
An antagonist of retinoic acid receptors more effectively inhibits
growth of human prostate cancer cells than normal prostate
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Screening of synthetic retinoids for activity against prostate carcinoma cell lines has identified antagonists of retinoic acid receptors
(RARs) as potent growth inhibitors (Hammond et al, 2001, Br J Cancer 85, 453–462). Here we report that 5 days of exposure to a
high-affinity pan-RAR antagonist (AGN194310) abolished growth of prostate carcinoma cells from 14 out of 14 patients, with half-
maximal inhibition between 200 and 800 nM. It had similar effects (at B250 nM) on the prostate carcinoma lines LNCaP, DU-145 and
PC-3. AGN194310 inhibited the growth of normal prostate epithelium cells less potently, by 50% at B1mM. The growth of tumour
cells was also inhibited more than that of normal cells when RARb together with RARg, but not RARa alone, were antagonised.
Treatment of LNCaP cells with AGN194310 arrested them in G1 of cell cycle within 12 h, with an accompanying rise in the level of
p21waf1. The cells underwent apoptosis within 3 days, as indicated by mitochondrial depolarisation, Annexin V binding and DNA
fragmentation. Apoptosis was caspase-independent: caspases were neither cleaved nor activated, and DNA fragmentation was
unaffected by the pan-caspase inhibitor Z-VAD-FMK. The ability of AGN 194310 to induce apoptosis of prostate cancer cells and its
differential effect on malignant and normal prostate epithelial cells suggests that this compound may be useful in the treatment of
prostate cancer.
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Retinoids are important modulators of the survival, growth, and
differentiation of normal and malignant cells. Screening of
synthetic analogues has identified compounds that display
significant potential as preventive and therapeutic anticancer
agents (reviewed in Altucci and Gronemeyer, 2001; Fontana and
Rishi, 2002; Hammond et al, 2002; Ortiz et al, 2002; Sun and Lotan,
2002). In particular, compounds have been identified that provoke
growth arrest and/or apoptosis in cells from malignant and
common carcinomas for which new treatments are needed. These
include prostate cancer, the most common noncutaneous male
cancer (reviewed in Hammond et al, 2002). After androgen
ablation therapy, prostate cancer typically progresses to late stage
androgen-independent disease that is incurable (Kirby, 1996;
Ismail and Gomella, 1997; Landis et al, 1998).

Recent enthusiasm for treating various malignancies with
retinoids has been fuelled by the characterisation of a variety of
synthetic retinoids with diverse modes of action. These retinoids
fall into two main classes, termed classical and novel (Fontana and
Rishi, 2002). ‘Classical’ retinoids bind to and activate (or
inactivate) the retinoic acid receptors (RARa, b and g) and

retinoid X receptors (RXRa, b and g). The ‘novel’ retinoids are
synthetic retinoid-related molecules (RRMs) that exert at least
some of their biological effects through RAR- and RXR-
independent pathways (Fontana and Rishi, 2002; Ortiz et al,
2002). RRMs induce apoptosis in several types of malignant cells,
including lung, cervical, breast and ovarian carcinomas and
melanomas (Shao et al, 1995; Oridate et al, 1997; Piedrafita and
Pfahl, 1997; Spanjaard et al, 1997; Sun et al, 1997; Li et al, 1998; Wu
et al, 1998; Holmes et al, 2003).

ATRA and synthetic retinoid receptor agonists are not very
effective in inducing growth arrest and/or apoptosis in prostate
cancer cell lines such as LNCaP, DU-145 and PC-3: high
concentrations (B1 –10 mM) are generally needed (Gao et al,
1999; Hammond et al, 2001). When Lu et al (1999) screened more
than 100 retinoids, three RARg agonists were the most active, but
concentrations of 1– 10 mM were needed for complete growth
inhibition. Similarly, we observed little effect of specific agonists of
RARa and RARbg on colony formation by the above cell lines
(Hammond et al, 2001). In clinical studies, 13-cis retinoic acid
(isotretinoin) (with or without interferon-a) is only modestly
effective against prostate carcinoma (DiPaolo and Aisner, 1999;
Kelly et al, 2000; Shalev et al, 2000).

By contrast, antagonists of RARabg and RARbg cause striking
cell growth arrest and inhibition of colony formation in LNCaP,
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PC-3 and DU-145 cells. For example, the pan-antagonist
AGN194310 inhibits colony formation at around 50 nM – it is
around 20-fold more potent than ATRA, and promotes growth
arrest and apoptosis (Hammond et al, 2001). AGN194310 also
inhibited the growth of primary prostate carcinoma cells from two
patients more effectively than ATRA (Hammond et al, 2001). That
RAR antagonists suppress the growth of epithelial carcinomas
more effectively than receptor agonists is also suggested by a
report that the weak RAR antagonist MX718 inhibits the growth of
breast carcinoma lines more potently than ATRA (Fanjul et al,
1998). Retinoid receptor antagonists may therefore have a
potential for use in the treatment of human prostate and breast
cancers.

We therefore compared the effects of the pan-RAR antagonist
AGN194310 on primary cell cultures established from 14 patients
with prostatic carcinoma and on normal prostate epithelial cells
and fibroblasts. Its more potent effect on patients’ prostate
carcinoma cells than normal prostatic epithelium indicates that
this agent may be useful in prostate cancer therapy.

MATERIALS AND METHODS

Retinoids

The pan-RAR antagonist (AGN194310), an RARbg antagonist
(AGN194431) and a specific RARa antagonist (AGN196996), were
synthesised at Allergan Inc. (Irvine, CA, USA). Their structures,
receptor binding and transactivation properties have been
described (Hammond et al, 2001). Ki values for binding of the
antagonists to RARa, b and g, respectively, are AGN194310: 3, 2
and 5 nM; AGN194431: 300, 6 and 20 nM; and AGN196996: 2, 1087
and 8523 nM. These compounds show no activity in transactivation
assays, but instead block the gene transcriptional activity induced
by ATRA and other RAR agonists. To control for the detection of
apoptosis and related events we used a RRM AGN193198 that
induces apoptosis in a wide variety of cells through rapid caspase
activation. AGN193198 does not bind to RARs and RXRs (Keedwell
et al, 2004). Stock solutions were prepared at 10 mM in 50%
ethanol/50% dimethysulphoxide and stored at �201C.

Cell lines and cell culture

Cultures of patients’ carcinoma cells were established and
maintained in serum-free medium and, for comparison, the cell
lines investigated were grown serum-free or in low serum. Serum-
free grown sublines of the prostate carcinoma cell lines LNCaP,
PC-3 and DU-145 (serum stocks from ATCC, Rockville, MD, USA)
have been described previously (Hammond et al, 2001). These
lines were grown in RPMI 1640 medium (Gibco-BRL, Paisley, UK)
containing antibiotics (100 U ml�1 penicillin and 100 mg ml�1

streptomycin) and supplemented with insulin, transferrin, sele-
nium dioxide, linoleic acid and bovine serum albumin (ITSþ ,
Sigma, Poole, UK). The breast carcinoma lines MDA-MB-231 and
MCF-7 (provided by Dr K Colston, St Georges Hospital, London)
were adapted to growth in serum-free medium (MDA-MB-231)
and in RPMI 1640 medium supplemented with 0.5% foetal bovine
serum and antibiotics (Gibco-BRL, MCF-7) as described before
(see Hammond et al, 2001). A subline of the promyeloid cell line
HL60 has been grown long-term in serum-free (ITSþ ) medium
(Bunce et al, 1995). Cells were grown at 371C in a humidified
atmosphere of 5% CO2 in air, and adherent cells were passaged by
trypsinising with trypsin-EDTA (Gibco-BRL).

Growth of primary cell cultures

Core biopsies were obtained from patients undergoing investiga-
tion for suspected prostatic carcinoma. Consent for the use of this
material for research was obtained from the South Birmingham

Local Research Ethics Committee of the Birmingham Health
Authority. Informed consent was also obtained from the patients.
Histological reports were obtained from the Department of
Pathology, The Medical School, University of Birmingham, and
confirmed that the biopsies contained adenocarcinoma. Slides and
cases were also reviewed by one of the investigators (LAH).

Cultures were established as described by Peehl et al (1991),
using the serum-free medium Prostate Epithelial Cell Growth
Medium (PrEGM) supplemented with SingleQuots (BioWhittaker,
Wokingham, UK). The biopsies were collected in ice-cold Hanks’s
buffered salt solution (HBSS) without phenol red (Gibco-BRL).
Biopsies were washed 3� with HBSS, and cut into very small
(o1 mm3) pieces using a sterile scalpel blade. Cultures were
established by placing the pieces of tissue into a 25 cm2 collagen 1-
coated flask (Greiner, Stonehouse, UK) containing 1 ml of
complete PrEGM medium. The time from collection to setting up
the cultures was B3 h. By day 4, the pieces of tissue had attached
to the flask, and 4 ml of PrEGM were added. Cells were subcultured
at 80–95% confluence by using trypsin/EDTA, which was
inactivated by adding a 10-fold greater volume of complete
PrEGM. Cells were pelleted by centrifugation, and set in fresh
collagen-1-coated flasks. Plates coated with collagen 1 (Greiner,
Stonehouse, UK), and PrEGM were used for assays.

A primary culture of normal prostate epithelium cells (PrEC)
was purchased from Cambrex Bio Science (Wokingham, UK).
These cells test positive for cytokeratin (clone 8.13). The culture
has a doubling time of 18– 24 h, and undergoes B15 population
doublings. Normal prostate fibroblasts grew out rapidly from a
prostate biopsy that was nonmalignant, and the established culture
consisted entirely of spindled fibroblast cells. The normal prostate
epithelial cells and fibroblasts were grown as above.

Analysis of the effects of antagonists on cell growth

Trypsinised cell suspensions were plated into a 96-well microtitre
plate at 400 cells per well in 100ml of ITSþ medium (cell lines) or
PrEGM (primary cells). Typically, these cells grow exponentially
with doubling times between 20 and 24 h. Cells were treated, in
triplicate, with retinoids immediately and at day 2 by replacing the
medium. The number of viable cells was assessed at day 5 by
measuring cellular ATP levels using the Vialight HS High
Sensitivity Cell Proliferation/Cytotoxicity Kit according to the
manufacturer’s instructions (Lumi Tech, Nottingham, UK), using a
Berthold LB953 luminometer. Vehicle alone had no effect on any of
the cells tested.

Cell cycle status was measured by staining harvested cells with
propidium iodide (PI, Molecular Probes, Eugene, OR, USA) in
buffer (10mg ml�1 PI in 1% (w v�1) tri-sodium citrate, 0.1% (v v�1)
Triton X100, 100 mM NaCl). The distribution of cells between
phases of the cell cycle was determined using a Becton-Dickinson
Flow Cytometer and CellFIT Cell-Cycle Analysis software.

Measurements of apoptotic events

Bulk cultures of LNCaP cells and primary prostate carcinoma cells
were seeded at 5� 105 cells per 75 cm2 flask and AGN194310 was
added immediately. Cells in suspension and adherent cells,
harvested by trypsinisation, were pooled and apoptotic cells were
identified by the TUNEL assay (Gorczyca et al, 1993). An FITC-
conjugated antibody to bromodeoxyuridine (Becton-Dickinson &
Co., Mountain View, CA, USA) was used to identify cells labelled
with bromodeoxyurindine triphosphate and fluorescence was
measured by FACS analysis at 510– 550 nm.

Changes to the mitochondrial membrane potential after
treatment of bulk cultures of cells with AGN194310 were measured
by incubating harvested cells with 5 mg ml�1 of the fluorescent
probe JC-1 (5,50,6,60-tetrachloro-1,10,3,30-tetrabenzimidazolylcar-
bocyanine iodide, Eastman Kodak Co., Rochester, NY, USA) for
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20 min at 371C in an atmosphere of 5% CO2. After washing twice in
phosphate-buffered saline for 10 min, cells were analysed on a
Becton-Dickinson FACS (Salvioli et al, 1997).

Binding of Annexin V was determined as follows. LNCaP cells
were plated onto 24-well plates (6000 cells per well) in medium
containing 1 mM AGN194310 or the equivalent amount of vehicle,
and they were cultured for 1, 2 or 3 days. After careful removal of
the medium, 200ml of buffer (1� PBS, 5 mM CaCl, 140 mM NaCl)
containing 3 mg ml�1 Annexin V (Roche, Indianapolis, IN, USA)
and 20 mg ml�1 PI were added to each well and incubated in the
dark for 15 min. Fluorescent microscopy was performed using an
Axiovert 100 fluorescent microscope (Zeiss, Jena, Germany) with
Image-Pro 4.5 software (Media Cybernetics, Silver Spring, MD,
USA) for image capture and overlay.

For Fluorescence-Activated Cell Sorter (FACS) analysis of the
levels of apoptosis, LNCaP cells were plated onto 60 mm dishes
(1� 105 cells per dish) and treated with 0.1, 0.5, or 1 mM

AGN194310. Apoptosis was evaluated by Annexin-V-FITC/PI
double staining using the Apoptosis Detection Kit (Oncogene,
San Diego, CA, USA), according to the manufacturer’s instruc-
tions. Flow cytometry was performed with a FACS Calibur (Becton
Dickinson, Sunnyvale, USA), and Cell Quest Pro software. Single
stain controls were performed for each analysis.

Caspase studies

The pan-caspase inhibitor Z-VAD-FMK (R&D Systems, Abingdon,
UK) was used to investigate the involvement of caspases in
AGN194310-induced apoptosis. A 20 mM stock solution was
prepared in dimethysulphoxide. Z-VAD-FMK was added at 50mM

to bulk cultures of cells 1 h before adding AGN194310, and cells
were monitored using the TUNEL assay.

Fluorometric assays for caspase activity were conducted in 96-
well microtitre plates. In total, 50 ml of assay buffer (20 mM HEPES,
pH 7.5, 10% glycerol, 2 mM dithiothreitol) containing 50 mM of
peptide substrates for caspase-3 (DEVD-AFC), caspase-8 (IETD-
AFC), or caspase-9 (LEHD-AFC) (all from Biovision Inc.,
Mountain View, CA, USA) were added to each well. In total,
50ml of cell lysate were added to initiate the reactions. Back-
grounds were measured in wells that contained assay buffer,
substrate and lysis buffer. Fluorescence was measured on a
CytoFlour 4000 fluorescence plate reader (Applied Biosystems)
set at 400 nm excitation and 508 nm emission. Caspase activities
were calculated as fold increases relative to control wells.

Antibodies to caspase-3 (Stressgen), caspase-8 (Cell Signalling
Technology) and caspase-9 (Cell Signalling Technology) were used
to stain blots to detect cleaved (active) forms of these enzymes.
Cells (1� 107 ml�1) were lysed in ice-cold buffer (5 mM EDTA,
150 mM NaCl, 1% Triton X-100, 100mM Na3VO4, 2 mM phenyl-
methylsulphonyl fluoride, 10mg ml�1 leupeptin, 50 mM Tris, pH
7.4) for 30 min with gentle rotation at 41C. Lysates were clarified by
centrifugation at 16 000� g for 15 min at 41C, resolved on SDS–
PAGE, and transferred onto PVDF membranes for immunostain-
ing. Immunoreactive proteins were visualised by enhanced
chemiluminescence.

Immunodetection of p21waf1 and p27kip1

Blots of cell lysates were stained with antibodies to p21waf1 (sc-397,
Santa Cruz Biotechnology, Inc.) and p27kip1 (AHZ0462, Biosource),
and immunoreactive proteins were visualised by enhanced
chemiluminescence.

Data manipulation and statistical analyses

At least three experiments of each type were performed with
triplicate replicates. Results are expressed as means7standard
errors of means (s.e.m.). The statistical significance between

groups of data was analysed by the Student’s t-test using the
SigmaStatt (version 8.0) statistical software package. Dose–
response curves for compounds were plotted using the kinetics
module of the Sigmaplott (version 8.0) graphics software package.

RESULTS

The pan-RAR antagonist AGN194310 is a potent growth
inhibitor of prostate carcinoma cells

Core biopsies of prostate tissue were obtained from patients
attending a diagnostic urological clinic and in whom there was a
high clinical suspicion of prostatic carcinoma. Following histolo-
gical examination of the cores and reporting of invasive
carcinoma, the patients received androgen ablation (cyprotone
acetate and zolodex). All of the patients responded to therapy as
revealed by substantial reductions in their serum levels of prostate-
specific antigen (PSA, see Figure 1).

Epithelial carcinoma cells were grown from the above core
biopsies of 14 patients with prostatic carcinoma. The biopsies

[AGN194310], M

10−7 10−6

A
T

P
 le

ve
ls

 (
%

 o
f c

on
tr

ol
)

0

50

100

Prostate carcinoma cells

Patient Gleason
grading

Serum PSA

pre → post−therapy

IC50, nM

AGN194310
PrC1

PrC2

PrC3

PrC5
PrC7

PrC8

PrC9
PrC10
PrC11

PrC12

PrC13
PrC15

PrC17

PrC16

9    60.6 → 2.78 800 ±  223
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9   452   →  42 836 ±  48
5     59 →  14 561 ±  96
8   108   → 1.33 240 ±  32

10   434   → 9.6 283 ±  56
8   154   → 2.16 634 ±  136
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9    45 → 0.47 569 ±  138
7    36 → 2.17 246 ±  25
7    28 → 3.4 208 ±  60
9    49 → 6.1 299 ±  70

9    57 →      12.4 339 ±  19

Figure 1 AGN194310 potently inhibits the growth of patients’ prostate
carcinoma cells. Activity of AGN194310 against carcinoma cells from core
biopsies of 14 patients with prostatic carcinoma was measured by seeding
cells into wells of a microtitre plate, treating with agent immediately and at
day 2, and measuring cellular ATP levels at day 5. The top panel shows the
titration curves obtained for each of the patients’ cells. The IC50 values
shown in the table are means7s.e. of data obtained from three separate
experiments.
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contained extensive carcinoma, and cells in the cultures estab-
lished were almost entirely polygonal, epithelial cells. The cells
expressed prostate-specific antigen, as revealed by immunocyto-
chemical staining. Their epithelial nature was confirmed by
positive immunocytochemical staining for cytokeratin. Cultures
contained few fibroblasts and stromal (smooth muscle) cells, as
revealed by immunostaining for cytokeratin and smooth muscle
actin.

Cells from each of 14 patients were tested, at passage 2, for
sensitivity to AGN194310 and ATRA. In the microtitre plate assay,
AGN194310 completely inhibited growth at 1– 2 mM. There was
some variability in the sensitivity of individual patients’ cells to
AGN194310, with concentrations that reduced cell numbers by
50% (IC50 values) ranging from B200 to B800 nM (Figure 1). IC50

values were not related to Gleason grading or to pre- and post-
therapy PSA levels (see Figure 1). ATRA (up to 2 mM) had little
effect on cells from 13 patients, and an IC50 value of 1 mM was
obtained for cells from patient PrC2 (data not shown).

AGN194310 inhibits the growth of human prostate cancer
cells more potently than normal prostate epithelium

We compared the activities of AGN194310 against three prostate
carcinoma lines, a patient’s primary carcinoma cells and normal
prostate-derived epithelial cells and fibroblasts. Prostatic fibro-
blasts were grown from a nonmalignant biopsy: the culture
contained no epithelial cells.

Figure 2A shows the data from parallel studies of AGN194310
activity against LNCaP, PC-3 and DU-145 cells, against epithelial
primary cultures from a patient with prostate carcinoma, and
against normal prostate epithelium cells. AGN194310 potently
reduced cell numbers when the three prostate carcinoma cell lines
were grown in microtitre wells, with IC50 values of 343778 nM for
LNCaP cells, 183776 nM for PC-3 cells and 243756 nM for DU-145
cells. In total, 500 nM AGN194310 reduced cell numbers by B80%
in the cultures of the three prostate carcinoma lines and the
patient’s primary cells, and it had no effect on the normal prostate
epithelium cells. The prostate carcinoma cell lines were approxi-
mately four times as sensitive to AGN194310 as normal prostate
epithelial cells (P¼ 0.004), and comparison of the IC50 value for
normal cells vs individual values for LNCaP, PC-3 and DU-145 cells
gave P-values of 0.008, 0.001 and 0.009, respectively. Moreover, the
dose–response curve for the normal prostate epithelium cells was
displaced to the right of the dose –response curves for the
carcinoma cells from all of the 14 patients’ carcinoma cells
(compare Figures 1 and 2). The normal prostate fibroblasts (IC50

B0.8 mM), like the normal prostate epithelial cells (IC50 B1 mM,
P¼ 0.4 for comparison of these two IC50 values), were less sensitive
to AGN194310 than the prostate carcinoma cells.

To compare the involvement of the three RARs in controlling
the growth and survival of malignant and normal cells, antagonists
of RARbg (AGN194431) and of RARa (AGN196996) were also
titrated against LNCaP and normal prostate epithelial cells (Figure
2B and C). As reported previously (Hammond et al, 2001), the
RARbg antagonist was as potent as the pan-antagonist against
LNCaP cells (IC50¼ 291776 nM), and the RARa antagonist
(IC50 ¼ 1.870.3 mM) was less potent (compare Figures 2A, B and
C). The RARbg antagonist was more active against LNCaP cells
than against the normal prostate epithelium cells (P¼ 0.1 for
comparison of IC50 values), but this differential effect was less than
for the pan-specific antagonist AGN194310. The RARa antagonist
did not discriminate between LNCaP cells and normal prostate
epithelial cells (P¼ 0.4 for comparison of IC50 values).

AGN194310 provokes growth arrest in G1

Previously we reported that AGN194310 induces growth arrest and
apoptosis of LNCaP cells (Hammond et al, 2001). Here we report
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Figure 2 Pan-RAR antagonist AGN194310 affects the growth of
prostate carcinoma cells more than that of normal prostate epithelium.
The top panel shows the activity of the pan-RAR antagonist AGN194310
against LNCaP cells (closed circles), PC-3 cells (closed triangles), DU-145
(squares) a patient’s primary carcinoma cells (open triangles) and normal
prostate epithelium (open circles). The lower panels show the activities of
antagonists of RARbg (AGN194431) and RARa (AGN196996) against
LNCaP cells (closed circles) and normal prostate epithelium (open circles).
Activities were measured by seeding cells into wells of a microtitre plate,
treating with agents immediately and at day 2, and measuring cellular ATP
levels at day 5. Data are means7s.e. of values obtained from six (A), four
(B) and three (C) experiments. The P-values obtained when the IC50 value
for AGN194310 against normal prostate epithelium was compared with
IC50 values against LNCaP, PC-3 and DU-145 cells are 0.008, 0.001 and
0.009, respectively. Comparison of the IC50 values for AGN194431 against
normal prostate epithelium and LNCaP cells gave a P-value of 0.1, and a
P-value of 0.4 was obtained for this comparison for AGN196996.
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detailed kinetics of these processes. Treatment of LNCaP cells with
1 mM AGN194310 first led to a substantial increase in the
proportion of cells in G1 of cell cycle, which reached a maximum
level that was maintained from B12 h (see Figure 3A), with a
corresponding decline in the population of S phase cells.

P21waf1 was detected at low levels in LNCaP cells, and
AGN194310 (1 mM) provoked an increased expression from
B12 h onwards (Figure 4). The accumulation of p21waf1 occurred
at about the same time as cells accumulated in G1 of cell cycle.
P27kip1 was not detectable in untreated LNCaP cells, and was
present at a very low level even after treating for 48 h with
AGN194310. The detectability of induced expression of p27kip1 was
controlled by observing a large rise (at 48 h) upon treatment of
LNCaP cells with AGN193198. This compound also induced a very
rapid and substantial rise in the level of expression of p21waf1.

Apoptosis follows G1 arrest

Levels of apoptosis were monitored by following changes in the
mitochondrial potential, by the appearance of phosphatidylserine
at the cell surface, and by detection of DNA-strand breaks (Figures

3B and 5). Apoptosis was induced progressively in AGN194310-
treated cells – 50% of the cells had depolarised mitochondria by
40–50 h, and cells displaying DNA-strand breaks accumulated
progressively after B40 h. After 3 days, B70% of cells showed
mitochondrial depolarisation, DNA strand-breaks were detected in
B50% of cells, and 60% of the cells had exposed phosphatidylser-
ine at their cell surface and so bound Annexin V (Figure 5).

AGN194310-induced apoptosis in LNCaP cells is caspase-
independent

To investigate the role of caspases in AGN194310-induced
apoptosis, LNCaP cells were treated for 1 h with the pan-caspase
inhibitor Z-VAD-FMK (50mM) prior to adding 1 mM AGN194310.
The inhibitor only slightly reduced the proportion of cells showing
DNA strand-breaks at day 3 (Figure 3, P-value 0.01). The Z-VAD-
FMK used was biologically active. The RRM AGN193198 potently
induces apoptosis in a variety of cells, and B80% of treated LNCaP
cells showed mitochondrial depolarisation and DNA fragmentation
by day 3. Z-VAD-FMK (50mM) largely prevented this apoptosis
(15% apoptotic cells, P-value 0.004, Figure 3B).
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Figure 3 AGN194310 causes LNCaP cells to arrest in G1 and later undergo apoptosis. (A) Kinetics of changes to the cell cycle status of LNCaP cells
treated with 1 mM AGN194310 (open circles) as compared to the status of control (untreated) cultures (closed circles). Cell cycle status was measured after
staining cells with propidium iodide, and representative profiles are shown. (B) Time course for the induction of mitochondrial membrane depolarisation
(open circles) and the appearance of DNA-strand breaks (TUNEL assay, open triangles) when LNCaP cells were treated with 1 mM AGN194310. The right
panel shows that AGN194310-induction of DNA-strand breaks was largely unaffected by treating LNCaP cells with the pan-caspase inhibitor (at 50 mM) for
1 h before adding 1 mM AGN194310 for 3 days. By contrast, Z-VAD-FMK blocked AGN193198-induced apoptosis. Data are means7s.e. of values obtained
from three time course experiments, and five experiments using the pan-caspase inhibitor. *Denotes P-values o0.05.
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Caspases-3, -8 and -9 were not cleaved or activated when LNCaP
cells were treated with 1 mM AGN194310 (Figure 6). Enzyme
activities remained unchanged, and immunostaining of cell
extracts did not detect cleaved forms. In parallel control
experiments, 6 h of treatment of Jurkat T cells with 4 mM

AGN193198 induced 25-, four- and eight-fold increases in the
activities of caspases-3, -8 and -9 (Figure 6A, lower panel), and
cleaved forms of these enzymes were readily detectable by 4 h
(Figure 6B, right panel).

HL60 leukaemia and breast carcinoma cells are less
sensitive to AGN194310 than prostate cancer cells

Table 1 compares the IC50 values obtained from titrations of
AGN194310 against prostate carcinoma cells and other cell types
that we tested. AGN194310 does not inhibit colony formation by
single HL60 cells plated in microtitre plate wells (Hammond et al,
2001). When AGN194310 was screened for activity against HL60
cells plated in microtitre wells, an IC50 value of 1.3 mM was obtained
(data not shown). The breast carcinoma lines MCF-7 and MDA-
MB-231 were less sensitive than the prostate carcinoma lines to
growth inhibition by AGN194310. A 50% inhibition of growth was
not achieved for MCF-7 cells at 2 mM AGN194310, and an IC50 value
of B800 nM was obtained for MDA-MB-231 cells.

DISCUSSION

Finding new treatments for malignant carcinomas requires the
identification of new agents that potently induce growth arrest
and/or apoptosis, and that are more effective against malignant

cells than normal cells. For example, the synthetic retinoid CD437
induces rapid apoptosis in human lung cancer cell lines but not in
two types of normal lung epithelial cells (Sun et al, 2002), and it
also induces apoptosis in malignant human epidermal keratino-
cytes but not in normal keratinocytes (Hail and Lotan, 2001).

Here, we have shown that the pan-specific RAR antagonist
AGN194310 potently inhibits the growth of prostate carcinoma
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Figure 5 LNCaP cells undergoing AGN194310-induced apoptosis bind
Annexin V. LNCaP cells were treated with 1 mM AGN194310, or vehicle
control (DMSO) and stained with Annexin V and propidium iodide.
Fluorescence microscopy at day 3 (A) reveals early apoptotic cells
(Annexin V þ ve; green), as well as late apoptotic/necrotic cells (Annexin V
þ ve/propidium iodide þ ve; yellow-red) in AGN194310-treated cultures.
(B) Representative FACS cytograms of stained cells. Viable cells (Annexin
V and propidium iodide �ve) are in the lower left-hand quadrant. Early
apoptotic cells (Annexin V þ ve/propidium iodide �ve) are in the lower
right-hand quadrant. Terminal apoptotic/necrotic cells (Annexin V þ ve/
propidium iodide þ ve) are in the upper right-hand quadrant. (C) Results
of the flow cytometry analyses are summarised. Data are means7s.e. of
values from at least three experiments. **Denotes P-values o0.001.
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cells, which display an accumulation of p21waf1, are arrested in G1
of cell cycle, and then undergo apoptosis. Similarly, the RAR
antagonist BMS453 causes accumulation of p21waf1 and G1 arrest
of normal breast cells (Yang et al, 2001). The antiproliferative
effects of several agents against prostate carcinoma cell lines have
been attributed to upregulation of p21waf1 expression: for example,
G1 accumulation of LNCaP in response to 1a, 25-dihydroxyvitamin
D3 (Moffat et al, 2001; Yang et al, 2002). Prostate carcinoma cell
lines that do not undergo growth arrest in response 1a, 25-
dihydroxyvitamin D3 fail to upregulate p21waf1 (Moffat et al, 2001).
Other agents that induce G1 arrest of prostate carcinoma lines,
such as 12-O-tetra-decanoylphorbol-13-acetate, indole-3-carbinol
and inositol hexaphosphate, also upregulate p21waf1 and p27Kip1,
leading to decreases in cyclin-dependent kinase activities (Chinni
et al, 2001; Sugibayashi et al, 2002; Singh et al, 2003).

The pan-specific RAR antagonist AGN194310 largely prevented
the growth in microtitre wells of malignant prostate epithelium
cells from androgen-responsive patients and of LNCaP, PC-3 and
DU-145 cells at submicromolar concentrations. Previously, we
have reported that this compound reduces viable cell numbers in
flask cultures of LNCaP cells and of patients’ prostatic carcinoma
cells (Hammond et al, 2001). Also, AGN194310 potently inhibits
colony formation by LNCaP (IC50 16 nM), PC-3 (IC50 18 nM) and
DU-145 (IC50 34 nM) cells (Hammond et al, 2001). That more
AGN194310 is required to reduce cell numbers in microtitre wells
is commensurate with the view that the colony formation assay is
the more sensitive. Normal prostate epithelial cells were substan-
tially less sensitive to AGN194310 than carcinoma cells. This
compound may, therefore, have potential for killing tumour cells
in vivo while sparing normal cells. Relative insensitivity of normal
prostate fibroblasts, haemopoietic cells such as HL60, and breast
carcinoma cells to AGN194310 (Hammond et al, 2001) also
indicate that other cell types might be spared in vivo.

Several observations suggest that AGN194310 induces G1 arrest
of prostate carcinoma cells through a mechanism that involves
antagonism of multiple RARs, rather than some unrelated target
molecule(s). The pan-specific RAR antagonist AGN194310 and the
RARbg antagonist AGN194431 have different structures, but both
inhibit colony formation by and growth in liquid culture of pro-
state carcinoma cells at low concentrations. It seems unlikely that
these two compounds could both bind with similar high affini-
ties to a second target. Moreover, the pan-RAR agonist TTNPB
((E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl-1-
propenyl]-benzoic acid) overcomes the growth inhibitory
effect of AGN194310 (Hammond et al, 2001). It seems likely that

Table 1 Growth inhibitory activity of the pan-RAR antagonist
AGN194310 against various cell types

Cells IC50 of AGN194310 (nM)

Prostate carcinoma cells
Patients’ primary cells 208760 to 836748
LNCaP 343778
PC-3 183776
DU-145 243756

Other malignant cells
MCF-7 (breast carcinoma) 42000
MDA-MB-213 (breast carcinoma) 781727
HL60 (promyeloid leukaemia) 13387318

Normal prostate cells
Epithelium 9607134
Fibroblasts 786712

IC50 values were determined using the microtitre plate assay, and are means7s.e. of
values obtained from at least three separate experiments.
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Figure 6 Caspases are neither cleaved nor activated in AGN194310-
treated LNCaP cells. (A) that caspases-3, -8 and -9 were not activated in
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AGN193198 (bottom panel). Enzyme activities were measured using
peptide substrates. (B) Caspases-3, -8 and -9 were not cleaved in
AGN194310 (1mM)-treated LNCaP cells, as revealed by immunostaining
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AGN194310 abolishes RAR-mediated effects of agonistic retinoids
that facilitate the proliferation of prostate carcinoma cells. These
RAR-mediated effects must be achieved by a very low level of
retinoid signalling that is caused by trace amounts of retinoids that
the cells encounter while grown serum-free – very small amounts
of retinoids may contaminate the medium constituents. Alterna-
tively, the growth inhibitory effects of AGN 194310 may result
from direct pharmacological effects involving assembly of RAR
complexes containing corepresser molecules.

Previously, we argued that RARg antagonism may be sufficient
to compromise the growth of LNCaP, PC-3 and DU-145 cells that
are grown long-term serum-free, since these cells express only
RARa and RARg (Campbell et al, 1998; Hammond et al, 2001; and
data not shown), and RARbg antagonism is as effective as pan-
antagonism. The importance of RARg in maintaining growth and/
or survival of prostate epithelium is supported by findings from
RARg-null mice, the prostates of which show atrophy and
squamous metaplasia (Lohnes et al, 1993). The RARa-null mouse
does not show these defects (Lufkin et al, 1993). However, we
cannot exclude the biological involvement of a very low level of
RARb expression in the human cell lines and tumours. RARb was
not detected by immunoblotting cell extracts, but a band is just
visible on immunoblots of extracts of serum-grown LNCaP cells
that are known to express RARb (Campbell et al, 1998; Hammond
et al, 2001). Many studies have suggested a role for RARb in
modulating the growth and survival of prostate cancer cells
(reviewed in Zhang, 2002). For example, stable expression of RARb
in RARb-negative PC-3 cells increases their sensitivity to growth
inhibition by agonistic retinoids (Campbell et al, 1998). In the
present study, the difference in sensitivity of the malignant and
normal cells to the RARbg antagonist was less than when RAR
signalling was extinguished by the RARabg antagonist. That gene
expression regulated by RARg or RARb might be more necessary
to the growth of prostate carcinoma cells than their normal
counterparts remains an interesting possibility.

Paradoxically, agonists and antagonists of RARs both provoke
growth arrest of prostate carcinoma cells (Lu et al, 1999;
Hammond et al, 2001). But, assuming that serum free-grown
LNCaP, PC-3 and DU-145 cells express a and g, we do not know
how the various gene regulatory activities of these two receptors
contribute to promoting and/or arresting the growth of cells.
ATRA provokes G1 arrest and differentiation of HL60 cells

(Brietman et al, 1980) via RARa: this is the major receptor
expressed in undifferentiated myeloid cells (Zhu et al, 2001), and
resistance of myeloid cells to ATRA is related to dominant-
negative RARa mutations (Ding et al, 1998; Duprez et al, 2000).
One possible explanation of the growth inhibitory activities of both
agonists and antagonists against prostate carcinoma cells is that
agonism of RARa drives gene expression leading to cell growth
arrest, but also that antagonism of RARg switches off expression of
a molecule(s) that plays a role in facilitating cell proliferation. The
relative contributions of positive and negative effects on cell
growth may determine the final outcome.

Prostate carcinoma cells that growth-arrested in response to
AGN194310 quickly underwent apoptosis. Most studies of
apoptosis focus on caspases as critical elements: the steps leading
to DNA fragmentation are generally considered to be caspase-3
initiated (Enari et al, 1999). Caspases have also been proposed as
the major effectors of the action of RRMs (You et al, 2001; Lopez-
Hernandez et al, 2003). However, the pan-caspase inhibitor Z-
VAD-FMK did not substantially affect the induction of apoptosis
by AGN194310, and caspases-3, -8 and -9 were neither cleaved nor
activated. Hence, we conclude that AGN194310-provoked apopto-
sis is caspase-independent.

There is other evidence that caspases are not essential for
apoptosis, nor is caspase activity sufficient to execute cell death
(Lukovic et al, 2003). Endonuclease G is an apoptotic DNAase that
is released from the mitochondria (Li et al, 2001), and etoposide-
induced apoptosis in the HeLa cells involves caspase-independent
activation of endonucleases (Torriglia et al, 1999). Indeed,
triggering of caspase-independent cell death has been proposed
as a means of combating cancer (reviewed in Sun et al, 2000;
Mathiasen and Jaattela, 2002; Lewis et al, 2003).

Our studies suggest that AGN194310 may be useful in the
treatment of prostate cancer, and this compound is under clinical
development.
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