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Supertree methods allow to reconstruct large phylogenetic trees by combining smaller trees with overlapping leaf sets into one,
more comprehensive supertree. The most commonly used supertree method, matrix representation with parsimony (MRP),
produces accurate supertrees but is rather slow due to the underlying hard optimization problem. In this paper, we present an
extensive simulation study comparing the performance of MRP and the polynomial supertree methods MinCut Supertree, Modified
MinCut Supertree, Build-with-distances, PhySIC, PhySIC IST, and super distance matrix. We consider both quality and resolution of
the reconstructed supertrees. Our findings illustrate the tradeoff between accuracy and running time in supertree construction, as
well as the pros and cons of voting- and veto-based supertree approaches. Based on our results, we make some general suggestions
for supertree methods yet to come.

1. Introduction

In recent years, supertree methods have become a famil-
iar tool for building large phylogenetic trees. Supertree
approaches combine input trees with overlapping taxa sets
into one large and more comprehensive tree [1]. Systematists
have probably used informal supertree methods since the
beginning of systematics itself, pasting together hierarchi-
cally nested taxa. Since the introduction of the term supertree
and the first formal supertree method [2], there has been a
continuous development of such methods, see for example
Bininda-Emonds [3]. In contrast to the combination of input
trees, the combination of input datasets into a matrix of
characters, and subsequent analysis of this matrix under
standard reconstruction criteria is called the supermatrix
approach, see for example de Queiroz and Gatesy [4]. Both
approaches hold the promise to reconstruct phylogenies for
large clades of the tree of life, for example, Bininda-Emonds
et al. [5] reconstructed a supertree on 4510 taxa for the entire
group of mammals.

It is well known that inferring optimal trees from
sequences under the maximum likelihood (ML) [6] and the
maximum parsimony (MP) criterion [7] are computation-
ally hard problems, so we have to rely on heuristics that

cannot guarantee to find the optimal solution. Even for a
moderate number of species, the sheer size of the tree space
prohibits searching for optimal trees under these criteria.
Although some studies with thousands of taxa have been
reported in the literature, they mostly intend to investigate
new concepts of implementation and computation, for
example, an ML analysis of 10,000 taxa on a parallel com-
puter [8]. It remains unclear how close the resulting tree is
to the optimal one, considering the hardness of the problem
together with the enormous number of trees to be searched.
For 10,000 taxa there exist 8.0 · 1038658 unrooted binary
phylogenetic trees, a number much larger than the number
of atoms in the observable universe. Clearly, supertree
approaches with polynomial running time can be advanta-
geous with respect to running time. But supertree methods
have certain additional advantages over standard phyloge-
netic reconstruction methods [9]. They allow us to combine
heterogeneous data sources, such as DNA hybridization data,
morphological data, and protein sequences.

Current supertree methods can roughly be subdivided
into two major families: matrix representation (MR) and
polynomial, mostly graph-based methods. The former
encode the inner vertices of all input trees as partial binary
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characters in a matrix, which is analyzed using an optimiza-
tion or agreement criterion to yield the supertree. Matrix
representation with parsimony (MRP) [10, 11], the first
matrix-based method, is still by far the most widely used
supertree method today. Other variants have been proposed
using different optimization criteria, for example, matrix
representation with flipping (MRF) [12] or matrix represen-
tation with compatibility (MRC) [13].

All MR methods have in common that the underlying
optimization problems are computationally hard [7, 12, 14],
and heuristic search strategies have to be used. As for ML and
MP, it is unclear how close the resulting tree is to the optimal
one.

Graph-based methods make use of a graph to encode
the topological information given by the input trees. This
graph is used as a guiding structure to build the supertree
top-down from the root to the leaves. Graph-based methods
often use local optimization criteria and lack an explicit
global criterion [15]. The first graph-based supertree method
was the Build algorithm [16], which is only applicable to
nonconflicting input trees and thus only of limited use,
because “as most systematics know, phylogenies usually
conflict with each other” [3]. This led to the development of
the MinCut Supertree algorithm (MC) [17] and a modified
version, Modified MinCut Supertree (MMC) [15], that are
able to construct a supertree if the input trees are conflicting.
The Build-with-distances algorithm (BWDs) [18] is the first
graph-based method that uses branch length information
from the input trees to build the supertree. All of these
methods have in common that they apply a voting procedure
to deal with conflicts among the input trees. They resolve
conflicts by asking the input trees to vote for a clade in the
supertree, such that, to a certain extent, the most frequent
alternative is chosen.

In case of conflicting input trees, voting methods such
as MRP can infer supertrees in which clades are present that
contradict each of the input trees [19–21]. To which extent
and under which circumstances these unsupported and
undesired novel clades occur is subject of ongoing debate,
see for example [20, 22]. Ranwez et al. [23] presented a
graph-based method named PhySIC, which ensures that the
reconstructed supertree satisfies two properties: it contains
no clade that directly or indirectly contradicts the input
trees, and each clade in the supertree is present in an
input tree or is collectively induced by several input trees.
Supertree methods guaranteeing the first property are called
veto methods and, for highly conflicting and/or overlap-
ping input trees, tend to produce unresolved supertrees.
Scornavacca et al. [24] presented a modified version of
PhySIC, PhySIC IST, that tries to overcome this drawback by
proposing nonplenary supertrees (i.e., supertrees that do not
necessarily contain all taxa from the input trees), while still
assuring the properties mentioned above. PhySIC IST works
in a stepwise fashion, iteratively adding leaves to a starting
tree consisting of two nodes. Unlike the above mentioned
polynomial supertree methods, the super distance matrix
(SDM) method [25] does not descend from the Build
algorithm. SDM modifies source distance matrices in a
way that their “topological message” is not modified. These

modified matrices are averaged and analyzed by distance-
based tree-building algorithms. In contrast to MR meth-
ods, all mentioned methods (MC, MMC, BWD, PhySIC,
PhySIC IST, and SDM) have polynomial running time.

To build even larger portions of the tree of life, a promis-
ing approach for the future is the use of supertree methods
as part of divide-and-conquer metatechniques such as disk
covering [26–28]. Here, the basic idea is to break down a large
phylogenetic problem into smaller subproblems that are
computationally easier to solve, because of the lower number
of taxa and the smaller evolutionary distance between them.
Subresults are combined via supertree methods to find an
answer for the initial, global problem. By using preferably
fast (polynomial-time) and accurate supertree methods that
compute resolved supertrees, “a divide-and-conquer strategy
promises gains in both accuracy and speed compared to a
conventional phylogenetic analysis” [9].

As an increasing number of supertree methods is avail-
able, studies using either simulated or empirical data are
needed to compare the behavior and performance of the
methods undervarious conditions. In simulation studies,
results of different methods can be compared to a known
model tree and, thus, the methods can be compared at an
absolute scale, whereas empirical datasets may offer a more
realistic setting, however, the true tree is usually not known.
Several simulation studies focusing on different aspects of
the investigated supertree or supermatrix methods have been
carried out, see for example [22, 29–33]. But only recently,
these studies started to provide relevant comparisons of
alternative approaches. In this paper, we focus on a particular
subset of supertree construction methods: we compare the
accuracy of the by far most used and studied MRP method as
representative of the MR-based family of supertree methods,
with the mentioned polynomial-time supertree methods
MC, MMC, BWD, PhySIC, PhySIC IST, and SDM. MR-
based methods have been shown to be accurate and usually
generate highly resolved supertrees, but require long running
times; graph-based methods are usually swift but possibly
less accurate and, in case of PhySIC and PhySIC IST, also
possibly less resolved.

We present a large-scale simulation study conducted to
compare the accuracy and the resolution of the computed
supertrees. Additionally, we explore new variations of BWD,
trying to improve its performance. Our simulation study
follows the established general scheme to assess the perfor-
mance of supertree methods: (1) construction of a model
tree under a Yule process, (2) simulation of DNA alignments
along that tree, (3) random deletion of a proportion of
taxa, (4) reconstruction of trees by ML, (5) construction
of a supertree from the inferred ML trees, and, finally,
(6) comparison of the supertree to the model tree using
distance and similarity measures, plus evaluation of its
resolution. Our results demonstrate that the BWD and the
PhySIC IST method perform significantly better than MC
and MMC. With respect to the accuracy of the reconstructed
supertree, these two methods are sometimes even compa-
rable with MRP. Unfortunately, PhySIC IST often outputs
nonplenary supertrees that exclude a large percentage of
taxa, in some cases more than 50%. By considering the



Advances in Bioinformatics 3

resolution of the supertrees, our findings illuminate not only
the tradeoff between accuracy and running time in supertree
construction, but also the pros and cons of voting and veto
approaches.

When methods using branch lengths are applied in real-
world studies, branch length from different input trees have
to be reconciled. To this end, we outline a robust estimator
for average multiplicative constants of branch lengths from
different input trees, that combines the advantages of mean
and median computation. Based on our results, we make
several suggestions for the future of supertree construction.

This paper is organized as follows: in the next section
we recall some basic terminology. In Section 3, we outline
the methods under consideration and detail our variations
of BWD. The use of branch length from simulated data
and real-world data is discussed in Section 4, followed by
a section describing our simulation protocol in detail. In
Section 6 we present our results, which are discussed in
Section 7.

2. Preliminaries

Our notations and definitions mainly follow Semple and
Steel [34]. A graph, denoted G = (V ,E), is a structure
consisting of a set V of vertices, and a set E ⊆ {{x, y} : x, y ∈
V} of connections called edges. A graph is simple if it has no
loops or parallel edges, and it is called weighted if each edge
e ∈ E has a weight w(e) assigned to it. Given E′ ⊆ E, we let
G\E′ denote the graph obtained from G by deleting all edges
in E′. If G\E′ is disconnected, E′ is called a cut set of G. In
a weighted graph, w(E′) := ∑

e∈E′ w(e) is the cut weight of
E′. A cut set of minimum weight is called a minimum cut.
A connected component Ci of a graph is a maximal set of
connected vertices, that is, for any pair of vertices x and y
there is a path from x to y.

A tree T = (V ,E) is a simple, connected graph with
no cycles. A vertex v ∈ V is internal if the degree of v is
greater than one, otherwise v is a leaf. For a given tree T ,
L(T) denotes the set of leaves of T . If L(T) = X , and T
has one distinguished internal vertex, denoted root, and no
vertex but the root may have degree two, then T is called
rooted phylogenetic tree (on X). As most of the supertree
methods under consideration in this paper require rooted
trees as input, we neglect the unrooted case. For brevity, we
often use the terms “rooted phylogenetic tree” and “tree”
synonymously in the following. In a rooted phylogenetic tree,
the out-degree of the root is simply its degree, whereas the
out-degree of all other vertices is the degree minus one. A
tree is binary if there is no vertex with out-degree larger
than two, otherwise, the tree contains polytomies. In a tree
T with weighted edges, the path length between two vertices
x, y ∈ V , denoted pl(x, y), is the sum of weights of all edges
between x and y.

Let T be a tree on X . An element of X is a descendant of
an internal vertex v of T if the path from this element to the
root contains v. Given a particular internal vertex v, a clade
of T is a subset of X that consists of all elements of X that are
descendants of v. For a given subset X ′ ⊆ L(T) we refer to

the unique vertex of T that is the last common ancestor (also
referred to as least common ancestor) of X ′ in T as lca(X ′).

Given X ′ ⊆ L(T), we construct the restriction of T to
X ′, denoted T | X ′, by first finding the minimal subtree of
T containing X ′, and then suppressing all vertices of degree
two except for the root.

For a set of phylogenetic trees T = {T1, . . . ,Tx}, let
L(T ) denote the set of leaves that appear at least in one
tree. Let T1 and T2 be two trees with L(T1) ⊆ L(T2).
The tree T2 displays T1, if T2 | L(T1) is a refinement of
T1, that is, T1 can be obtained from T2 by contracting
edges. Informally, T2 displays T1 if, up to polytomies, all the
ancestral relationships of T1 are preserved in T2. For a set
of trees T with possibly overlapping leaves, we say that T
is compatible if there exists a tree T∗ on L(T ) that displays
every tree Ti ∈ T . Otherwise, T is incompatible. When
T is incompatible, it is desirable to find a tree T∗ over
L(T ) that minimizes some objective function measuring
the incompatibility. Then T∗ is called a supertree and the
problem of finding T∗ is called the supertree problem.
Since biological data is incompatible for a range of reasons,
including sampling errors, inaccuracies, or biases in tree
building algorithms, incompatible input trees are what has
to be expected in reality.

A triplet is a binary tree with three leaves. The triplet
with leaves x, y, z is denoted by xy | z if the path from x
to y does not intersect the path from z to the root. Given
a tree T , rt(T) denotes the set of all triplets of T . For a
collection of trees T , rt(T ) denotes the set of all triplets of
T .

3. Methods under Consideration

3.1. Build and MinCut Supertrees. The first graph-based
supertree method is Build [16], which was originally
developed in the context of relational databases. Build is
an all-or-nothing algorithm that returns a supertree only if
the input trees are compatible. The supertree is constructed
from the root to the leaves guided by a graph that we
will call Build graph. In the first iteration of the algorithm,
all leaves from the input trees are used as vertices in
the Build graph. Two vertices x, y are connected in the
Build graph if there is a triplet xy | z in at least one
of the input trees. The resulting connected components
correspond to the clades beneath the root of the supertree.
Then, the algorithm is recursively called on the connected
component.

The MinCut Supertree algorithm (MC) by Semple
and Steel [17] was the first extension of Build capable of
returning a supertree if the input trees are not compatible.
The incompatibilities are resolved by deleting a minimal
amount of information present in the input trees in order to
allow the algorithm to proceed. This is done by disconnecting
a modification of the Build graph whenever it consists
of only one connected component. Page [15] presented
a modified version of MC, that uses more information
from the input trees. Using a modified graph construction,
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the Modified MinCut Supertree (MMC) algorithm
ensures to incorporate all clades from the input trees with
which no single tree directly disagrees.

3.2. Build-with-Distances Supertrees. Willson [18] presented
the Build-with-distances (BWDs) algorithm that, in
addition to the branching information in the input trees,
uses branch lengths to build the supertree. The method
follows the same recursive schema as Build, MC, and MMC.
The main observation underlying the BWD algorithm is
that branch lengths may carry phylogenetic information,
such as an estimated number of mutations. In a biological
application, using branch length is apparently only justified if
these are comparable amongst the input trees, see Section 4.

For two leaves x, y, the BWD algorithm employs the
distance from x to the last common ancestor of x and y,
denoted as λ(x, y). Note that λ is not symmetric. If more than
one input tree contains both x and y, the average of these
distances is used. The graph used by the BWD method, called
BWD graph in the following, extends the Build graph by
additional edges. These edges arise through examination of
the branch lengths in the input trees: Two leaves x and y may
be in one input tree, and x and z are in another input tree,
but no input tree contains all three leaves. If λ(x, y) < λ(x, z),
the BWD graph will still contain an edge {x, y}. In case the
BWD graph is connected, edge weights are determined using
support functions, which estimate the evidence that two taxa
should be in the same clade of the supertree. Let U be a
nonempty subset of L(T ), corresponding to the connected
component from a previous level of the algorithm. Initially,
we have U = L(T ). For a triplet xy | z with x /= y, we define
the primary evidence as p(x, y, z) := max{0, λ(x, z)−λ(x, y)}.
In case {x, y} or {x, z} are not together in an input tree, we
set p(x, y, z) := 0.

Willson [18] introduced four support functions, namely,
the primary support function (SP), the confirmed support
function (SC), and the accumulated primary support function
(SAP). Finally, the accumulated confirmed support function
(SAC) is defined as

SAC
(
x, y,U

)
:=
∑

z∈U
min

{
p
(
x, y, z

)
, p
(
y, x, z

)}
, (1)

where again U is the clade from the previous step of the
algorithm. In our simulations we find that supertrees built
using SAC consistently outperform those built using the
other support functions.

In contrast to the minimum cut approach of MC
and MMC, the BWD method uses the bisection method
to disconnect the BWD graph in case it consists of one
component. We determine the minimum threshold θ so that,
after removing all edges e with weight w(e) ≤ θ from the
BWD graph, the resulting graph is disconnected. Different
from MC and MMC, BWD does not guarantee to return
the parent tree in case the input trees are compatible. This
behaviour is intended, as distance information in the input
tree might hint towards incompatibilities not observable in
the topological structures of the input trees.

In some sense, the support functions suggested in
[18] are conservative; for example, bounding the primary
evidence to zero is somewhat arbitrary. We investigated
several modifications of support functions from [18]. In
our simulations, we found that supertrees built using the
SAC and SACmax support functions, the later being a
modification of the accumulated primary support function
SAC, consistently outperform those built using all other
support functions. To this end, we defer further details, and
we will concentrate on these two support functions in our
evaluation. In detail, we define SACmax as:

SACmax
(
x, y,U

)
:=
∑

z∈U
max

{
p
(
x, y, z

)
, p
(
y, x, z

)}
. (2)

3.3. PhySIC and PhySIC IST Supertrees. Following [23],
supertree methods apply either a voting or veto procedure.
Voting methods resolve conflicts by using an optimization
criterion in order to select between different possible topolo-
gies [35]. When input trees conflict, voting methods such
as MRP and MRF can infer supertrees in which clades are
present, that are contradicted by each of the input trees
[19–21]. Veto methods are more conservative in handling
conflicts among the input trees: the inferred supertree has
to respect the phylogenetic information of each source tree
and is not allowed to contain any clade that is contradicted
by one of the input trees. Thus, conflicts among the input
trees are removed [35] which resultd in multifurcations in
the supertree.

Scornavacca et al. [24] presented PhySIC IST, a modifi-
cation of the PhySIC algorithm [23], aiming to circumvent
a main drawback of veto supertree methods. These tend to
return highly unresolved supertrees if the input trees imply a
high degree of incompatibility or do not have a high degree
of overlap. To overcome this shortcoming, PhySIC IST mod-
ifies the original approach by allowing nonplenary supertrees
(i.e., supertrees that do not necessarily contain all taxa
present in the input trees). PhySIC IST uses a preprocessing
step called source tree correction (STC), which analyses con-
flicting triplets among the input trees. The extent with which
STC corrects the input trees is determined by a user-defined
parameter c ∈ [0, 1]. For c = 1 PhySIC IST behaves like a
pure veto method, while for c = 0 it mimics a voting method.

3.4. Super Distance Matrix (SDM) Supertrees. Basis for the
SDM method by Criscuolo et al. [25] is the average consensus
procedure (ACS) [36]. The first step of ACS is to compute
distance matrices corresponding to the path-length in the
input trees. After standardizing each input matrix, ACS
computes the average of the standardized matrices which
is used to build the distance supermatrix. The presented
standardization procedure relies on dividing all distances in
each matrix by the maximum distance in that matrix. This
distance supermatrix is then analyzed using a least-squares
method. Similar averaging methods are presented to generate
the distance supermatrix directly from sequences and gene
trees. Other standardizing methods have been explored, but
seem to be inaccurate for more than two trees [37]. Similar to
ACS, the distance-based method SDM uses a more involved
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standardization procedure and is able to use both sequences
and gene trees as input (See [25] for details). The possibly
still incomplete super distance matrix is then processed using
MRV∗ (a variant of minimum variance reduction), BioNJ∗

or NJ∗ (variants of neighbor-joining) [38].

3.5. Matrix Representation with Parsimony (MRP). MRP
encodes the inner vertices of all input trees as partial binary
characters in a matrix, then analyzes the resulting matrix
under the parsimony criterion. Two different coding schemes
have been suggested for the matrix representation, namely
the Baum-Ragan (BR) and the Purvis (PU) coding scheme.
Furthermore, two kinds of parsimony can be used: reversible
Fitch parsimony and irreversible Camin-Sokal parsimony.
MRP, with Baum-Ragan coding and Fitch parsimony, is
commonly used and generally accepted as the standard
method for supertree construction. Using BR coding, we add
a column to the matrix representation for each interior edge
of each input tree. Here, “0” and “1” encode taxa on either
side of the edge, whereas missing taxa are encoded as “?”.
In case of rooted trees, the clade is encoded “1” and the
root is encoded “0” (See [10, 11, 39] for details). The MRP
method then tries to find the most parsimonious tree for
the matrix representation. Using reversible Fitch parsimony
[40], we assume character changes to be undirected, so
that both 0 → 1 and 1 → 0 flips are allowed along an
edge. Unfortunately, the underlying Maximum Parsimony
problem is computationally hard [7].

4. Simulated versus Real-World Data

Branch length from the input trees in a simulation study
is arguably a best-case scenario for the BWD method, as
the trees are simulated using the same parameters (see
Section 5 for details). Nevertheless, if two taxa x and y
cooccur in two input tree Ti and Tj , typically it is not
true that λi(x, y) = λj(x, y). Willson’s as well as our
implementation of the BWD algorithm merely averages the
different values λ(x, y) obtained from different input trees,
which works well in our simulation. If the BWD method is
going to be used in a real-world study, branch length from
different input trees have to be comparable. Clearly, careful
studies on how to reconcile different distances have to be
performed before applying BWD. In the following we outline
ideas about how to reconcile branch-length from real-world
data. First, we can compute a pairwise distance matrix for
all taxa in the supertree, using either multiple alignments
or pairwise alignments. We have different length estimates
from different multiple datasets that we can normalize by
finding a multiplicative constant for each dataset such that
the sum of squared differences is minimized. Alternatively,
we can use a linear program for this purpose, minimizing
the maximum absolute difference. Finally, we can find
multiplicative constants by a robust estimator. This results
in a pairwise distance matrix D(t, t′) for all taxa t, t′.

We can then normalize branch lengths in each tree using
either the largest distance in each tree, or all distances in the
trees. Again we can minimize the sum of squared errors, use

a linear program to minimize the maximum absolute error,
or by a robust estimator for the multiplicative constant c such
as median or α-trimmed mean. We exemplary show how to
perform the latter. Let S ⊆ {1, . . . ,n} denote the set of taxa in
the input tree T , and let DT be the pairwise distances for all
t, t′ ∈ S. Let

C :=
{
D(t, t′)
DT(t, t′)

: t, t′ ∈ S, t < t′
}

(3)

be the set of multiplicative constants for all pairwise
distances. We then compute the α-trimmed mean c from C
for, say, α = 1/3. This is a robust estimator for the average
multiplicative constant, combining the advantages of mean
and median computation. Finally, we multiply all branch
lengths in T by c. Note that normalizing branch lengths is
not necessary if all branch lengths were computed under the
same model of sequence evolution.

5. Simulation Study

We now present the layout of our large-scale simulation
study, conducted to evaluate the accuracy and resolution
of the methods MRP, MC, MMC, PhySIC, PhySIC IST,
BWD (including our new support function), and SDM. An
overview of the simulation layout can be found in Figure 1.
Each step is described in detail below.

5.1. Generating Model Trees and DNA Sequences. We gener-
ated model trees according to a stochastic Yule birth process
using the default parameters of the YULE C procedure
from the program r8s [41], with either 48, 96, 144, or
524 taxa. To deviate branch lengths on the trees from
molecular clock, branch-specific rates of evolution were
determined by drawing random normal variates (mean
of 1.0 and standard deviation of 0.5, truncated outside
of [0.1, 2.0]) and multiplying by an overall tree-wide rate
of substitution. These branch-specific rates are used to
determine the branch-length by multiplying them with
branch-durations obtained from the Yule process model.
In each tree we set an additional outgroup since most
of the supertree methods under investigation can only
handle rooted trees. To determine the branch length for the
outgroup, we proceeded as following. First, the taxon with
the largest distance (dmax) to all other taxa is identified. If
this distance exceeds 75% compared to all other distance
relations, we shortened it accordingly. Then, we added an
outgroup taxon with a branch length to the root that equals
1.25 × dmax. For model tree sizes of 48, 96, and 144, we
generated 100 different model tree replicates and ten in case
of 525 taxon model trees. The smaller number of replicates
for 525 taxa model trees was due to the longer running
times for this data set. Using Seq-gen v1.3.2 [42], nucleotide
sequences were simulated along each of the model trees
according to the general time reversible process (GTR) model
[43] with parameters Lset Base = (0.3468, 0.3594, 0.0805),
Rmat = (0.6750, 27.9597, 1.1677, 0.4547, 20.8760), gamma
rate heterogeneity α = 1.1999, and PINVAR = 0.4954,
taken from [44]. After sequence generation, we checked if
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Modeltree generation

100∗ 48/96/144 taxa + outgroup

Tree 0 Tree n Tree 99· · · · · ·

· · ·

· · ·

Outgroup

Outgroup

DNA sequence generation

2000–20.000 bp/GTR

Data set n

Data set n

2000 bp 4000 bp 6000 bp 20.000 bp

Partition alignment and delete taxa

e.g., 4000 bp/48 taxa

48 taxa + outgroup

48 taxa + outgroup

1000 bp 1000 bp 1000 bp 1000 bp

1000 bp 1000 bp
1000 bp

1000 bp

Delete 25%, 50% and 75% of taxa random

24 taxa + outgroup

Construct ML trees

Input set n

2 input trees 20 input trees

Construct supertrees

Supertrees for
input set n

Supertrees for
input set 99

Compare supertree(s) to modeltree(s)

Supertrees for
input set 0

MRP/MC/MMC/BWD/PhySIC IST/SDM+BioNJ

Figure 1: Simulation pipeline overview for 48, 96, and 144 taxa modeltrees.

the outgroup sequence has a larger distance to all other
sequences than any two other sequences among each other.
For each model tree we generated sequences ranging from
2000 to 20,000 base pairs in steps of 2000, yielding ten
different “multiple sequence alignments” per model tree.

5.2. Generating Input Trees. The models of sequence evo-
lution, implemented in Seq-Gen, assume that evolution
is independent and identical at each site. Hence, we can

partition the “multiple sequence alignment” with 2000–
20 000 bases blocks, representing independent datasets. We
chose an outgroup sequence/taxon to root the trees generated
by maximum likelihood. In case of 48, 96, 144 taxon trees,
we partitioned each alignment into blocks of 1000 base pairs
each. From each alignment block, we randomly deleted 25%,
50%, or 75% of the sequences/taxa to simulate different
taxa overlaps observed in real datasets. For each resulting
alignment block, we inferred a maximum likelihood tree
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using RAxML v7.0.0 [45] with default parameters. This
results in instances with 2 to 20 input trees corresponding to
the same model tree. Summarizing, we have three different
numbers of taxa; three different deletion ratios; ten different
input sizes. For each of these 90-parameter combinations, we
generated 100 instances. In case of 524 taxon model trees, we
proceeded slightly differently from the described procedure:
here, each alignment was partitioned into blocks of 500 base
pairs, and 50% or 75% of the sequences/taxa were deleted.
Again, a maximum likelihood tree was inferred for each
resulting alignment block. In contrast to the 48, 96, 144 taxon
model tree data sets, this results in instances with 4 to 40
input trees.

5.3. Supertree Construction. MRP supertrees were estimated
using PAUP∗ 4.0b10 [46] with TBR branch swapping as
heuristic search, random addition of sequences, and a
maximum 10,000 trees in memory. In case of 48, 96, 144
taxon trees, the search time for a single MRP supertree run
was delimited to 5 minutes and for 524 taxon model trees
to one hour. Since we explicitly did not delete the outgroup
sequence from the alignment, the root of each input tree is
known. The strict consensus tree of all most parsimonious
trees was used as the final MRP tree.

We computed MC as well as the BWD supertrees using
our own implementations embedded in our software
framework EPoS (http://bio.informatik.uni-jena.de/epos/)
[47]. MMC trees were generated using Rod Page’s implemen-
tation (http://darwin.zoology.gla.ac.uk/∼rpage/ supertree/).
For the PhySIC and PhySIC IST supertrees, we used the
implementations provided by the authors of the corres-
ponding papers (http://www.atgc-montpellier.fr/physic/
binaries.php, http://www.atgc-montpellier.fr/physic ist/)
[23, 24]. We did not collapse any branches from the input
trees on the basis a bootstrap threshold before applying
the PhySIC and PhySIC IST method (-b option). We
mentioned above that PhySIC IST offers a parameter for
the STC preprocessing (-c option) that allows to tune
the method from “veto-” to “voting-like.” We tested the
method with parameter 0, 0.5, 0.8, and 1. We found that
results for parameters 0 and 0.5 are similar, and so are
those for parameters 0.8 and 1. Therefore, we report only
results for parameters 0 and 1 below. In the following,
we refer to these two parameter settings as PhySIC IST
0 and PhySIC IST 1. SDM + BioNJ∗ supertrees were
computed using the implementation by Criscuolo et al. [25]
(http://www.atgc-montpellier.fr/sdm/binaries.php), and
PhyD∗ by Criscuolo and Gascuel [38] (http://www.atgc-
montpellier.fr/phyd/binaries.php). We choose BioNJ∗

instead of FastME, because distance matrices in our sim-
ulation were incomplete.

5.4. Measuring Accuracy and Resolution. To evaluate accu-
racy of the supertrees build by the different methods, we
compared the supertrees to the corresponding model trees
using different distances and similarity scores. Recall that
PhySIC IST usually computes nonplenary supertrees. In this
case, we first restrict the model tree to the taxon set of the

supertree. Consider a rooted tree where all but two taxa have
been removed. Obviously, this tree will always coincide with
the correct topology. So, we can obtain better distance and
similarity scores by removing taxa, in particular those that
we consider “doubtful.” In contrast, the MAST score (see
below) will get smaller if we output a smaller tree. Hence, this
approach favors PhySIC IST for all distance measures except
the MAST score, so PhySIC IST results must be interpreted
with some caution.

The Robinson-Foulds distance (RF distance) counts the
number of clades that belong to only one of the two trees
[48]. We normalize the RF distance by the number of internal
nodes of both trees, yielding a value in [0, 1].

Page [15] introduced the triplet distance, which is the
rooted equivalent of the quartet metric [49]. For a triplet
with three distinct taxa x, y, z there are five possible
outcomes when comparing model tree and supertree. The
triplet induced by x, y, z is resolved and identical in both
trees (counted in same), or resolved and different (counted
in diff); the triplet is resolved in the model tree T1 but not
in the supertree T2 (counted in r1), or the other way round
(counted in r2), or, the triplet is unresolved in both trees
(counted in x). The triplet similarity can be defined as the
number of shared resolved triplets, divided by the number of
triplets that are resolved in at least one of the trees. We define
the triplet distance as one minus the triplet similarity, so

dTR(T1,T2) := 1− same
same + diff + r1 + r2

= diff + r1 + r2

same + diff + r1 + r2
.

(4)

We note that in our simulation study, all our model trees
are fully resolved and, hence, r2 = x = 0. We also note that
the triplet type I error (false-positive rate) is very similar to
the errors reported here, so we do not report type I errors
individually.

The maximum agreement subtree score, or MAST score
for short [50], counts the number of leaves of the maximum
agreement subtree of the model tree and the supertree. The
maximum agreement subtree was calculated using PAUP∗.
We normalize the MAST score using the number of leaves in
the model tree. This indicates the fraction of the model tree
that is recovered by the different methods.

We stress that each of these methods has its particular
shortcoming: For example, Robinson-Foulds only evaluates
perfectly matching clades, whereas the triplet distance favors
top-level clades. Two phylogenetic trees of arbitrary size that
share only two common clades, may get a triplet distance as
low as 1/4, see the appendix. We do not want to assess the
pros and cons of the three distance methods but, instead,
propose to use them as a relative measure to assess the quality
of supertrees computed by the different supertree methods.

Resolution was measured as the number of clades in the
inferred supertree relative to the total number of clades on a
fully binary tree of the same size (n− 2 for an unrooted tree,
where n is the number of taxa). Resolution varies between 0

http://bio.informatik.uni-jena.de/epos/
http://darwin.zoology.gla.ac.uk/~rpage/supertree/
http://darwin.zoology.gla.ac.uk/~rpage/supertree/
http://www.atgc-montpellier.fr/physic/binaries.php
http://www.atgc-montpellier.fr/physic/binaries.php
http://www.atgc-montpellier.fr/physic_ist/
http://www.atgc-montpellier.fr/sdm/binaries.php
http://www.atgc-montpellier.fr/phyd/binaries.php
http://www.atgc-montpellier.fr/phyd/binaries.php
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and 1, where 0 indicates a unresolved bush and 1 indicates a
binary supertree.

Note that there are alternatives to measure the resolution
of the supertrees, for example, based on the number of
triplets in the supertree or based on the cladistic information
content [51, 52].

6. Results

All computations were performed on a Linux cluster of AMD
Opteron-2378, 2.4 GHz CPUs, with 16 GB of memory.

The relative performance of the six supertree methods
we studied with respect to supertree resolution, MAST score,
RF distance and triplet distance is similar for different model
tree sizes. Results of our simulation for 96, 144, and 524 taxa
model trees can be found in Figures 2, 3, 4, 5, 6, 7 and for
48 taxa model trees in the appendix, Figures 8 and 9. We
omitted standard deviation plots in these figures for the sake
of readability. Running times of the polynomial supertree
methods in case of 524 taxa model trees are listed in the
appendix, Table 6. MC, MMC, BWD, and SDM+BioNJ∗ are
relatively fast, the fastest being SDM+BioNJ∗. In contrast,
PhySIC IST required more than 10 hours on this data set.
MRP was constrained to a running time limit of one hour to
reach a somewhat fair comparison.

As mentioned above, PhySIC IST can produce non-
plenary supertrees, that is, supertrees that not necessarily
contain all taxa from the input trees, see Tables 1, 2, 3,
and 4 and in the appendix. As one would expect, the
more conservative PhySIC IST 1 excludes more taxa than
PhySIC IST 0, and the amount of excluded taxa increases
with a higher deletion ratio. This can be explained by
the decreasing degree of overlap between the input trees,
which impedes the insertion of taxa while observing the PI
property. For 145 taxa, 20 input trees, and 75% deletion ratio,
almost three-fourths of the taxa were excluded.

Concerning the accuracy of the supertrees from the
different methods, generally one would expect that results
improve if more input data becomes available, as this helps
to identify bogus information. Hence, in general the triplet
distance and RF distance should decrease, whereas the MAST
score should increase when more input trees are available
to the supertree method. Below we discuss the observed
patterns in more detail.

6.1. Resolution. Results concerning the resolution of
supertrees from all methods under consideration can be
found in Figures 2 and 6, upper row. It must be understood
that a highly resolved supertree does not imply that this
supertree is of good quality. In our evaluation, PhySIC
mostly returns star trees even for 25% deletion ratio and all
model tree sizes. For this reason, we decided to exclude the
method from further investigation.

SDM+BioNJ∗ builds the most resolved supertrees for
all model tree sizes, deletion ratios, and number of input
trees, followed by the two variations of the BWD algorithm.
In case of 25% deletion ratio, the BWD supertrees are
also usually almost completely binary. For higher deletion
ratios, the method requires more input trees to obtain higher

resolved supertrees, but even for 75% deletion ratio, the
method produces supertrees with a resolution consistently
higher than 0.8. The behavior of MMC is similar to that of
BWD, but the resolution is slightly worse in most cases. The
MC method produces relative well-resolved supertrees at a
deletion ratio of 25%. Higher deletion ratios and larger input
trees have a significant negative influence on the resolution of
the MC supertrees.

In case of 25% deletion ratio, MRP behaves similar
to BWD, but with higher deletion ratio, the resolution of
supertrees significantly decreases. At a deletion ratio of 75%,
the resolution of supertrees produced by MRP is significantly
smaller compared to all other methods. In case of 25%
deletion ratio, the resolution of PhySIC IST 0 supertrees
increases with more input trees. The resolution is in general
slightly lower compared to that of the supertrees produced
by BWD, MRP, MMC. At deletion ratios of 50% and 75%,
PhySIC IST 0 produces less resolved input trees, as the
number of input trees increases. For deletion ratios of
25% and 50%, the resolution of supertrees produced by
PhySIC IST 1 is worse compared to all other methods. The
resolution decreases as the number of input tree increases.
For a deletion ratio of 75%, PhySIC IST 1 shows basically
the same behavior, but the higher deletion frequency does
not have such a negative effect regarding the resolution as it
has for PhySIC IST 0.

6.2. MAST Score. The MRP method performs better than
all other methods in case of 25% and 50% deletion ratio
and 48 or 96 taxa model trees. Here, MRP significantly
benefits from a growing number of source trees. For 75%
deletion ratio, the MAST scores of all methods under
consideration are quite low, and MRP can only outperform
some other supertree methods for a large number of
input trees. For 145 taxa model trees and 25% and 50%
deletion ratios, the MRP curve shows a peculiar zig-zag
pattern. We repeated this experiment twice, but obtained
similar results. This behavior might be explained by local
maxima in which the heuristic gets stuck for larger input
trees.

For 25% and 50% deletion ratios and 48 and 96 taxa
model trees, both BWD methods are only outperformed
by MRP. In both cases, the number of input trees has a
positive effect on the MAST score. For 75% deletion ratio,
both BWD variants outperform all other methods, although
the MAST score is low for all methods. Again, for an
increasing number of input trees, quality of BWD supertrees
increases.

In most cases, PhySIC IST 0 produces supertrees with
a considerably better MAST score than MC, MMC, and
PhySIC IST 1, but the number of input trees has only
a slightly positive effect on the MAST score. The MMC
algorithm performs slightly better than PhySIC IST 0 and 1
as well as the MC method in case of 25% deletion ratio. For a
25% deletion ratio MMC’s MAST score increases with more
input, in both other cases the score is relatively constant.
The SDM+BioNJ∗ method produces supertrees with very
low MAST score outperforming only MC for 50% and 75%
deletion ratio.
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Figure 2: The left and the right column show the average resolution of the supertrees constructed from model trees with 96 and 144 taxa,
respectively, and different taxon deletion ratio (top 25%, middle 50%, bottom 75%).
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Figure 3: The left and the right columns show the MAST score of the supertrees constructed from model trees with 96 and 144 taxa,
respectively, and different taxon deletion ratios (top 25%, middle 50%, bottom 75%). Note that the MAST score is a similarity score and not
a distance.
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Figure 4: The left and the right columns show the average RF distance of the supertrees constructed from model trees with 96 and 144 taxa,
respectively, and different taxon deletion ratios (top 25%, middle 50%, bottom 75%).
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Figure 5: The left and the right columns show the average triplet distance of the supertrees constructed from model trees with 96 and 144
taxa, respectively, and different taxon deletion ratios (top 25%, middle 50%, bottom 75%).
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Figure 6: The upper row shows the average resolution of the supertrees constructed from model trees with 524 taxa and different taxon
deletion ratios (left 50%, right 75%). The lower row shows the average MAST score of the supertrees constructed from model trees with 524
taxa and different taxon deletion ratios (left 50%, right 75%).

6.3. RF Distance. In the case of 25% and 50% deletion
ratio and all model tree sizes, MRP, the BWD variants, and
PhySIC IST 0 perform similarly and significantly better than
PhySIC IST 1, MMC and MC. The accuracy of the first three
mentioned methods generally benefits from more input
trees; in case of 25% deletion ratio, the accuracy increases
significantly up to eight input trees and increases slower
for more input trees, whereas in case of 50% deletion ratio
the accuracy increases more constantly with the number of
input trees. For 25% deletion ratio, the BWD variants are
outperformed by PhySIC IST 0 and MRP, for 50% deletion
ratio BWD is slightly more accurate than PhySIC IST 0, but
MRP still outperforms both methods.

For 25% and 50% deletion ratio, PhySIC IST 1 outper-
forms MMC and MC. In the former case, the accuracy of
PhySIC IST 1 increases only up to eight input trees and
decreases slightly afterwards, whereas in the latter case a
higher number of input trees has a positive influence on
the accuracy. The accuracy of supertrees produced by the
MMC method benefits from more input trees only in case of
25% and 50%, but in the former case the influence is more
significant. The MC method performs worse compared to
MMC. The number of input trees has no positive influence
on the RF distance, which is constantly higher than 0.8 in
most cases. For all model tree sizes and deletion frequencies,
SDM+BioNJ∗ performs worst regarding the RF distance.
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Figure 7: The upper row shows the average RF distance of the supertrees constructed from model trees with 524 taxa and different taxon
deletion ratios (left 50%, right 75%). The lower row shows the average triplet distance of the supertrees constructed from model trees with
524 taxa and different taxon deletion ratios (left 50%, right 75%).

In the extreme case of 75% deletion, the RF distance
of all methods is very high. Here, for 48 taxa model trees,
PhySIC IST 0 slightly outperforms MRP and the BWD
variants. For both cases of larger model trees, the BWD
variants outperform MRP as well as PhySIC IST 0. But note
that a RF distance of 0.6 and a resolution of the supertree of
0.9 implies that more than 54% of the true clades are present
in the supertree.

6.4. Triplet Distance. For our evaluation, the triplet distance
equals the triplet type II error, as the model tree is fully
resolved. We also evaluated the triplet type I error but found
that results do not differ significantly from those reported
here; we omit the details.

MRP performs better than all other methods in case of
25% and 50% deletion ratio. For 75% deletion ratio, MRP
outperforms the other methods only for ten and more input
trees. A higher number of input trees consistently has a pos-
itive effect on the accuracy of the reconstructed supertrees.

Both BWD variants perform similarly for all parameters,
although BWD SAC consistently produces more accurate
supertrees. A large number of input trees has no significant

positive effect on the accuracy. For 25% and 50% deletion
ratio, the triplet distance of the reconstructed supertrees is
slightly worse compared to the MRP supertrees. In case of
75% deletion ratio and few input trees the BWD variants
are on par with MRP. Like BWD, the MC and the MMC
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Figure 8: The left column of the figure shows the average resolution of the supertrees constructed from model trees with 48 taxa and different
taxon deletion ratios (top 25%, middle 50%, bottom 75%). The right column shows the average MAST score of the supertrees constructed
from model trees with 48 taxa.
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Figure 9: The left column of the figure shows the average RF distance of the supertrees constructed from model trees with 48 taxa and
different taxon deletion ratios (top 25%, middle 50%, bottom 75%). The right column shows the average triplet distance of the supertrees
constructed from model trees with 48 taxa.
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Table 1: The table shows average numbers of taxa excluded from
supertrees build by PhySIC IST from model trees of 48 taxa.
Numbers are shown for different quantities of input trees, different
deletion ratios, and different parameters of the STC process (-c
option).

No. of input
trees

25% deletion 50% deletion 75% deletion

c = 0 c = 1 c = 0 c = 1 c = 0 c = 1

2 4.53 4.53 3.77 3.77 4.91 4.91

4 0.83 5.6 7.29 12.22 10.2 10.23

6 0.36 2.17 5.36 13.96 15.39 15.41

8 0.23 1.45 3.77 11.26 18.89 19.9

10 0.13 4.23 2.69 8.66 22.13 23.22

12 0.17 1.38 2 7.49 23.15 24.65

14 0.16 1.62 1.48 4.94 25.76 27.18

16 0.07 2.22 1.08 4.44 25.35 27.43

18 0.16 2.05 1.1 4.17 25.52 28.87

20 0.05 2.34 0.89 3.15 26.41 28.64

Table 2: The table shows average numbers of taxa excluded from
supertrees build by PhySIC IST from model trees of 96 taxa.
Numbers are shown for different quantities of input trees, different
deletion ratios, and different parameters of the STC process (-c
option).

No. of input
trees

25% deletion 50% deletion 75% deletion

c = 0 c = 1 c = 0 c = 1 c = 0 c = 1

2 13.87 13.87 8.72 8.72 9.04 9.04

4 0.9 13.31 12.13 26.47 21.73 22.22

6 0.52 4.79 9.17 35.62 30.11 33.29

8 0.26 2.83 6.15 33.17 39.94 40.94

10 0.19 4.23 4.72 22.8 42.12 49.17

12 0.23 5.08 3.29 19.07 41.57 54.71

14 0.21 4.31 2.51 12.34 41.43 55.8

16 0.18 4.62 1.78 11.94 42.31 59.45

18 0.11 5.88 1.43 10.32 39.69 60.12

20 0.16 5.56 0.16 8.7 37.95 62.09

algorithm perform similarly concerning all parameters,
although the MMC algorithm generally performs better than
MC. For both methods, the accuracy increases slightly with
the number of input trees.

For all parameter settings, PhySIC IST 1 produces sig-
nificantly less accurate supertrees than all other methods. A
higher number of input trees has no significant influence
on the accuracy. PhySIC IST 0 and SDM+BioNJ∗ produce
better supertrees with respect to the triplet distance than
PhySIC IST 1. For deletion ratios of 25% and 50%, a higher
number of input trees generally has a slightly positive effect
on the accuracy. For a closer look at the performance of
PhySIC IST, we also compared the numbers of identical and
different triplets in more detail, see the appendix.

Table 3: The table shows average numbers of taxa excluded from
supertrees build by PhySIC IST from model trees of 144 taxa.
Numbers are shown for different quantities of input trees, different
deletion ratios, and different parameters of the STC process (-c
option).

No. of input
trees

25% deletion 50% deletion 75% deletion

c = 0 c = 1 c = 0 c = 1 c = 0 c = 1

2 30.62 30.6 15.59 15.59 11.41 11.41

4 2.2 36.8 18.74 53.2 31.67 34.04

6 1.52 12.24 13.8 67.92 48.41 55.25

8 1.75 8.1 10.6 58.8 57.18 70.5

10 1.76 6.23 7.13 48.53 64.1 86.8

12 1.54 7.17 4.77 38.61 61.28 95.15

14 1.64 7.26 4.07 28.72 63.2 99.17

16 1.5 9.96 3.21 22.62 62.26 103.78

18 1.6 9.94 2.91 16.35 57.4 104.02

20 2.21 9.11 2.86 17.46 59.57 105.81

Table 4: The table shows average numbers of taxa excluded from
supertrees build by PhySIC IST from model trees of 524 taxa.
Numbers are shown for different quantities of input trees, different
deletion ratios, and different parameters of the STC process (-c
option).

No. of input trees
50% deletion 75% deletion

c = 0 c = 1 c = 0 c = 1

4 150.1 300.5 180 179.2

8 145.2 429.8 269.3 338.1

12 124.8 468.7 299.9 410.9

16 130.3 483.8 314.6 432.6

20 118.4 490 307.6 455

24 118.7 492.6 307.3 470.4

28 105.7 498.7 313.8 478.1

32 96 499.1 303.9 483.9

36 96 498.7 305.6 485.4

40 81.5 502.8 304.6 488.6

7. Conclusion

We have presented a large-scale simulation study to assess
and compare the accuracy and the resolution of supertrees
constructed by polynomial supertree methods and the de
facto standard supertree method MRP. Our results show
that recent polynomial supertree methods can sometimes
compete with the classical MRP approach while guaranteeing
a significantly better running time, which did not exceed a
few seconds for all polynomial methods. As mentioned in
the introduction, one future approach to build larger clades
of the Tree of Life might be a divide-and-conquer framework
coupled with supertree methods, and “particular focus needs
to be placed on developing fast supertree methods that yield
accurate and well resolved solutions” [53].

The BWD method, which incorporates branch length
information from the input trees, significantly enhances the
graph-based approach concerning accuracy and resolution,
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Table 5: The table shows the rounded average numbers of d, r1 and s (triplet error II) for PhySIC IST 0, PhySIC IST 1, BWD SAC, and MRP
from model tree with 96 taxa. Numbers are shown for different quantities of input trees and different deletion ratios.

Method
No. of input
trees

d r1 s

25% 50% 75% 25% 50% 75% 25% 50% 75%

PhySIC IST 0
2 79560 113096 143171 12445 3512 249 55435 30832 4020

10 945 21989 132238 70095 55607 2226 76400 69843 12976

20 769 5951 121243 63994 70944 6112 82676 70545 20085

PhySIC IST 1
2 79560 113096 143171 12445 3512 249 55435 30832 4020

10 17313 78432 138623 82097 39358 2321 48029 29650 6496

20 22228 33872 139835 874160 79315 2426 37796 34253 5178

BWD SAC
2 53189 100519 13931 16 87 208 94246 46834 7841

10 38105 48742 76237 1 7 92 109334 98691 71110

20 21443 45524 61371 0 1 31 125997 101914 86037

MRP
2 45816 94097 137804 19002 11143 2776 82621 42201 6860

10 12701 13033 32666 7273 10597 40878 127466 123810 73897

20 10013 11712 15234 3882 5553 21545 133545 130174 110601

Table 6: Average running times (min:sec) of the polynomial supertree algorithms in case of 524 taxa model trees, different quantities of
input trees, and different deletion ratios. Note that for this data set the running time of MRP was limited to 60 minutes, and all instances
reached this time limit.

No. of
input trees

BWD SDM MC MMC PhySIC IST PhySIC IST

c = 0 c = 1

d = 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75%

4 18:17 5:54 1:16 0:12 3:28 0:33 0:33 0:04 3345:18 1026:55 2483:26 1736:14

8 35:33 26:12 1:48 0:20 36:27 5:22 18:36 0:54 3274:32 2386:27 1505:28 1741:35

12 41:45 46:35 2:28 0:30 60:21 17:18 72:24 4:58 2003:21 5732:01 1066:54 1659:21

16 44:22 44:56 3:35 0:43 67:21 29:02 94:04 14:13 1862:25 2916:44 914:09 1485:04

20 51:11 56:57 5:16 1:03 73:40 39:41 109:20 33:17 1427:29 4930:45 819:55 1341:26

24 46:30 48:54 7:24 1:12 80:41 43:15 113:33 51:01 1484:52 3527:05 825:59 1114:28

28 43:02 59:19 9:35 1:51 84:02 48:07 110:60 63:27 1632:38 3116:49 881:23 1073:11

32 29:21 62:07 12:38 2:24 87:26 51:49 96:40 79:33 1626:19 2518:55 894:34 982:14

36 29:04 59:56 17:03 2:46 91:41 57:12 95:23 89:09 1480:25 1883:58 898:09 922:50

40 20:51 64:33 20:07 3:24 93:31 59:52 89:43 101:59 1796:09 1683:19 897:45 859:44

without sacrificing short running times. We believe that
further investigations concerning the use of branch length
are needed, to make methods such as BWD applicable
for real-world studies. On one hand, methods as the one
proposed in Section 4 to reconcile different distances need to
evaluated. On the other hand, different weighting schemes
for edges in the BWD graph should be evaluated, which
includes the use of bootstrap values from the input trees.

Veto approaches such as PhySIC have certain appealing
properties but also certain drawbacks: the resolution of
reconstructed supertrees rapidly decreases when there are
too many conflicts among input trees, and/or small taxon
overlap. In our simulation, PhySIC returned only star trees,
a behavior that is certainly improved by collapsing branches
from the input trees with low bootstrap support (the “-b”
command line option in PhySIC program offers). In our
simulation, we decided not to use this option but to use the

unmodified input trees “as they are,” because we argue that a
similar preprocessing would also enhance the performance
of other methods. The effect of collapsing branches can
be different for different methods, and PhySIC may benefit
more from doing so, but we found this question to be beyond
the scope of our evaluation study.

PhySIC IST, in combination with STC preprocessing,
significantly enhances the veto approach in terms of res-
olution and accuracy, but at the cost of taxa not being
included in the supertree. The extent to which PhySIC IST
excludes taxa clearly depends on the used data set. The
data used in our simulation represents a rather extreme
case, and data that carefully selected by hand should be
more suitable for PhySIC IST. Furthermore, analysis of the
triplet distance (or triplet type II error for our study)
reveals that veto approaches can be too conservative, whereas
voting approaches as BWD can be too decisive. For future



Advances in Bioinformatics 19

polynomial supertree methods, a middle course between the
two approaches seems desirable.

Simulation studies, as the one conducted here, have the
general advantage that we can compare the reconstructed
supertree with the true model tree. Our findings are generally
in accordance with other supertree simulation studies. Both
Eulenstein et al. [31] and Kupczok et al. [54] found that MRP
outperforms MC and MMC. Eulenstein et al. [31] also found
that matrix representation with flipping (MRF) shows a
similar performance as MRP. Regarding SDM, we decided to
use SDM+BioNJ∗ in our study because of running time con-
siderations and incomplete distance matrices. Unfortunately,
SDM+BioNJ∗ did not show competitive results. According
to Buerki et al. [30] and Kupczok et al. [54], SDM+MW∗

performs much better than SDM+BioNJ∗, but this again
comes at the price of significantly increased running times.
The BWD method has not been considered in previous
simulation studies, but our results clearly indicate that BWD
supertrees can be of good quality. Despite all developments
in the field during the last 19 years, MRP must still be
regarded a “gold standard” of supertree reconstruction;
nonwithstanding its advanced age, there appears to be no
method that clearly outperforms it. In particular, many
methods (even those claiming polynomial running time)
have running times that are unfavorable when compared to
the highly developed MRP search heuristics. The empirical
study of Buerki et al. [30] showed, somewhat surprisingly,
that supertree quality for MC and MMC are comparable to
MRP and MRF. Other methods such as average consensus
or split fit showed much poorer performance. But according
to Swenson et al. [55], the topological distance to source
trees and the topological distance to the true is only weakly
correlated, so empirical studies might be misleading.

Today, a divide-and-conquer approach to large scale
using polynomial supertree methods as subprocedure has
not fully been realized. Instead, we propose to use several
of the supertree methods presented here for medium-sized
studies with hundreds of taxa and tens of trees, and to
manually compare the results. But if the sheer size of the
problem makes it impossible to use matrix-representation
methods such as MRP, novel polynomial-time methods such
as BWD or variants of SDM can greatly improve the quality
of results, compared to early methods such as MC or MMC.
Although formal supertree methods have been around for a
quarter of a century, our simulation also shows that there
is still much room for improvement, and that novel ideas
and methods can greatly improve the quality of constructed
supertrees.

Appendix

PhySIC IST: Number of Excluded Taxa. See Tables 1, 2, 3, 4.

Triplet Error II: Values of d, r1, and s for 96 Taxon Model
Trees. In order to compare the veto and voting approachs
in more detail, it is interesting to compare the values the
triplet error II is calculated from. Table 5 shows the rounded
average values of d, r1 and s for PhySIC IST 0, PhySIC IST

1, BWD SAC and MRP in case of 96 taxon model trees
and two, ten and twenty input trees. The described behavior
of the methods is similar for 48 and 144 taxa model trees.
Regarding PhySIC IST 0, which mimics a voting approach,
the number of nonidentical triplets between model tree
and supertree, d, generally decreases with more input trees,
whereas the number of star triplets in the supertree, r1,
and the number of identical triplets, s, increase. In case of
PhySIC IST, d does not decrease as much as for PhySIC IST
0, and can, as in case of 25% and 75%, also increase
for more than ten input trees. Moreover, the number of
star triplets increases and the number of identical triplets
rather decreases in correspondence to the rather increasing
value of d for the same number of input trees. For all
deletion ratios, the voting-based BWD method produces less
nonidentical triplets with a higher number of input trees.
Star triplets are practically absent whereas the number of
identical triplets clearly decreases for a higher number of
input trees. The same behavior holds for the voting-based
MRP method, although it produces a significantly higher
number of star triplets, which decreases in case of 25% and
50%. To summarize, the voting based methods BWD SAC
and MRP produce more identical triplets on the one hand
(whereby the former produces practically no star triplets),
but also high numbers of nonidentical triplets on the other
hand when compared to PhySIC IST 0. This behavior is
generally counterbalanced by the veto-based methods by
producing more star triplets.

Results for 48 Taxon Model Trees. See Figures 8 and 9.

Running Times for 525 Taxa Model Trees. See Table 6.
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