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Edited by Donita Brady
Inhibitors targeting Bruton’s tyrosine kinase (BTK) have
revolutionized the treatment for various B-cell malignancies
but are limited by acquired resistance after prolonged treat-
ment as a result of mutations in BTK. Here, by a combination
of structural modeling, in vitro assays, and deep phospho-
tyrosine proteomics, we demonstrated that four clinically
observed BTK mutations—C481F, C481Y, C481R, and L528W
—inactivated BTK kinase activity both in vitro and in diffused
large B-cell lymphoma (DLBCL) cells. Paradoxically, we found
that DLBCL cells harboring kinase-inactive BTK exhibited
intact B cell receptor (BCR) signaling, unperturbed transcrip-
tion, and optimal cellular growth. Moreover, we determined
that DLBCL cells with kinase-inactive BTK remained addicted
to BCR signaling and were thus sensitive to targeted BTK
degradation by the proteolysis-targeting chimera. By per-
forming parallel genome-wide CRISPR-Cas9 screening in
DLBCL cells with WT or kinase-inactive BTK, we discovered
that DLBCL cells with kinase-inactive BTK displayed increased
dependence on Toll-like receptor 9 (TLR9) for their growth
and/or survival. Our study demonstrates that the kinase ac-
tivity of BTK is not essential for oncogenic BCR signaling and
suggests that BTK’s noncatalytic function is sufficient to sus-
tain the survival of DLBCL.

During B cell development, antigen-mediated cross-linking
of the B cell receptor (BCR) activates the nonreceptor tyrosine
kinases Bruton’s tyrosine kinase (BTK) (1). BTK then pro-
motes the activation of phospholipase Cγ2 (PLCγ2), which
hydrolyzes phosphatidylinositol 4,5-bisphosphate to elicit an
increase of intracellular Ca2+ (2, 3). The resulting Ca2+ flux
activates diverse transcriptional programs to promote B cell
proliferation and differentiation (4, 5). Oncogenic mutations,
microbial antigens, or autoantigens can co-opt BCR signaling
to support the growth and/or survival of malignant B cells,
resulting in B-cell leukemias and lymphomas (6–11). In-
hibitors that target BTK (BTKi) have emerged as breakthrough
therapies for treating a variety of B-cell malignancies, such as
chronic lymphocytic leukemia/small lymphocytic lymphoma,
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mantle cell lymphoma, and Waldenström’s macroglobuli-
nemia (12–14). However, durable response to BTKi is
hampered by acquired resistance after prolonged treatment
(15, 16).

First- and second-generation BTKi, such as ibrutinib, aca-
labrutinib, and zanubrutinib, inhibit the kinase activity of BTK
by binding to its ATP-binding pocket and then covalently
modifying a cysteine residue at position 481 (C481) of BTK
(17, 18). Correspondingly, the most common mechanism of
BTKi resistance occurs through mutations changing this
reactive cysteine into serine (C481S) and less frequently into
phenylalanine, tyrosine, or arginine (C481F, C481Y, and
C481R) (19, 20). In addition, several non-C481 mutations have
been observed in patients resistant to irreversible BTKi (19, 21)
and, more recently, in relapsed chronic lymphocytic leukemia
patients treated with the noncovalent BTK inhibitor pirto-
brutinib (22). Whereas previous studies have clarified their
mechanism of resistance to BTKi, whether these BTK muta-
tions affect the biochemical activity and/or function of BTK in
malignant B cells are not well understood.

Results

C481F/Y/R and L528W impair BTK kinase activity in vitro

In an attempt to explore the biochemical impact of clinically
observed BTK mutations, we first docked ATP into the active
site of BTK kinase domain. In the resulting structural model,
the adenine ring of ATP formed hydrogen bonds with the side
chain of T474 and the backbone of M477 in BTK. In addition,
the phosphate group of ATP was locked in the active site of
BTK by forming two hydrogen bonds with the side chain of
K430. Residues C481 and L528 were located below the binding
pocket and showed no direct interaction with ATP (Fig. 1, A
and B). Next, we evaluated whether clinically observed BTK
C481 and non-C481 mutations might affect ATP binding.
Whereas C481S was not expected to affect the mode of ATP
binding, substitutions of C481 by bulky side chains of
phenylalanine (C481F), tyrosine (C481Y), or arginine (C481R)
were all predicted to generate steric clashes to the sugar ring or
the phosphate group of ATP (Fig. 1B). Similarly, leucine at
position 528 mutated to tryptophan (L528W) caused a steric
clash to the adenine ring of ATP (Fig. 1B). To verify these
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Figure 1. C481F, C481Y, C481R, and L528W impair BTK kinase activity in vitro. A, a modeled structure of WT BTK kinase domain (PDB 6J6M) in complex
with ATP. B, details of the modeled interface between the indicated BTK kinase domain and ATP. Key residues of BTK and ATP are shown as sticks. Carbon
atoms of ATP are shown in champagne. Hydrogen bonds between BTK and ATP are shown as yellow dotted lines. C, thermal shift of recombinant BTK kinase
domain in the presence of DMSO or 1 mM ATP from three technical replicates. D, melting temperature (Tm) quantification of data in (C). Data are the mean
of three technical replicates. Significance was analyzed using Student’s t test, two-tail, paired (ns: not significant; **p < 0.01). E, in vitro kinase assay of
recombinant BTK kinase domain using a synthesized PLCγ2 peptide (left) and recombinant BTK SH3 domain (right) as substrates. Data are the mean ± SD of
three technical replicates. Comparisons between each mutant with WT BTK were analyzed using one-way ANOVA with Dunnett’s multiple comparison tests
(ns: not significant; *p < 0.05, **p < 0.01, ***p < 0.001). BTK, Bruton’s tyrosine kinase; DMSO, dimethyl sulfoxide.
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predictions, we purified recombinant BTK kinase domains and
performed the thermal shift assay. We observed that ATP
stabilized the kinase domains of BTK WT, C481S, and C481R
but did not stabilize the kinase domains of BTK C481F,
C481Y, and L528W (Fig. 1, C and D). Compared to phenyl-
alanine and tyrosine, arginine may be more flexible at the
active site due to the lack of an aromatic ring in its side chain.
Thus, ATP may gain access to the active site and stabilize the
kinase domain of BTK C481R.

These observations prompted us to examine the kinase
activity of BTK mutants using an in vitro kinase assay. By
incubating the BTK kinase domain with either a peptide
substrate derived from PLCγ2 or a protein substrate (the SH3
domain of BTK containing an auto-phosphorylation site), we
observed a near complete lack of kinase activity of BTK C481F,
C481Y, and L528W in vitro (Fig. 1E). Notably, although C481R
did not show a defect in ATP binding in the thermal shift
assay, its kinase activity was significantly reduced compared
with that of the WT BTK (Fig. 1E). Taken together, these re-
sults revealed that four clinically observed BTK mutations,
C481F, C481Y, C481R, and L528W, impaired BTK kinase
activity in vitro.
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C481F/Y/R and L528W impair BTK kinase activity in DLBCL
cells

To examine whether C481F/Y/R and L528W impaired BTK
kinase activity in malignant B cells, we selected TMD8 and
OCI-LY10, two diffused large B-cell lymphoma (DLBCL) cell
lines of the activated B-cell subtype (9), as our experimental
models because of their sensitivity to ibrutinib (Fig. S1A). We
used a lentiviral vector to stably express BTK WT, C481S/F/Y/
R, or L528W in TMD8 and OCI-LY10 cells at levels near their
endogenous BTK (Fig. S1B) and then examined their sensi-
tivity to ibrutinib. Whereas expression of WT BTK did not
alter the sensitivity of TMD8 or OCI-LY10 to ibrutinib,
expression of BTK C481S/F/Y/R and L528W conferred resis-
tance to ibrutinib in both cell lines (Fig. S1C). These isogenic
cell lines, in which endogenous BTK was inactivated by ibru-
tinib, allowed us to examine the biochemical and functional
sequelae of BTK mutations.

Because BTK is a tyrosine kinase, we used deep phospho-
tyrosine (pY) proteomics to profile changes of global pY pat-
terns in DLBCL cells following BTK inactivation by ibrutinib.
After proteolytic digestion, pY-modified peptides were
enriched by an Src homology 2-domain–derived pTyr



EDITORS’ PICK: BTK kinase-inactive mutants in DLBCL
superbinder (23) followed by identification by mass spec-
trometry (Fig. 2A). We identified 176 distinct pY-modified
peptides from TMD8 and OCI-LY10 cells (Table S2). Two
of these peptides, BTK pY223 and pY361, showed greater than
75% reduction in both cell lines following ibrutinib treatment
(Fig. S2A). Moreover, we used anti-IgM stimulation to
enhance BCR signaling, resulting in the identification of 218
distinct pY-modified peptides (Table S2). Five of these pY-
modified peptides, BTK pY223, BTK pY361, CCDC50
pY146, ESYT1 pY822, and OCIAD1 pY199, showed greater
than 75% reduction in both cell lines following ibrutinib
treatment (Fig. S2A).

We next used deep pY proteomics to compare the global pY
patterns of TMD8 cells expressing BTK C481S/F/Y/R (treated
with ibrutinib to inactivate their endogenous BTK) with those
of parental TMD8 cells. Among the pY-modified peptides that
showed greater than 75% reduction relative to parental cells,
four were common in C481F/Y/R, including BTK pY223, BTK
pY361, DNAJA1 pY381, and DOK1 pY409 (Fig. 2B). BTK
pY223 is a well-known auto-phosphorylation site of BTK (24).
Under basal conditions, BTK Y223 phosphorylation could be
detected in parental TMD8 and BTK C481S-expressing cells
but was missing in TMD8 cells expressing BTK C481F/Y/R or
L528W (Figs. 2C and S2B). Cross-linking of BCR by anti-IgM
increased BTK Y223 phosphorylation in parental and BTK
C481S-expressing TMD8 cells but not in BTK C481F/Y/R- or
Figure 2. BTK C481F, C481Y, C481R, and L528W are kinase-inactive in DLB
depicting the overlap of pY-modified peptides identified in parental TMD8 cells
four overlapping peptides in C481F/Y/R are listed. C, Western blotting of total an
and L528W with indicated treatments. D, Western blotting of total and phosph
indicated treatments. Cells were pretreated with 10 nM ibrutinib for 6 h and t
tyrosine kinase; DLBCL, diffuse large B-cell lymphoma.
L528W-expressing TMD8 cells (Figs. 2C and S2B). Similar
observations were made in OCI-LY10 cells (Fig. S2, B and C).

To further validate findings from deep pY proteomics, we
employed CRISPR genome editing in TMD8 to obtain a BTK
L528W knock-in clone, which was 264-fold less sensitive to
ibrutinib than the parental TMD8 (Fig. S3, A and B). In
contrast, the proliferation rate of BTK L528W knock-in clone
was indistinguishable from that of parental TMD8 cells
(Fig. S3C). Consistent with deep pY proteomics results, BTK
Y223 phosphorylation was missing in BTK L528W knock-in
TMD8 cells (Fig. 2D).

Activated BTK is known to phosphorylate PLCγ2 (Y753,
Y759, and Y1217) (25). However, deep pY proteomics showed
that PLCγ2 phosphorylation was not affected by the loss of
BTK kinase activity (Table S2). Moreover, Western blotting
confirmed the lack of correlation between PLCγ2 phosphory-
lation (pY759 and pY1217) and BTK kinase activity in both
TMD8 and OCI-LY10 cells (Figs. 2C and S2, B and C). Similar
observations were made in L528W knock-in TMD8 cells
(Fig. 2D). Therefore, the identified pY sites of PLCγ2 are likely
phosphorylated by a different kinase in DLBCL cells.

Kinase-inactive BTK mutants support oncogenic BCR signaling
in malignant B cells

We next examined whether BTK kinase activity was
required for oncogenic BCR signaling by measuring Ca2+ flux
CL cells. A, schematic of phospho-tyrosine (pY) proteomics. B, Venn diagram
and TMD8 cells expressing BTK C481S/F/Y/R with indicated treatments. The
d phosphorylated BTK and PLCγ2 in TMD8 cells expressing BTK C481S/F/Y/R

orylated BTK and PLCγ2 in parental and BTK L528W knock-in TMD8 cells with
hen stimulated with 10 μg/ml goat antihuman IgM for 5 min. BTK, Bruton’s
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following BCR cross-linking. By testing a panel of B-cell lym-
phoma cell lines, we found that half of them displayed Ca2+

flux following anti-IgM stimulation (Fig. S4, A and B). Among
the responding cell lines, TMD8 cells displayed Ca2+ flux
peaked around 1 min and subsided by 4 min post anti-IgM
stimulation. Pretreatment with ibrutinib reduced the magni-
tude of the Ca2+ flux in parental TMD8 cells by 3.2-fold (Fig. 3,
A and B). Comparable anti-IgM–induced Ca2+ flux was
observed in BTK L528W knock-in cells relative to parental
Figure 3. Kinase-inactive BTK mutants support oncogenic BCR signaling in
(left) and BTK L528W knock-in (right) TMD8 cells. Cells were pretreated with 10 n
mean ± SD of three biological replicates. B, area under the curve (AUC) quantifi
Tukey’s multiple comparison tests (ns: not significant; ***p < 0.001). C, anti-IgM
BTK WT, C481F/Y/R, and L528W. Cells were stimulated with 10 μg/ml anti-IgM. D
(AUC) quantification of data in (C). Significance was analyzed using one-w
****p < 0.0001). E, heat map of differentially expressed genes in indicated cell
transformation was performed. F, gene ontology enrichment analysis of genes
Bruton’s tyrosine kinase.
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cells, and the Ca2+ flux in BTK L528W knock-in cells could no
longer be suppressed by ibrutinib (Fig. 3, A and B). These
results suggest that TMD8 cells without BTK kinase activity
maintain oncogenic BCR signaling.

Extending from findings in TMD8, we examined BCR
signaling in the Burkitt’s lymphoma cell line Ramos, in which
anti-IgM induced robust Ca2+ flux (Fig. S4, A and B). Ramos
does not rely on BCR signaling for survival; we thus isolated a
BTK KO clone of Ramos (Fig. S4C). The resulting BTK KO
malignant B cells. A, anti-IgM–induced Ca2+ flux measurements in parental
M ibrutinib for 12 h followed by 10 μg/ml anti-IgM stimulation. Data are the
cation of data in (A). Significance was analyzed using two-way ANOVA with
–induced Ca2+ flux measurements in BTK KO Ramos cells expressing vector,
ata are the mean ± SD of three biological replicates. D, area under the curve
ay ANOVA with Tukey’s multiple comparison tests (ns: not significant;
lines with or without 10 nM ibrutinib treatment for 24 h. A row-wise Z score
downregulated by ibrutinib in parental TMD8 cells. BCR, B cell receptor; BTK,
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cells showed reduced Ca2+ flux following anti-IgM stimulation
(Fig. S4D). We were initially surprised that knocking out BTK
did not completely abrogate anti-IgM–induced Ca2+ flux;
however, similar phenomena were observed in multiple pre-
vious studies (26, 27), suggesting that BTK-independent
mechanisms could contribute to residual Ca2+ flux in BTK
KO cells. We then expressed various BTK mutants and found
all of them rescued the defective Ca2+ flux in BTK KO Ramos
cells to the same degree as WT BTK (Fig. 3, C and D). These
results altogether suggest that the kinase activity of BTK is
dispensable for the induction of Ca2 +

flux to transmit onco-
genic BCR signaling.
Kinase-inactive BTK does not alter gene expression in
malignant B cells

BCR signaling activates multiple transcription factors to
sustain the growth and survival of malignant B cells (4, 5). We
therefore used RNA-seq to examine whether the loss of BTK
kinase activity might affect gene expression downstream of
BCR signaling (Table S3). By comparing parental TMD8 cells
treated with vehicle or ibrutinib, we defined a list of 179
significantly upregulated genes and 192 significantly
TMD8 parental
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downregulated genes in ibrutinib-treated cells (Figs. 3E and
S5A). Gene ontology analyses revealed that ibrutinib treatment
downregulated genes involved in cytokine-mediated signaling
pathways and regulation of cell adhesion and chemotaxis,
consistent with previous studies (Fig. 3F) (28, 29). Genes
upregulated by ibrutinib did not enrich gene sets with statis-
tical significance (Fig. S5F). By displaying these differentially
expressed genes as a heat map, we found that they were
expressed at comparable levels in TMD8 cells expressing
kinase-active BTK C481S or kinase-inactive BTK C481F/Y/R
(Figs. 3E and S5, B–E). These results demonstrate that loss of
BTK kinase activity does not affect gene expression down-
stream of BCR signaling.
BTK kinase-inactivating mutations do not bypass BCR
signaling

We used a competitive cell growth assay to examine
whether DLBCL cells deficient in BTK kinase activity
remained dependent on BCR signaling for growth and survival
(Fig. 4A). To ensure comparable CRISPR efficiencies, we iso-
lated Cas9-transduced clones of parental TMD8 and BTK
L528W knock-in cells and validated their dependencies on the
WT
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J. Biol. Chem. (2022) 298(11) 102555 5



EDITORS’ PICK: BTK kinase-inactive mutants in DLBCL
pan-essential gene POLD3 (Fig. S6A). We then used an
sgRNA-targeting BTK and found that sgRNA-transduced cells
from both parental and BTK L528W knock-in cells were
depleted at comparable rates (Fig. 4B). The reduction of cell
fitness due to loss of BTK could be fully rescued by comple-
mentary DNAs encoding either kinase-active BTK (WT and
C481S) or kinase-inactive BTK (L528W and C481F/Y/R)
(Fig. S6B).

We next transduced cells with sgRNAs that target several
key genes of the BCR signaling pathway, including CD79A/
CD79B (encoding components of the BCR complex), SYK,
BLNK (encoding B cell linker protein), PLCG2, PRKCB
(encoding protein kinase C β), CARD11/BCL10/MALT1
(encoding components of the CBM signalosome complex), and
NFKB1 (encoding a nuclear factor kappa B subunit). We
observed that both TMD8 parental cells and BTK L528W
knock-in cells were equally dependent on these genes for
survival (Fig. 4B). Altogether, these results demonstrate that
DLBCL harboring BTK kinase-inactivating mutations does not
bypass BCR signaling for growth and survival.

Targeted degradation of BTK kinase-inactive mutants
overcomes BTKi resistance

Because DLBCL cells with kinase-inactive BTK remained
addicted to BTK, we hypothesized that targeted BTK degra-
dation by the proteolysis-targeting chimera (PROTAC) might
be an effective strategy to overcome BTKi resistance (30). Thus,
we employed a BTK PROTAC (BGB-15741) to hijack the E3
ubiquitin ligase CRL4CRBN to degrade BTK (Fig. 4C). BGB-
15741 treatment induced the degradation of both WT BTK
and BTK L528W in TMD8 cells, which could be blocked by the
proteasome inhibitor MG132 and the CRBN binder lenalido-
mide (Fig. S7, A and B). TMD8 and OCI-LY10 cells harboring
kinase-inactive BTK mutations were sensitive to the anti-
proliferative effect of BGB-15741 (Fig. 4D). Using quantitative
mass spectrometry, we examined the proteome-wide selectivity
of BGB-15741. In TMD8 cells treated with BGB-15741 for 6 h,
BTK and JUN were the only two proteins significantly depleted
(Fig. S7C and Table S4). By querying previous genome-wide
CRISPR/Cas9 screening in TMD8 (31), we found that JUN
was not essential for the survival of TMD8 (Fig. S7D). Thus, we
conclude that the antiproliferative activity of BGB-15741 is a
result of BTK degradation. Taken together, the BTK PROTAC
BGB-15741 promotes the degradation of kinase-inactive BTK
mutants to overcome resistance to irreversible BTKi.

BTK kinase-inactivating mutations increase TLR9 dependency
in DLBCL cells

To unbiasedly explore whether BTK kinase-inactivating
mutations might result in alterations of DLBCL genetic de-
pendencies, we performed a parallel genome-wide CRISPR-
Cas9 screening in parental TMD8 and L528W knock-in cells.
After lentiviral transduction of the sgRNA library, we propa-
gated cells for 3 weeks and then performed next-generation
sequencing to quantify the abundance of each sgRNA in sur-
viving cells (Fig. 5A).
6 J. Biol. Chem. (2022) 298(11) 102555
MAGeCK (Model-based Analysis of Genome-wide CRISPR/
Cas9 Knockout) algorithm ranked 12 significantly depleted
genes in L528W knock-in cells relative to parental cells
(Fig. 5B and Table S5). Among these 12 candidates, STRING
analysis revealed that Toll-like receptor 9 (TLR9), unc-93
homolog B1 (UNC93B1), and canopy homolog 3 (CNPY3)
formed a protein–protein interaction network (Fig. 5B). TLR9
is a member of the Toll-like receptor (TLR), which localizes to
the endosomes and senses microbial DNA to trigger proin-
flammatory signaling (32). CNPY3 and UNC93B1 are required
for proper TLR9 folding and localization to endosomes,
respectively (33–35). In addition, sgRNAs targeting the non-
receptor tyrosine kinase HCK were also depleted in L528W
knock-in cells relative to parental cells (Fig. 5B).

We next used the competitive cell growth assay (Fig. 4A) to
validate findings from the CRISPR-Cas9 screening. When
transduced with sgRNAs targeting TLR9, BTK L528W knock-
in cells were depleted with significantly faster kinetics relative
to parental cells (Fig. S8A). To exclude clonal effects in the
competitive cell growth assay, we used the suite of isogenic
TMD8-Cas9 cells expressing BTK C481S/F/Y/R and L528W
and inactivated their endogenous BTK with ibrutinib. When
transduced with the sgRNA-targeting POLD3, TMD8-Cas9
cells expressing different forms of BTK were depleted with
similar kinetics, suggesting their comparable CRISPR effi-
ciencies (Fig. 5C). In contrast, when transduced with sgRNAs
targeting TLR9, UNC93B1, CNYP3, or HCK, BTK kinase-
inactive cells (C481F/Y/R and L528W) were depleted with
significantly faster kinetics than BTK kinase-active cells
(C481S). (Figs. 5C and S8B). Similar observations were made
in OCI-LY10-Cas9 cells (Figs. 5C and S8B). Taken together,
we conclude that DLBCL cells with kinase-inactive BTK are
more dependent on TLR9 signaling for their growth and/or
survival.
Discussion

Our study unveiled a collection of clinically observed BTK
mutations that not only cause resistance to irreversible BTKi
but also inactivate the kinase activity of BTK. These mutations
affect two residues in BTK, C481, and L528, substituting them
with residues containing bulky side chains, resulting in steric
hindrance to ATP binding. By studying the biochemical and
functional properties of these BTK mutants in DLBCL cell
lines, we made the unexpected finding that kinase-inactive
BTK mutants were as efficient at transducing BCR signaling
as their WT counterpart. Similar observations of kinase-
inactive BTK mutants have been made in other experimental
systems. Tomlinson et al. (36) observed that a kinase-inactive
BTK (K430E) could restore BCR-induced calcium flux and
ERK-MAPK activation in BTK-deficient DT40 cells. In addi-
tion, BTK C481F and C481Y mutants have been reported to
lack auto-phosphorylation activity in HEK 293T and
DT40 cells (20, 27). Together with our results, BTK’s non-
catalytic activity instead of kinase activity is required for
oncogenic BCR signaling to support the growth and survival of
malignant B cells.



Figure 5. Altered genetic dependencies of DLBCL cells with kinase-inactive BTK. A, schematic of parallel CRISPR-Cas9 screening in parental and BTK
L528W knock-in TMD8 cells. B, scatterplot depicting log2-transformed average fold change of sgRNA abundance (BTK L528W knock-in divided by parental)
and −log10 transformed p-value computed by MAGeCK. Functional association of genes identified in the CRISPR-Cas9 screen by STRING analysis is shown as
an inset. C, viability effects (normalized to the control sgChr2-4) after CRISPR inactivation of the indicated genes in the indicated cell lines. Endogenous BTK
of these cell lines were inactivated by ibrutinib. Data are the mean of three technical replicates from one representative experiment. Two independent
experiments were performed. Significance was analyzed using one-way ANOVA with Dunnett’s multiple comparison tests (*p < 0.05, **p < 0.01,
***p < 0.001). BTK, Bruton’s tyrosine kinase; DLBCL, diffuse large B-cell lymphoma.
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Although protein kinases are known primarily as enzymes
catalyzing phosphorylation, accumulating evidence has
revealed their noncatalytic functions, such as allosteric regu-
lation of other enzymes, scaffolding the assembly of signaling
complexes, and regulation of transcription (37). Our parallel
CRISPR-Cas9 screening in DLBCL cells with kinase-active
versus kinase-inactive BTK revealed an increased genetic
dependency of BTK kinase-inactive cells on TLR9, UNC93B1,
CNPY3, and HCK. Thus, inactivation of BTK kinase activity
resulted in a loss of cellular fitness only when these genes were
inactivated.

HCK is a member of the SRC family of cytoplasmic tyrosine
kinases (SFKs) and is expressed in myeloid cells and B lym-
phocytes (38). High levels of HCK have been reported in
J. Biol. Chem. (2022) 298(11) 102555 7
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various types of leukemia, such as multiple myeloma and acute
lymphoblastic leukemia (39, 40). In our study, we demon-
strated that DLBCL cells with kinase-inactive BTK displayed
increased genetic dependence on HCK compared to DLBCL
cells with kinase-active BTK. Consistent with our finding, a
recent study implicated the activation of HCK in malignant B
cells with kinase-inactive BTK (27). Functions and mecha-
nisms of HCK activation in DLBCL cells with kinase-inactive
BTK require further investigation.

TLR9, a member of the toll-like receptor family expressed
in mammalian immune cells, is a pattern recognition receptor
for unmethylated CpG-DNA from bacteria and viruses (41).
Ligand-bound TLR9 initiates the production of type I in-
terferons and proinflammatory cytokines to activate host
antibacterial or antiviral immune responses (42–44). Previous
studies have reported that BTK was required for TLR9
signaling in monocytic THP1 cells and mouse B cells (45, 46).
In addition, proximity labeling experiments revealed the
physical association of BCR with TLR9 and MYD88 into a
super complex in DLBCL cells (31). These observations
suggest that BTK mediates the crosstalk between BCR and
TLR9 signaling pathways. Together with our results, the
inactivation of BTK kinase activity in DLBCL cells, although
not impacting BCR signaling, may weaken the crosstalk be-
tween BCR and TLR9 signaling, resulting in increased de-
pendency on TLR9. The biochemical and functional
interactions between TLR9 and kinase-inactive BTK warrant
future studies.

BTKi has transformed the treatment for various B cell ma-
lignancies. Thus far, it has been generally believed that BTKi
acts by inhibiting the BTK’s catalytic function. Our study raises
the intriguing question regarding the exact mechanism of ac-
tion of BTKi. BTKi such as ibrutinib not only inactivates BTK
kinase activity but also shuts down oncogenic BCR signaling.
Given our finding that BTK kinase activity is dispensable for
oncogenic BCR signaling, we propose that BTKi in clinical use
may target BCR signaling by impairing BTK’s noncatalytic
function. Collectively, our findings set the stage for studying
BTK’s noncatalytic functions in various forms of B cell
malignancies.

Experimental procedures

Recombinant protein purification, cell line engineering,
Western blotting, proteomic methods, and chemical synthesis
are described in Supplementary Methods. Sources of cell lines,
antibodies, plasmids, and compounds are described in
Table S1. All human lymphoma cell lines were cultured in
RPMI-1640 medium with 10% fetal bovine serum and
2 mM L-glutamine and were confirmed to be mycoplasma free
on a weekly basis using a PCR-based assay.

Thermal shift assay

Recombinant BTK kinase domain was diluted to 2 μM with
the assay buffer (50 mM Tris pH 7.4, 10 mM MgCl2, and
2 mM MnCl2). ATP (1 mM) was added to the diluted protein.
Twenty microliters of protein–ATP mix was combined with
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5 μl of 1:200 diluted SYPRO Orange Protein Gel Stain (Sig-
ma-Aldrich). After incubation on ice for 20 min, fluorescence
measurements were performed using a CFX96 Touch Real-
Time PCR instrument (Bio-Rad Laboratories, Inc). The tem-
perature was increased from 10 �C to 95 �C with an increment
of 0.5 �C and equilibration time of 10 s at each temperature
prior to measurement. The melting temperature (Tm) was
defined as the temperature corresponding to the maximum
value of the first derivative of fluorescence transition.

In vitro BTK kinase assay

Recombinant BTK kinase domain (1 μM) and PLCγ2 pep-
tide (40 μM) or recombinant BTK SH3 domain (40 μM) were
diluted with the kinase assay buffer (25 mM Tris pH 7.5,
150 mM NaCl, 5% glycerol, 20 mM MgCl2, and 1 mM DTT)
and mixed with ATP (50 μM). Reactions (20 μl) were incu-
bated at room temperature for 0, 2.5, 5, 10, 20, 40, and 60 min.
ADP level was measured using the ADP-Glo Kinase Assay kit
(Promega Corporation). Luminescence was recorded by EnS-
pire multimode reader (PerkinElmer Inc). Relative ADP level
was determined with GraphPad Prism (https://www.graphpad.
com/scientific-software/prism/) using baseline correction (by
normalizing to 0 min).

pY proteomics

A total of 5 × 107 cells were treated with 10 nM ibrutinib for
6 h followed by a 5-min stimulation with 10 μg/ml anti-IgM
(Jackson ImmunoResearch Laboratories, Inc; 109-006-129).
Procedures of deep pY proteomics are described in
Supplementary Methods.

Ca2+ flux measurement by flow cytometry

Cells were rinsed three times with Dulbecco’s phosphate-
buffered saline (DPBS) and incubated in the dark with 1 μM
Fluo-4-AM (Beyotime Inc; S1060) diluted in DPBS at 37 �C for
30 min. Dye-loaded cells were washed three times and resus-
pended in DPBS for an additional 20-min incubation at room
temperature. Fluorescence measurements were performed us-
ing a BD Accuri C6 Plus flow cytometer (BD Biosciences) using
an air-cooled argon ion laser (488 nm excitation). Stimulation
with 10 μg/ml anti-IgM (Jackson ImmunoResearch Labora-
tories, Inc) was performed by injection with a syringe. For data
analysis, the relative fluorescence units were normalized as (F −
F0)/F0, in which F0 was defined as the mean of fluorescence 5 to
10 s before anti–IgM stimulation. F was defined as the average
fluorescence intensity per second. Areas under the calcium flux
curves were determined with GraphPad Prism.

RNA-seq and gene ontology analysis

Total cellular RNA was purified from cells treated with
vehicle (dimethyl sulfoxide) or 10 nM ibrutinib for 24 h.
Standard RNA-seq was performed by Berry Genomics.
Sequencing reads were aligned to the human GRCh38 refer-
ence transcriptome using Botwie2 (47) followed by gene-level
quantification with RSEM (48). Differential gene expression
analyses were performed with DESeq2 (49) with the following
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cutoff: absolute log2-transformed fold change greater than 2
and p-value less than 0.01. Gene ontology analysis of differ-
entially expressed genes was performed with clusterProfiler
(50).

Competitive cell growth assay

Cas9-transduced cell lines were infected with the indicated
sgRNA lentivirus at a low multiplicity of infection (MOI =
0.2–0.4). Percentages of transduced cells (sgRNA+) marked by
mNeonGreen-2A-ZsGreen1 were quantified every 2 to 3 days
using BD Accuri C6 Plus flow cytometer (BD Biosciences) and
normalized to day 4 or 5.

Parallel genome-wide CRISPR-Cas9 screening

The human CRISPR Brunello library (51) was transduced
into TMD8-Cas9 and TMD8-Cas9 BTK L528W knock-in cells
at a low multiplicity of infection (MOI = 0.2–0.3) and a
coverage of �400 cells per sgRNA. After puromycin (1 μg/ml)
selection, transduced cells were cultured for 3 weeks. Library
preparation for sequencing was carried out in PCR performed
on genomic DNA isolated from cells. Sequencing reads were
analyzed by MAGeCK (52) to determine relative sgRNAs
abundance.

Cell viability assay

Eight thousand cells were plated per well in 96-well
microplates (Corning Inc). Cells were treated with serial di-
lutions of ibrutinib or BGB-15741 with a D300e digital
dispenser (Tecan Group Ltd). Cell survival was measured 96 h
later using the CellTiter-Glo luminescent cell viability assay kit
(Promega Corporation). Luminescence was recorded by EnS-
pire multimode reader (PerkinElmer Inc). Half maximal
inhibitory concentration (IC50) was determined with Graph-
Pad Prism using baseline correction (by normalizing to
dimethyl sulfoxide control), the asymmetric (five parameter)
equation, and least squares fit.

Statistical analysis

Statistical analyses were performed with GraphPad Prism
8.0. Student’s t test was used to evaluate the statistically sig-
nificant difference between the two sample groups. When
comparing more than two independent groups, ANOVA was
used to evaluate statistical significance. Multiple comparison
tests were performed when ANOVA was significant. All tests
were two-tailed, and p < 0.05 was considered statistically
significant.

Data availability

Raw data of RNA-seq results have been deposited in the
Gene Expression Omnibus (accession number GSE207322).
All of the datasets generated during the study are available
from the corresponding author upon reasonable request.

Supporting information—This article contains supporting informa-
tion (53–59).
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