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During respiratory-gated radiotherapy (RGRT), gate on and off latencies cause deviations of gating windows, possibly leading to
delivery of low- and high-dose radiations to tumors and normal tissues, respectively. Currently, there are no RGRT systems that
have definite tools to compensate for the delays. To address the problem, we propose a framework consisting of two steps: (1)
multistep-ahead prediction and (2) prediction-based gating. For each step, we have devised a specific algorithm to accomplish the
task. Numerical experiments were performed using respiratory signals of a phantom and ten volunteers, and our prediction-based
RGRT system exhibited superior performance in more than a few signal samples. In some, however, signal prediction and
prediction-based gating did not work well, maybe due to signal irregularity and/or baseline drift. 'e proposed approach has
potential applicability in RGRT, and further studies are needed to verify and refine the constituent algorithms.

1. Introduction

Respiratory-gated radiotherapy (RGRT) is a widely
employed means of treating tumors that move with respi-
ration [1–3]. In RGRT, radiation is administered within
particular phases of the patient’s breathing cycle (called as
gating windows), which are determined by monitoring re-
spiratory motion in the form of a respiratory signal using
either external or internal markers. Note that, although there
are some options for RGRT (e.g., whether to choose
amplitude-based or phase-based gating and whether to gate
during inhalation or exhalation), this study focuses only on
amplitude-based gating during exhalation, which is a com-
mon setting in clinical practice. Several RGRT systems have
been developed, and some take considerable time from the
detection of a signal change to the execution of a gate on/off
command (Table 1). 'e gate on/off latency causes de-
viations of gating windows in conventional RGRT (Fig-
ure 1), possibly leading to delivery of low- and high-dose
radiation to tumor and normal tissues, respectively. At
present, there are no RGRT systems that have definite
techniques to compensate for the delays. 'erefore, here, we
propose a prediction-based system to address the problem.

'is paper is organized as follows. 'e devised frame-
work is described in Section 2, experimental results are in
Section 3, and the conclusions follow in Section 4.

2. Methods

In this section, we describe our new approach to compensate
for gate on/off latency. 'is consists of two steps: (1)
multistep-ahead prediction and (2) prediction-based gating.

2.1. Multistep-Ahead Prediction. Several prediction algo-
rithms for respiratory signals have been proposed, and most
of them adopt single-output strategies [7, 8]. However, in
our framework, multiple-output multistep-ahead prediction
is required. 'erefore, we have devised an algorithm for this
purpose.

A respiratory signal is regarded as a sequence

xt , t � 0, 1, 2, . . . , (1)

of equally spaced time-series observations in a space χ, with
a time interval of Δτ seconds (s), where Δτ > 0. Let n and m be
positive integers. For each time point t≥ n, multistep-ahead
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prediction aims to forecast the m-tuple (xt, . . . , xt+m−1) of
subsequent observations, given the previous n-tuple
(xt−n, . . . , xt−1). Hence, our goal here is to form a predictor
mapping on χn to χm. Suppose χn is ametric space with ametric
dn. Let us have a learning setL � (xi, yi) ∈ χn × χm , where i
ranges over some finite totally ordered set (see Section 2.3 for an
example of the learning set preparation). 'en, for a test tuple
x ∈ χn, we predict the next m-tuple as

ΨL(x) � yp, (2)

where p is the largest index such that dn(x, xp)≤ dn(x, xi) for
all i. 'roughout this paper, we suppose that χ � R, and χk,
which equals Rk (k � 1, 2, 3, . . .), is a real k-space with the
Euclidean metric, i.e.,

dk(a, b) �

�����������



k−1

j�0
aj − bj 

2




a � a0, . . . , ak−1(  ∈ Rk

b � b0, . . . , bk−1(  ∈ Rk
⎛⎝ ⎞⎠.

(3)

2.2. Prediction-Based RGRT. Let xt ∈ R1 (t≥ n) be the
current observation, β ∈ R1 be a gating threshold, and m1
and m0 be the numbers of time points corresponding to gate
on and off delays, respectively. Given learning sets
L1 ⊂ Rn × R2m1+1 and L0 ⊂ Rn × R2m0+1 (see Section 2.3
for an example of the learning set construction), the function
GL1 ,L0

defined below is used for a prediction-based gating.

(1) Case m1 ≥m0:

GL1 ,L0
(t, β) �

1, if ξ2m1+1,β ΨL1
xt(  < 0 or

ξ2m0+1,β ΨL0
xt(  < 0,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

(2) Case m1 <m0:

GL1 ,L0
(t, β) �

1, if ξ2m1+1,β ΨL1
xt(  < 0 and

ξ2m0+1,β ΨL0
xt(  < 0,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where ξm,β : Rm⟶ Z (the set of integers) is defined by

ξm,β a0, . . . , am−1( (  � 
m−1

k�0
sgn ak − β( , (6)

and xt � (xt−n, . . . , xt−1) ∈ Rn. Note that sgn : R1⟶
−1, 0, 1{ } denotes the signum function, i.e.,

sgn(a) �

1, if a> 0,

0, if a � 0,

−1, if a< 0.

⎧⎪⎪⎨

⎪⎪⎩
(7)

In our prediction-based RGRTsystem (pRGRT), gate on
command is sent if GL1 ,L0

(t, β) � 1, while gate off command
is sent if GL1 ,L0

(t, β) � 0.

2.3. Construction of a Learning Set. To begin with, a re-
spiratory signal tuple (x0, . . . , xN−1) ∈ RN is smoothed
using the finite Fourier transform [9]. In detail, the mapping
Φα,N : RN⟶ RN (α ∈ R1) defined below is applied for the
smoothing.

Φα,N x0, . . . , xN−1( (  � x0, . . . , xN−1( , (8a)

s0, . . . , sN−1(  � FN W x0, . . . , xN−1( ( ( , (8b)

u0, . . . , uN−1(  � F
−1
N Fα s0, . . . , sN−1( ( ( , (8c)

x0, . . . , xN−1(  � W
−1

R u0, . . . , uN−1( ( ( , (8d)

Table 1: Gate on and off latencies of some gating systems.

Monitor Linac Gate on delay Gate off delay Reference
Abches (APEX) Elekta Synergy 336ms 88ms [4]
AlignRT (VisionRT) Varian Clinac iX 356ms 529ms [5]
Calypso (Varian) Varian Clinac iX 209ms 60ms [5]
Catalyst (C-RAD) Elekta Synergy 851ms 215ms [6]

Threshould

Irradiate Irradiate

(a)

On OnOff Off Command

Irradiate Irradiate

(b)

Figure 1: Problemwith conventional RGRT. (a) Given a respiratory signal and a gating threshold, gating windows should ideally be the time
when the signal is lower than the threshold. (b) In conventional RGRT, gate on and off commands are sent just when the signal is lower and
higher than the threshold, respectively. Hence, gate on and off delays cause deviations of gating windows.
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whereFN is the finite Fourier transform on CN (a complex
N-space) defined by

FN a0, . . . , aN−1( (  � a0, . . . , aN−1( ,

ak � 
N−1

j�0
aj exp −

2π
���
−1

√
jk

N
 

(k � 0, . . . , N− 1),

(9)

while its inverse is given by

F
−1
N a0, . . . , aN−1( (  � �a0, . . . , �aN−1( ,

�ak �
1
N



N−1

j�0
aj exp

2π
���
−1

√
jk

N
 

(k � 0, . . . , N− 1),

(10)

W : RN⟶ RN is defined by

W x0, . . . , xN−1( (  � w0x0, . . . , wN−1xN−1( ,

wk � 0.54− 0.46 cos
2πk

N− 1
 

(k � 0, . . . , N− 1),

(11)

while its inverse is given by

W
−1

x0, . . . , xN−1( (  �
x0

w0
, . . . ,

xN−1
wN−1

 , (12)

Fα : CN⟶ CN is defined by

Fα s0, . . . , sN−1( (  � s0, . . . ,sN−1( ,

sk �

0, if k−
N

2




<

N

2
− α,

sk, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(k � 0, . . . , N− 1),

(13)

and R : CN⟶ RN is by

R u0, . . . , uN−1( (  � Re u0( , . . . ,Re uN−1( ( . (14)

Note that W defined above is called the Hamming
window [10].'e parameter α ∈ R1 can be set freely, e.g., we
set

α � NΔτf 0≤f≤
1

2Δτ
 , (15)

to filter out signal components with frequencies larger than f
hertz (Hz).

For a signal tuple (x0, . . . , xN−1) ∈ RN,
x0, . . . , xN−1(  � Φα,N x0, . . . , xN−1( ( , (16)

is called the smoothed signal tuple and used to construct
a learning set (xi, yi)  ⊂ Rn × Rm (n + m≤N) by putting

xi � xi, . . . , xi+n−1( ,

yi � xi+n, . . . , xi+n+m−1( ,
(17)

for i � 0, . . . , N− n−m.

3. Numerical Results and Discussion

To validate the devised algorithms, respiratory signals of
a dynamic thoracic phantom (CIRS, Virginia, USA) and ten
healthy volunteers were measured with Abches (APEX
Medical, Inc., Tokyo, Japan), which is a respiration-
monitoring device developed by Onishi et al. [11] and
routinely used in our university hospital. Note that, for
simplicity, we supposed that Δτ � 0.03 although the actual
time intervals were not precisely equal to 0.03 s. Signal values
were given in the unit of mm.

3.1. Smoothing of a Respiratory Signal. To test the algorithm
of smoothing a respiratory signal, the phantom’s signal was
measured for 20 s (667 time points) and an artificial noise
was added (13.65–13.7 s), forming a signal tuple
x � (x0, . . . , xN−1). 'en Φα,N(x) was calculated (Equations
(8a)–(8d)), setting α � NΔτ to filter out high frequency
(>1Hz) components. As shown in Figure 2, we succeeded in
removing noisy components of x.

3.2. Prediction of a Respiratory Signal. 'e prediction al-
gorithm was tested using respiratory signals of ten volun-
teers, measured for 300 s (10000 time points) (Figure 3). For
each time point of a signal sample, observations during the
past 120 s (4000 points) were used to construct a learning set
and a predictor is formed to forecast the next 0.3 s (10 points)
given the previous 3 s (100 points). In detail, let N � 4000,
n � 100, m � 10, and x0, . . . , xM−1  denote a signal sample,
where M � 10000. For each t � N + n, . . . , M−m, the signal
tuple (xt−n−N, . . . , xt−n−1) ∈ RN was used to construct
a learning set Lt ⊂ Rn × Rm as in Section 2.3. 'en,
ΨLt

(xt) ∈ Rm was calculated (Section 2.1), where
xt � (xt−n, . . . , xt−1). To evaluate the prediction accuracy,
the mth coordinate of ΨLt

(xt), denoted as xt+m−1, was
comparedwith the corresponding actual observation xt+m−1. In
accordance with the previous studies of predicting respiratory
motion [7], the root mean square error (RMSE) (mm)

�����������������

 M−1
i�N+n+m−1 xi − xi( 

2

M−N− n−m + 1



, (18)

was calculated as an indicator of prediction error (Figure 4).
'e signal samples with RMSE less than 1.5mm appeared to
be well predictable by our approach (Figure 5), while some of
the others appeared not to (Figure 6). Hence, the former
samples numbered 0, 1, 2, 7, and 8 were selected for the next
experiment.

3.3. Prediction-Based RGRT. Our prediction-based gating
system, pRGRT, was tested using the selected five signal
samples. In the following experiment, gate on and off delays
were set to be 0.336 s and 0.088 s, respectively, in accordance
with the Abches system (Table 1). For each time point
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t≥N + n of a sample x0, . . . , xM−1 , the signal tuple
(xt−n−N, . . . , xt−n−1) ∈ RN was used to construct learning
sets L1,t ⊂ Rn × R2m1+1 and L0,t ⊂ Rn × R2m0+1 as in Sec-
tion 2.3, where M � 10000 (300 s), N � 4000 (120 s), n � 100
(3 s), m1 � 12 (0.336 s), and m0 � 3 (0.088 s). We put gj 

and gj  as in Algorithm 1 and Algorithm 2, respectively,
where β was fixed to the median of x0, . . . , xN−1 .

For j ∈ S � N + n + m1 − 1, . . . , M− 1 , we assumed
that gate on command is executed at j,

(i) if and only if gj � 1 (in conventional RGRT).
(ii) if and only if gj � 1 (in pRGRT).

In each of the RGRTsimulations, let S1 be the set of j ∈ S

at which gate on command is executed, and put S0 � S\S1. To

quantify possibly inappropriate irradiation during RGRT,
the value

j∈S χS1
(j)x+

j + χS0
(j)x−j 

M−N− n−m1 + 1
, (19)

was calculated and denoted as nErr (normalized error),
whose unit is mm. Here, χS represents the characteristic
function of a set S defined as

χS(j) �
1, if j ∈ S,

0, if j ∉ S,
 (20)

x+
j � max xj − β, 0 , and x−j � −min xj − β, 0 . Schematic

illustrations of nErr and pRGRT are shown in Figure 7. As
a result, nErr values for four out of the five samples
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Figure 2: Smoothing of a respiratory signal. 'e phantom’s signal was measured for 20 s, and an artificial noise was added (13.65–13.7 s),
forming a signal tuple x � (x0, . . . , xN−1). 'en Φα,N(x) was calculated (Equations (8a)–(8d)), setting α � NΔτ to filter out high frequency
(>1Hz) components. Note that power indicates (|s0|, . . . , |s⌊(N−1)/2⌋|), where (s0, . . . , sN−1) � FN(W((x0, . . . , xN−1))), |s| denotes the
absolute value of s ∈ C1, and ⌊a⌋ is the largest integer smaller than or equal to a ∈ R1.'e units of signal value, time, and frequency are mm,
s, and Hz, respectively.
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decreased in pRGRT (Figure 8). Regarding the four samples,
gating window shifts observed in conventional RGRT
appeared to be improved in pRGRT (Figure 9). As for the
other sample (numbered 8), considerable baseline drift was
observed (Figure 10), which is an undesirable feature for
gating systems with fixed threshold [12].

'e above are cases where m1 ≥m0. To see whether
pRGRT works when m1 <m0, similar simulations were
performed with gate on and off delays being 0.356 s
(m1 � 12) and 0.529 s (m0 � 18), respectively, in
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Figure 3: Respiratory signal samples of ten volunteers measured for 300 s. 'e units of signal value and time are mm and s, respectively.
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Figure 4: Prediction errors for the ten samples. For each sample,
RMSE (mm) value was calculated (Section 3.2) and is plotted here.
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Figure 5: Representative prediction result. Predicted signal cor-
responds to x5000, . . . , x5999 of the serial prediction trials (Section
3.2) using the sample numbered 7. 'e units of signal value and
time are mm and s, respectively.
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Figure 6: Representative prediction result. Predicted signal corresponds to x6000, . . . , x6999 of the serial prediction trials (Section 3.2) using
the sample numbered 9. 'e units of signal value and time are mm and s, respectively.

(1) for t⟵N + n, . . . , M−min m0, m1 , do
(2) if xt−1 < β, then
(3) gt+m1−1, . . . , gM−1⟵ 1,
(4) else
(5) gt+m0−1, . . . , gM−1⟵ 0,
(6) end if
(7) end for

ALGORITHM 1: Simulation of conventional RGRT.

(1) for t⟵N + n, . . . , M−min m0, m1 , do
(2) if GL1,t ,L0,t

(t, β) � 1, then
(3) gt+m1−1, . . . , gM−1⟵ 1,
(4) else
(5) gt+m0−1, . . . , gM−1⟵ 0,
(6) end if
(7) end for

ALGORITHM 2: Simulation of pRGRT.

On OnOff OffCommand

Irradiate Irradiate

(a)

On OnOff Off

Command on/off
in advance

Irradiate Irradiate

(b)

Figure 7: Conventional and prediction-based RGRTsystems, denoted here as RGRTand pRGRT, respectively. (a) In RGRT, gate on and off
delays cause shifts of gating windows. Stated informally, nErr corresponds to the mean absolute height of the shaded area (mm). (b) In
pRGRT, gate on and off commands are expected to be sent in advance to compensate for the latencies.
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accordance with the the AlignRT system (Table 1). 'e
outcome was that nErr values for all the samples
decreased in pRGRT (Figure 11) and gating window shifts
in conventional RGRT were ameliorated in pRGRT
(Figure 12).

4. Conclusions

In this paper, we proposed a framework to compensate for gate
on/off latency during RGRT. It consisted of two steps: (1)
multistep-ahead prediction and (2) prediction-based gating.

12
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156 158 160

RGRT
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Time
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Figure 9: Gating windows in the conventional and prediction-based RGRT simulations (denoted here as RGRTand pRGRT, respectively)
which mimic the Abches system, using the sample numbered 7. 'e colored rectangles of RGRTand pRGRTcorrespond to j : gj � 1  and
j : gj � 1 , respectively, where 5000≤ j≤ 5333. 'e units of signal value and time are mm and s, respectively.
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Figure 8: nErr values for the selected five samples in the conventional and prediction-based RGRTsimulations (denoted here as RGRTand
pRGRT, respectively) mimicking the Abches system. 'e unit of nErr is mm.
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For each step, we devised a specific algorithm to accomplish the
task. Numerical experiments were performed using respiratory
signals of a phantom and ten volunteers, and our prediction-
based RGRT system, pRGRT, displayed superior performance
in not a few of the signal samples. In some, however, signal
prediction and prediction-based gating did not work well,
probably because of signal irregularity and/or baseline drift.

'e developed method has potential applicability in
RGRT, but there are several issues to be addressed, e.g.,

(1) Are there better algorithms for multistep-ahead
prediction?

(2) Are there better algorithms for prediction-based gating?
(3) Is it possible to deal with baseline drift?

nE
rr

RGRT pRGRT
0.0

0.1

0.2

0.3

0.4

0
1
2

7
8

Figure 11: nErr values for the selected five samples in the conventional and prediction-based RGRTsimulations (denoted here as RGRTand
pRGRT, respectively) mimicking the AlignRT system. 'e unit of nErr is mm.
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Figure 10: Gating windows in the conventional and prediction-based RGRTsimulations (denoted here as RGRTand pRGRT, respectively)
which mimic the Abches system, using the sample numbered 8. 'e colored rectangles of RGRTand pRGRTcorrespond to j : gj � 1  and
j : gj � 1 , respectively, where 6334≤ j≤ 6999. 'e units of signal value and time are mm and s, respectively.
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(4) Is it possible to provide theoretical foundations to the
methods?

(5) Is the method valid in a real clinical setting?

Further studies on these matters would be needed for the
system to be of practical use.
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which mimic the AlignRT system, using the sample numbered 7. 'e colored rectangles of RGRT and pRGRT correspond to j : gj � 1 

and j : gj � 1 , respectively, where 4334≤ j≤ 4666. 'e units of signal value and time are mm and s, respectively.
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