[32] A threshold of 10% of strongly positive 
tumor nuclei was used to assign ATRX expression.[33] The IHC 
interpretation was performed by 2 certified neuropathologists 
in all cases.

3. Results

3.1. Clinical characteristics

There were 98 patients (53 males and 45 females) in the training 
group and 25 patients (15 males and 10 females) in the valida-
tion group. The median age of the patients was 43.0 years in 
the training set and 42.5 years in the validation set, respectively. 
Among patients enrolled in this study, ATRX(−) was detected 
in 30.6% (30/98) of patients in training group and 36.0 % 
(9/25) in the validation group.There were significant differences 
in histological type and tumor location between ATRX(−) and 
ATRX(+) (P < .05). However, no significant differences were 
found in age, sex, and grade between the 2 datasets (P > .05). 
The statistical results for the patients’ clinical characteristics are 
summarized in Table 1.

3.2. Feature selection and the radiomic signature building

A total of 1409 features were extracted from each series, includ-
ing 19 first-order features, 26 shape features, 75 texture features, 
and 1289 wavelet features. Thus, amount to 7045 imaging fea-
tures were obtained from the T1WI, T2WI, FLAIR, CE-T1WI, 
and ADC images for each patient.

Fifteen radiomic features were selected to generate an ATRX-
related radiomic signature using the LASSO logistic regression 
model, including 5 features derived from T1WI, 2 features 
derived from T2WI, 4 features derived from T2FLAIR, 3 fea-
tures derived from CE-T1WI, and 1 features derived from ADC 
images. A detailed description of the 15 selected features is pre-
sented in Table 2.

Figure 3. The least absolute shrinkage and selection operator algorithm (LASSO) althorithm on feature selection. (A) Distribution and ranking of optimal radiomic 
features for discriminating between ATRX(−) and ATRX(+) gliomas. (B) Coefficient profiles of the radiomic features in Lasso model. Using Lasso model, fifteen 
features which are correspond to the optimal tuning parameter (alpha) value were selected.
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3.3. ATRX genotype prediction

As shown in Table  3, in the training set, the AUC was 0.93 
(95% confidence interval [CI]: 0.87–1.0), sensitivity was 0.91, 
and specificity was 0.82 with a prediction accuracy of 0.88. 
In the validation set, the AUC was 0.84 (95% CI: 0.63–0.91), 
sensitivity was 0.73, and specificity was 0.86 with an accu-
racy of 0.79. The ROC curves for the 2 models are shown in 
Figure 4.

4. Discussion
Conventional and contrast-enhanced MRI are common imag-
ing modalities for glioma preoperatively. In the current study, 
we used MR multiparameter imaging for radiomics analysis. To 
the best of our knowledge, this is the first time to study ATRX 
status in gliomas using MR multiparameter radiomics features. 
The model established in our study performed effectively in 
both the training group and the validation group, affirming the 

Table 1

Associations between ATRX mutation presence and clinical characteristics.

Clinical characteristics Subgroup ATRX(+) ATRX(-) P-value 

Age(years; mean) <40 years old 27 16 .336*

≥40 years old 57 23
Gender Male 45 23 .575*

Female 39 16
Grade II 31 13 .625*

III 19 12
IV 34 14

Histological type Anaplastic astrocytoma 8 12 .006†
Anaplastic pleomorphic yellow astrocytoma 5 0

Diffuse astrocytoma 13 7
Oligodendrocytoma 6 0
Oligodendroglioma 10 0

Anaplastic oligodendroglioma 12 7
Glioblastoma 30 13

Tumor location Frontal lobe 23 14 .042†
Temporal lobe 14 1
Parietal lobe 12 7
Occipital lobe 7 0
Cerebellum 0 1
Brainstem 1 0
Thalamus 1 1

Two or more 26 15

*Chi-square test P-value.
†Fisher exact test P-value.

Table 2

Fifteen features used to predict ATRX mutation in gliomas.

Radiomic feature Description 
Radiomic 

class Filter 

LargeDependenceLowGrayLevelEmphasis Measures the joint distribution of large dependence with lower gray-level values. gldm T1_wavelet-HLH
LargeDependenceHighGrayLevelEmphasis Measures the joint distribution of large dependence with higher gray-level values. gldm T2FLAIR_wavelet-LHL
10Percentile A set of data containing n values is arranged in numerical order from smallest to largest, 

and the value in the 10% position is called the 10 percentile
firstorder T2FLAIR_wavelet-LLL

LargeDependenceLowGrayLevelEmphasis An individual feature can be enabled by submitting the feature name as defined in the 
unique part of the function signature

gldm T1_wavelet-HHH

90Percentile A set of data containing n values is arranged in numerical order from smallest to largest, 
and the value in the 90% position is called the 90 percentile

firstorder ADC_lbp-2D

LargeAreaHighGrayLevelEmphasis Measures the proportion in the image of the joint distribution of larger size zones with 
higher gray-level values.

glszm T1_logarithm

LargeAreaHighGrayLevelEmphasis Measures the proportion in the image of the joint distribution of larger size zones with 
higher gray-level values.

glszm T1_squareroot

Kurtosis Measure of the “peakedness” of the distribution of values in the image ROI. firstorder CE-T1_wavelet-LHL
Kurtosis Measure of the “peakedness” of the distribution of values in the image ROI. firstorder CE-T1_wavelet-LHH
LargeAreaHighGrayLevelEmphasis Measures the proportion in the image of the joint distribution of larger size zones with 

higher gray-level values
glszm T1_original

Kurtosis Measure of the “peakedness” of the distribution of values in the image ROI. firstorder T2_wavelet-LHL
10Percentile A set of data containing n values is arranged in numerical order from smallest to largest, 

and the value in the 10% position is called the 10 percentile
firstorder T2_squareroot

HighGrayLevelZoneEmphasis Measures the distribution of the higher gray-level values, with a higher value indicating a 
greater proportion of higher gray-level values and size zones in the image.

glszm CE-T1_wavelet-LLL

Kurtosis Measure of the “peakedness” of the distribution of values in the image ROI. firstorder T2FLAIR_original
HighGrayLevelZoneEmphasis Measures the distribution of the higher gray-level values, with a higher value indicating a 

greater proportion of higher gray-level values and size zones in the image.
glszm T2FLAIR_wavelet-LHL

GLDM = gray-level dependence matrix, GLSZM = gray-level size zone matrix.
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hypothesis that radiomics can predict ATRX mutation status in 
gliomas. The AUC of 0.93 and 0.84 in the training and valida-
tion sets respectively,are comparable to results from other stud-
ies that have used MRI T2WI only.[34] To establish the radiomics 
model, the LASSO algorithm was applied to select a subset of 15 
features from the 7045 extracted radiomic features. The LASSO 
regression is characterized by variable selection and regulariza-
tion while fitting the generalized linear model that is widely used 
in radiomics analysis. The SVM classifier is an effective tool that 
exhibits better performance than other algorithms with regard 
to pattern recognition.[35–37] In the present study, the LASSO 
algorithm was used in combination with the SVM classifier 
to develop a method capable of effectively predicting ATRX 
mutation status in gliomas. Ren et al[38] revealed that low-grade 
gliomas with ATRX(−) may be associated with higher levels of 
difference variance and standard deviation, but lower entropy, 
which could be used to identify the status of ATRX (−) from 
ATRX(+) in low-grade gliomas. These results suggest that highly 
accurate and reliable classification models can promote the suc-
cess of radiomics in precision oncology.

We analyzed clinical data including age, sex, histological grade 
and type, and tumor location in this study. We found that there 
were significant differences in histological type and tumor loca-
tion between the ATRX(−) and ATRX(+) groups. The contribu-
tion of information on tumor location in differentiating between 
molecular genetic subsets has been tested in a few recent studies. 
Ikemura et al[39] conducted an immunohistochemical analysis 
and demonstrated that ATRX-loss glioblastomas occurred more 
frequently in non-hemispheric locations and affected younger 
patients. However, there were no significant differences in age 
between the ATRX(−) and ATRX(+) groups in our study. Further 
confirmation is needed because of our relatively small number of 
cases (25 grade II/III cases in the ATRX(−) group).

ATRX has been shown to be a potential biomarker and 
mainly implicated in the chromatin silencing processes. ATRX 

mutations or loss, is associated with a decrease in mRNA expres-
sion,[40] accompanied by an alternative lengthening of telomeres 
(ALT) phenotype. These behaviors can affect the biological 
behaviors of astrocytic tumor cells by inducing an increase in 
apoptotic cells and reducing proliferation in glioma cells, which 
is associated with favorable survival of patients with astrocytic 
tumors.[41,42] Flynn et al[43] indicated that the protein kinase ATR 
inhibitors may be useful in the treatment of ALT-positive can-
cers. Another study reported that ATRX inhibitors can disrupt 
ALT and induce chromosome fragmentation and cell death.[44] 
In this sense, ATRX-loss cells could be targeted by epigenetic 
therapies aiming to restore normal chromatin silencing levels. 
On the other hand, ATRX-loss cells may be particularly vulner-
able to polymerase-1 inhibition, providing a potential therapeu-
tic approach to treat these cells.[45] However, this approach has 
not been evaluated in cancer cells.

ATRX mutations can provide useful information on gli-
oma prognosis. Among tumors with isocitrate dehydrogenase 
(IDH) mutations and no loss of chromosome 1p/19q, the loss of 
ATRX is associated with improved progression-free and overall 
survival.[33,46] Studies on in regard to adult anaplastic gliomas 
have shown that ATRX mutations identify a subgroup of IDH 
mutant astrocytic tumors with better prognosis.[40] Olar et al[47] 
found adult gliomas with ATRX mutations in wild-type IDH1 
adult gliomas had higher survival rates. Additionally, recent 
studies have confirmed that ATRX-mutated glioblastomas have 
a survival advantage.[1,48] Based on these observations, ATRX 
may serve as a novel and valuable therapeutic target in clinical 
practice.

In the era of big data, radiomics has become a robust tool for 
medical image analysis, which can help solve important clinical 
questions and provide the necessary information for patient-spe-
cific personalized treatments (i.e., precision medicine). Advanced 
radiomics analytic tools for quantitative analysis of biomarkers 
with the goal of refining clinical decision making and improving 

Table 3

Performances of the classifiers with radiomics signature.

 

Training set Validation set

AUC 95% CI Se Sp AUC 95% CI Se Sp 

ATRX(−) 0.93 0.87–1.0 0.91 0.82 0.84 0.63-0.91 0.73 0.86
ATRX+) 0.93 0.87–1.0 0.82 0.91 0.84 0.63-0.91 0.86 0.73

AUC = area under the receiver operating characteristics curve, CIs = confidence intervals, Se = sensitivity, Sp = specificity.

Figure 4. Receiver operating characteristic (ROC) curves for ATRX genotype prediction in training and validation sets. (A) In the training set, the area under the 
curve (AUC) was 0.93. (B) In the validation set, the AUC was 0.84.
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patient outcomes can significantly improve our ability to stratify 
patients for true personalized cancer care.

Although radiomics features performed well, there were 
some limitations to our study. First, studies with larger data-
sets from multiple sites are required to validate the initial 
results. Second, multi-model imaging data (such as diffusion 
tensor, perfusion imaging, and magnetic resonance spectros-
copy and so forth) need to be integrated into our model in 
the future to improve its performance. Third, other critical 
biomarkers (such as IDH, P53, Ki67) should be considered in 
future studies.

5. Conclusion
In conclusion, the use of radiomics analysis based on MR mul-
tisequence images to identify ATRX status in patients with 
gliomas was predicted effectively. The proposed noninvasive 
methodology for genotype detection may aid the neuro-oncol-
ogist in more accurately predicting prognosis prior to tissue 
diagnosis and in personalizing the follow-up and treatment reg-
imen without the need for or prior to invasive tissue sampling.
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