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Abstract

Surveys of microbial populations in environmental niches of interest often utilize sequence

variation in the gene encoding the ribosomal small subunit (the 16S rRNA gene). Generally,

these surveys target the 16S genes using semi-degenerate primers to amplify portions of a

subset of bacterial species, sequence the amplicons in bulk, and assign to putative taxo-

nomic categories by comparison to databases purporting to connect specific sequences in

the main variable regions of the gene to specific organisms. Due to sequence length con-

straints of the most popular bulk sequencing platforms, the primers selected amplify one to

three of the nine variable regions, and taxonomic assignment is based on relatively short

stretches of sequence (150–500 bases). We demonstrate that taxonomic assignment is

improved through reduced unassigned reads by including a survey of near-full-length

sequences specific to the target environment, using a niche of interest represented by the

upper respiratory tract (URT) of cattle. We created a custom Bovine URT database from

these longer sequences for assignment of shorter, less expensive reads in comparisons of

the upper respiratory tract among individual animals. This process improves the ability to

detect changes in the microbial populations of a given environment, and the accuracy of

defining the content of that environment at increasingly higher taxonomic resolution.

Introduction

A critical step in 16S-based microbiome research is the assignment of microbial taxonomy.

Currently, most research utilizes public 16S reference databases, such as Greengenes, SILVA,

RDP, or GenBank, to assign taxonomy to sequence data [1–4]. However, these databases may
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pose limitations to taxonomic assignment due to the large amount and length of sequences

available as well as the variable quality of data. For example, 43% of full-length 16S small-sub-

unit rRNA gene sequences available in the GenBank database were identified as chimeras and

unable to be classified, resulting in low-quality data that can ultimately alter taxonomic assign-

ment [1]. Unlike GenBank, Greengenes and SILVA utilize a chimera-checking and alignment

algorithm for quality filtering [5, 6]. Even with these quality-checking programs, these public

16S reference databases contain between 0.2% to 2.5% mislabeled sequences, with errors asso-

ciated with knowledge bases that have misidentified species or misidentified sequence data

that result in incorrectly assigned taxa [7]. When these reference databases were compared

among each other using taxonomy annotations provided by RDP to assess taxonomic assign-

ment, Greengenes and SILVA significantly differed from each other, with an error rate around

17% [8]. Not only do these public databases contain significant error rates but also thousands

of sequences. In August 2007, SILVA had 546,521 sequences available [6]; now, SILVA reports

having over 6 million aligned rRNA sequences [9]. The sequences available in these databases

are not always full-length sequences as well, and have historically focused on amplicons of

hypervariable regions [10]. The classification accuracy differs among hypervariable regions,

and can negatively impact taxonomic assignment based on the regions referenced [11]. Green-

genes provides full-length and chimera-checked 16S rRNA gene sequences, created from mul-

tiple curators who provide their sequences from a single study. However, among many

curators, there can be multiple incongruencies in taxonomic nomenclatures at the phylum

level (1). Ultimately, this has the potential to lead to errors in assignment when using these

public databases. In addition, the extensive number of sequences to process can have a large

impact on computational resources [12]. Therefore, to assist with the limitations associated

with public 16S reference databases, using custom 16S reference databases developed for speci-

fied microbial niches has the potential to improve taxonomic assignment while reducing the

computational load that is associated with public 16S reference databases. With increased per-

formance, researchers can more accurately investigate the impact of microbial communities

and understand their roles in specific environments, particularly with diseases that are high-

impact in certain industries.

Bovine respiratory disease (BRD), or shipping fever, substantially impacts the U.S. beef cat-

tle industry, with economic losses exceeding $1 billion annually [13, 14]. Calf mortality, veteri-

nary and/or treatment costs, and labor are among the primary contributors to the financial

burden of BRD on the industry. The manifestation of the disease can result in reduced growth

and reproductive performance [15, 16], subsequently affecting long-term herd performance

and longevity. A variety of complex factors can be involved with BRD pathogenesis that

involve host elements, environmental elements, inadequate management and housing, as well

as viral and bacterial pathogens, such as Mannheimia haemolytica and Mycoplasma bovis [17,

18]. Yet, the presence of these pathogens in the upper respiratory tract (URT) of cattle may not

necessarily result in disease [19]. Indeed, microbes such as M. haemolytica are opportunistic

and result in diseased states when the animal is exposed to environmental stressors such as

transport, weaning, or viral pathogens [20]. As BRD is reliant on opportunistic conditions,

research is beginning to focus on the association of these bacterial pathogens with the animal’s

nasopharyngeal microbiome [21–23]. Understanding these associations are key in determin-

ing the role of the microbiome on BRD, and how microbial community dysbiosis may impact

the incidence of respiratory disease in cattle.

Currently, microbiome research efforts with regard to BRD have focused on characterizing

the microbiome of the bovine nasal cavity in normal and diseased states in varying stages of

production [23–25]. These community-based studies conducted 16S rRNA analyses utilizing

short-read technologies. However, as is similar in other fields of animal agriculture
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microbiome research, typically a large quantity of sequence reads is left unassigned (approxi-

mately 10–20% in BRD research) [26] and/or operational taxonomic units (OTUs) with low

sequence counts are removed from analyses. These shortcomings decrease the power of analy-

ses to detect small, potentially important variations in microbial community structure and

function that may have phenotypic or disease-related impacts. Greater use of community-

based microbial databases has been a more practical option in defining accurate microbiomes

[27, 28]. Utilizing niche-specific microbial databases developed from full-length or near-full-

length 16S reads for short-read 16S analyses would aid in microbial identification and further

limit unassigned taxa [29, 30]. In BRD research this is critical, as optimizing the ability to accu-

rately and comprehensively investigate the nasopharyngeal microbiome permits researchers

with greater opportunities to define the complex interactions in this multifactorial disorder. In

this report, we describe the development of a 16S rRNA sequence database for the bacterial

community present in the URT of cattle, to provide improved assignment of taxa within the

bovine URT and as a site-specific tool for examining microbiome dysbiosis involved in BRD.

Materials and methods

Database construction

Animal selection and sampling. This study was approved and carried out in accordance

with the recommendations of the Kansas State University and U.S. Meat Animal Research

Center Institutional Animal Care and Use Committees. Animal selection and sampling proce-

dures for the “KSU” population were conducted as described in DeDonder and colleagues

[31]. The KSU population consisted of a total of 180 cattle with an initial body weight ranging

from 164–269 kg, obtained from Athens, Tennessee (n = 60), Maryville, Missouri (n = 60), and

Richmond, Kentucky (n = 60). Comingled steers and bulls were acquired from multiple ori-

gins and mixed breeds to obtain a broad spectrum of variability for bacterial classification. The

cattle were transported to a feeding facility in Kansas and housed in open-air, dirt floor, group

housing pens. Cattle were randomly assigned one of two treatments upon arrival at the facility,

receiving either mock treatment saline at 2 mL / 49.9 kg or metaphylactic gamithromycin at

the dose of 2 mL / 49.9 kg subcutaneously in the neck. Additional information regarding vac-

cines, growth implants, and diets are further described according to DeDonder and colleagues

[31]. Animal selection and sampling procedures for the “USMARC” population were con-

ducted as described by McDaneld et al. (24). Samples were collected in the years 2010–2012

from animals belonging to advanced generations of the U.S. Meat Animal Research Center

GPE (Germplasm Evaluation Program; [32]) herd, Clay Center, Nebraska. Approximately 800

animals were produced in multiple-sire matings of crossbred cows to F1 and purebred bulls

from various breeds, consisting of variable fractions of 18 breeds: Angus, Hereford, Red

Angus, Brahman, Charolais, Gelbvieh, Limousin, Simmental, Brangus, Beefmaster, Shorthorn,

Maine Anjou, Santa Gertrudis, Chiangus, Salers, Braunvieh, South Devon, and Tarentaise. As

a number of factors affect the microbial communities of the nares in cattle with regard to

BRD, such as environment, management, sex, breed, and clinical treatment [23, 33], this opti-

mized strategy and diverse mix of cattle was used to establish the bacterial Bovine URT 16S

rDNA database for cattle with BRD.

The KSU population was sampled multiple times, including at the sale barn prior to depar-

ture on transport trucks, during unloading upon arrival at the feedlot, and at least twice more

during the 28-day feeding period. Some animals had additional sample collected if they were

diagnosed as potential BRD cases. Sampling was conducted by deep nasopharyngeal swab

inserted through the nares by a trained veterinarian as described [17]. Briefly, the double

guarded, sterile uterine swab was inserted into the nasal cavity to the point of resistance against
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the swab, indicating nasopharyngeal tonsilar tissue. The swab was rotated to obtain sample

from the pharyngeal tissues. During swab removal, the guarded sleeve protected the swab

from contamination. One swab was inserted in each nostril, and kept separate during trans-

port. The swabs were stored in liquid Amies media and sent on ice to the USDA-US Meat Ani-

mal Research Center (Clay Center, NE) for same-day processing (approximately 4 hours in

transit). The tubes containing media and swabs were vortexed for 30 seconds to displace bacte-

ria still stuck on the swabs, and then the swabs were removed. Aliquots from the tubes of inde-

pendent swabs from both nares of each animal were taken, and then the remainder of each

pair of tubes was combined into a single animal-by-time-point combined sample. Glycerol

was added to 20% final solution to each combined sample and independent aliquot, mixed by

inversion, allowed to stand for 5 minutes on ice, and then stored at -80˚C.

The USMARC population was sampled using 6-inch nasal swabs of calves at initial vaccina-

tion (approximately 40 days of age), preconditioning (approximately 130 days of age), weaning

(approximately 150 days of age), and if the calf was diagnosed with BRD during a 1-5-week

period after weaning. For sampling, the nose of the animal was wiped cleaned with a single-

use towel if fecal material was present. The unguarded 6-inch nasal swab was then gently

inserted into the nasal cavity at an approximate depth of 6 inches. The nasal swab was then

rotated and removed. After collection of the sample, 6-inch nasal swabs were placed in buff-

ered peptone water with 12% glycerol, drop frozen in liquid nitrogen directly after collection,

and stored at -80˚C.

DNA extraction, amplification, and sequencing of database samples. For the KSU sam-

ples, a 1mL aliquot of sample was placed into LoBind tubes (Eppendorf, Hamburg, Germany)

containing Nuclei Lysis Solution from the Promega Wizard Genomic DNA Purification Kit

(Madison, WI, USA) and an isopropanol precipitation was performed on ice using a total of

600μL of 100% isopropanol. Samples were then centrifuged at 14,500 x g for 2 min. at 4˚C. A

600μL volume of cold Nuclei Lysis buffer was added to the pellet, vortexed, and incubated at

80˚C for 7 min. Samples were then transferred to QiaShredder (Qiagen, Hilden, Germany)

tubes and centrifuged at 14,500 x g for 5 min. at 4˚C. Samples were then vortexed and incu-

bated at 80˚C for 5 min. Following incubation at room temperature for 10 min, 3μL of RNAse

solution (Promega Wizard Genomic DNA Purification Kit) was added to the sample, mixed

via inversion, and incubated at 37˚C in a water bath for 30 min. Following incubation at room

temperature for 10 min, 200μL of Protein Precipitation Solution (Promega Wizard Genomic

DNA Purification Kit) was added to the sample, vortexed, and placed on ice for 5min. Samples

were centrifuged at 14,500 x g for 3 min. at 4˚C, supernatant transferred to a new tube, and

600μL of 100% isopropanol added to the sample and mixed via inversion. Another round of

centrifugation at 14,500 x g for 2 min. at 4˚C was completed, supernatant removed, and 600μL

of 70% ethanol was added to the sample. A final centrifugation occurred at 14,500 x g for 2

min. and the 70% ethanol was removed via aspiration. The nucleic acid pellet was dried at

room temperature for 15 min. and re-suspended in 50μL of DNA rehydration solution (Pro-

mega Wizard Genomic DNA Purification Kit). DNA quality was checked via electrophoresis

in a 2% (w/v) agarose gel in TBE buffer (1X), and concentration was determined using a Nano-

drop 1000 spectrophotometer (ThermoScientific, Wilmington, USA).

For the USMARC samples, total DNA was extracted from each swab using a commercial

kit (PowerSoil DNA kit; Qiagen, Germantown, MD) as directed by the manufacturer, and ini-

tial DNA quantity was evaluated with a DNA spectrophotometer (DeNovix DS-11 FX Series;

Wilmington, DE). Equal amounts of DNA from each swab were then pooled within collection

year and time point of sampling (initial vaccination, preconditioning, weaning, after weaning)

and were chosen for amplification of the 16S ribosomal RNA (rRNA) gene. There were 114

pools sequenced with long reads representing over 800 animals.
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DNA library preparation was performed by polymerase chain reaction (PCR) amplification

similar to Myer and colleagues [29]. PCR amplification and DNA library preparation of the

V1–V8 hypervariable regions of the bacterial 16S rRNA gene were performed using universal

primers 27F (5'- AGAGTTTGATCCTGGCTCAG) and 1392R (5'-GACGGGCGGTGTGTAC).

Amplification consisted of 20 cycles with an annealing temperature of 58˚C and extension

time of 90 seconds. Products were purified using AmPure1 bead purification (Agencourt,

Beverly MA), converted to libraries using Template Preparation Kit v1.0 (Pacific Biosciences),

and quantified by the PicoGreen1 dsDNA quantitation kit (Invitrogen, Carlsbad, CA) and by

real-time PCR on the LightCycler 480 system (Roche, Mannheim, Germany). Libraries were

sequenced on the Pacific Biosciences RSII instrument (Pacific Biosciences, Menlo Park, CA).

Bovine URT database sequence data analyses, development, and phylogenetic analy-

ses. All sequencing data were curated using mothur (v1.39.5) [34]. The consensus fastq files

were parsed so that scores of zero were interpreted as corresponding to an ambiguous base

call. Also, because the consensus sequence can be generated in the forward and reverse com-

plement orientations, proper orientation was verified. Sequences were then filtered for quality

(�Q30) using a rolling window approach (window = 30), homopolymers > 8 were discarded,

any sequences with ambiguous bases were removed, and sequences that contained read lengths

shorter than 1350bp or larger than 1400 were removed. Alignment was conducted against the

SEED SILVA database (v128) [2]. Pre-clustering of aligned sequences was conducted at

diffs = 14. De novo detection of chimeras was conducted using UCHIME [35]. Classification

of denoised reads was performed against greengenes (v13_8_99) [1] using a naïve Bayesian

classifier at a cutoff of 80. All reads were clustered with VSEARCH at a 97% similarity thresh-

old. Following clustering, a consensus classification of OTUs using a 50% consensus clustering

threshold was performed. Then, a taxonomic database consisting of the most abundant

sequence of each OTU was constructed. Rarefaction curves examining sequencing depth were

constructed in the Quantitative Insights Into Microbial Ecology (QIIME) bioinformatics pipe-

line, version 1.9.1 [36]. Using the whole database alignment, Newick-formatted, approximately

maximum-likelihood phylogenetic trees were calculated and built in QIIME using FastTree

[37]. Trees were viewed using Interactive Tree of Life (iTOL) [38]. These sequences are avail-

able from the NCBI Sequence Read Archive (SRA Accession PRJNA548468).

Validation analyses

DNA amplification and sequencing. The 16S ribosomal RNA (rRNA) gene variable

regions were amplified from additional pooled samples of the USMARC population. Three

pooled samples were randomly chosen for sequencing and analyses. DNA was extracted as

described above. Library preparation was performed using standard PCR (AccuPrime, Invitro-

gen, Carlsbad, CA) and primers that amplify variable regions 1 through 3 of the 16S rRNA

gene [39]. Quality and quantity of the resulting 16S rRNA gene amplification was checked on

the Fragment Analyzer (Advanced Analytical, Ankeny, IA) and then sequenced utilizing the

MiSeq Illumina Sequencer (Illumina, San Diego, CA) with a MiSeq Reagent Kit v3 to generate

2x300 paired end reads. These sequences are also available from the NCBI Sequence Read

Archive (SRA Accession PRJNA548468).

Sequence data analyses. All MiSeq sequencing data for validation analyses were curated

using mothur (v1.39.5) [34]. Sequences were then filtered for quality (�Q30) using a rolling

window approach (window = 30), homopolymers > 8 were discarded, any sequences with

ambiguous bases were removed, and sequences that contained read lengths shorter than 300bp

were removed. Alignment was conducted against the SEED SILVA database (v128). Pre-clus-

tering of aligned sequences was conducted at diffs = 14. De novo detection of chimeras was
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conducted using UCHIME. Classification of denoised reads was performed against Green-

genes (v13_8_99) [1] and SILVA (v128) (2) using a naïve Bayesian classifier at a cutoff of 80.

For comparison, classification of denoised reads was also performed against the Bovine URT

database. All reads were clustered with VSEARCH at a 97% similarity threshold. Following

clustering, a consensus classification of OTUs using a 50% consensus clustering threshold was

performed. Sequences and their resultant taxonomic classification that were successfully

assigned by the Bovine URT database but unassigned against the Greengenes database were

re-analyzed using the Bovine URT database. To accomplish this, unassigned Greengenes

sequences were filtered from the FASTA and OTU tables to retain only those sequences that

were unassigned. Utilizing the filtered FASTA and OTU tables, the classification of the filtered

unassigned sequences was then performed against the Bovine URT database as described pre-

viously to ascertain differences in taxonomic assignment using the Bovine URT database. Phy-

lum-level taxa were assessed for normality using the PROC UNIVARIATE procedure in SAS

9.4 (SAS Institute, Cary, NC). Normality was determined based on visual distribution of histo-

grams and a Shapiro-Wilk statistic of� 0.90. Those variables following a normal distribution

were analyzed using one-way analysis of variance (ANOVA) for multiple independent groups

[40] to compare among Bovine URT, SILVA, and Greengenes datasets. Those variables follow-

ing a non-normal distribution were first ranked and then analyzed using a one-way ANOVA.

Significance was determined at P� 0.05 and tendencies were considered from 0.05< P� 0.10

and the Benjamini–Hochberg method used for multiple-testing corrections [41]. Taxonomic

composition correlation between the database pipelines was conducted using Pearson correla-

tion, where P-values were calculated using a two-sided test of significance using a t-

distribution.

Results

Summary of database composition

A summary of database statistics is included in Table 1. A total of 4,364,029 reads were used

for Bovine URT database development following pipeline QC, with 170,730 unique sequences

totaling 235,106,702 bp with an average length of 1,377 ± 36 bp. A large quantity of the data-

base consists of singletons, totaling 150,723 reads. This is due to the inclusion of unique reads,

including ones with only 1bp difference. As a means to evaluate the completeness of detection

of bacterial species, a rarefaction curve of annotated species richness was constructed and

resulted in adequate read depth as depicted by the asymptote (Fig 1). Clustering the reads

using presently known species resulted in a total number of 2,111 observed species (S1 File).

Overall, the Bovine URT database contains a small number of abundant species, but a large

quantity of rare species.

Table 1. Bovine URT database statistics.

Metric Value

Number of Sequences 170,730

Average Sequence Length (bp1) 1,377 ± 36

Mean GC Content (%) 49 ± 4

Number of Species-Level OTU2 2,111

Number of Genus-Level OTU2 510

1BP: Base pairs
2OTU: Operational taxonomic units

https://doi.org/10.1371/journal.pone.0235498.t001
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A detailed phylogenetic tree of the Bovine URT bacterial 16S database at the level of genus

is displayed in Fig 2. A detailed taxonomic distribution of the reads at the level of phylum and

genus within the database are listed in Fig 3. Mycoplasma was the dominant genus, accounting

for over 57% of the reads. The only other genus observed at�1% included Moraxella (3.4%),

Pasteurella (2.3%), Ureaplasma (2.1%), Terrimonas (1.6%), Fusobacterium (1.4%), Clostridium
(1.2%), Ruminococcus (1.2%), Microbacterium (1.1%), and Streptobacillus (1.0%). Mannheimia
was present at 0.7% (S2 File). Only 793 sequences were unable to be identified (0.4%).

Reference database performance

Fig 4 shows the comparison among taxonomic composition at the phylum level when analyz-

ing short read 16S amplicons against the Greengenes and SILVA database in a de novo pipe-

line and against the Bovine URT database. The top phyla from the Greengenes analysis at�1%

included Actinobacteria (27.6%), Firmicutes (23.7%), Bacteroidetes (20.7%), Tenericutes

(13.8%), and Proteobacteria (6.1%) (S3 File). The top phyla from SILVA analysis at>1%

included Actinobacteria (27.9%), Firmicutes (23.6%), Bacteroidetes (20.8%), Tenericutes

(13.7%), and Proteobacteria (6.0%) (S3 File). The top phyla from the Bovine URT database

analysis at�1% included Actinobacteria (27.9%), Firmicutes (23.8%), Bacteroidetes (21.0%),

Tenericutes (14.2%), and Proteobacteria (6.1%) (S3 File). Unassigned taxa in the Bovine URT

database analysis was 0.2% contrasted to the Greengenes and SILVA analyses, at 4.2% and

4.0% respectively (S3 File). The unassigned taxa were the only group at the phylum level that

differed among the Greengenes (4.2 ± 0.21%), SILVA (4.1 ± 0.24%), or Bovine URT

(0.2 ± 0.09%) databases (P = 0.0025). When contrasting taxonomic composition, specifically at

the genus level, the Bovine URT compositional comparisons against the Greengenes and

SILVA taxonomic compositions indicated statistically significant correlations (r = 0.226;

P< 0.001 and r = 0.154; P< 0.001, respectively). All alpha diversity indices among the three

analysis methods were not different (Fig 5). Many sequences and their resultant taxa were suc-

cessfully assigned by the Bovine URT database but unassigned against the Greengenes database

and included those of the order Clostridiales, the family Microbacteriaceae, and genera Myco-
plasma and Moraxella, to name a few (S4 File).

Discussion

Over the past decade, high-throughput sequencing has dominated microbial ecology and per-

mitted deep investigation into microbial community composition. As a result, numerous data-

bases containing annotated microbial genomes and 16S amplicon reads of numerous

Fig 1. Rarefaction curve of annotated species richness within the Bovine URT bacterial 16S rDNA reference

database.

https://doi.org/10.1371/journal.pone.0235498.g001
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microbial ecosystem origins have been constructed, including but not limited to RDP [3],

Greengenes [1], SILVA [2], and GenBank [4]. In the typical 16S analysis pipeline, OTU analy-

ses are utilized first, as they are powerful tools in that they do not require a reference database,

and function by identifying similar sequences based on sequence identity. Using these data-

bases, taxonomic-dependent methods are then used to assign taxonomic annotations to OTUs

based on the OTU analysis. Consequently, the 16S analysis pipeline is limited by the reference

database utilized in analyses. Taxonomic annotation of discovered and binned sequences from

16S rDNA read data is a critical step in the canonical 16S amplicon sequencing pipeline. Yet,

the use of public databases containing microbial genomic data from numerous microbial eco-

systems may not be specific or of high enough quality to properly analyze niche-specific micro-

bial communities. Public 16S databases are popular, but are of variable quality [42, 43] due to

their rapid growth and sequence types [44]. The issue is also greater for identification of short

reads, commonly used in 16S analyses due to the great depth achieved. With short-read analy-

sis, gaining information beyond the genus level and avoiding mismatches due to the variety of

Fig 2. Circular maximum likelihood phylogenetic tree at the level of genus of the Bovine URT 16S rDNA reference database. Tree image was generated using

ITOL. Genera are color-coded by phylum.

https://doi.org/10.1371/journal.pone.0235498.g002
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comparative lengths of sequence in the database is often problematic. It is often necessary to

increase the taxonomic resolution of microbial community analyses, especially when deter-

mining pathology or examining welfare issues, as species-level function and dynamics are

essential [45]. The objective of the study was to evaluate the impact of creating a niche-specific,

near-full-length, 16S rRNA reference database on the ability to assign taxonomy from shorter

partial sequence covering only one to three variable regions. This was completed by analyzing

the URT of cattle, a niche with substantial sample to sample variability and relatively high

community diversity. Importantly, a niche-specific custom database to be used as a reference

also has the disadvantage of being circularly self-referenced and fail to identity taxa that were

not present at its setup. These failures could be infrequent but, nevertheless, may be important

for the specific habitat. To overcome this consideration for this evaluation, we had available a

broad breadth of samples taken at varying locations, environments, breeds, US regions, and

time points collected as part of studies on bovine respiratory disease.

The cattle utilized for the development of the Bovine URT database originated from numer-

ous locations and were of varying health status. This variety provided a great resource for

broad sampling of URT microbial diversity, as demonstrated in the database phylogenetic tree.

Sequences from the phylum Tenericutes and its genus Mycoplasma dominated the dataset,

which may be due in part to effects of antibiotic treatment of a portion of the animals, or to the

stress of transport that places the animal at increased risk for disease (35). Consistent with this

supposition, the Mannheimia genus was relatively abundant (0.7%). A variety of organisms

commonly found in numerous other microbial ecosystems were also identified, expanding the

scope of the Bovine URT database for BRD microbial analysis. Organisms in the database that

are found in various microbial ecosystems include, but are not limited to, Prevotella, com-

monly found in gastrointestinal tracts [46], Streptobacillus, commonly found in mammalian

disease [47], and Clostridium, whose species are found in a wide variety of hosts and have vari-

ous functions and pathogenicity [46, 48–50]. In all, there were a total of 2,111 observed species,

reflecting encounters with diverse environments by the cattle URT as they move from farm to

feedlot. Indeed, this diversity reflects the broad sampling of animals across breeds and envi-

ronments, an important factor in developing a comprehensive, custom database for the cattle

Fig 3. Bacterial taxonomic profile of total 16S rDNA gene sequences in the Bovine URT reference database at the phylum level (donut chart; left) and genus

level (bar chart; right). Genus abundances classified by representation at�0.6% of total sequences.

https://doi.org/10.1371/journal.pone.0235498.g003
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URT. The rarefaction curve of the sequences utilized in the Bovine URT database indicates

that the level of sequencing depth was adequate to detect the majority of the microbial commu-

nities across the dataset. Taking into account the use of near full length 16S reads, deep

sequencing depth, variable health statuses, and a large sample population of cattle, the con-

structed Bovine URT 16S rDNA database represents one of the more comprehensive microbial

datasets to date with reference to BRD.

Fig 4. Relative abundance of bacterial phyla in the multiple diverse samples identified using the Greengenes,

SILVA, and Bovine URT databases on small read 16S amplicon sequencing from the bovine URT.

https://doi.org/10.1371/journal.pone.0235498.g004

Fig 5. Boxplots of alpha diversity indices among Greengenes, SILVA, and Bovine URT database microbial profiling methods. Alpha

diversity indices include A) observed species, B) Chao1, and C) Shannon diversity index.

https://doi.org/10.1371/journal.pone.0235498.g005
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Numerous studies have suggested the use of niche-specific databases for 16S analysis of

microbial profiling [12, 29, 51, 52]. In support of this concept, validation of the Bovine URT

database was completed using short read amplicons from samples of the USMARC population

against the long-read Bovine URT database, as well as against the SILVA and Greengenes data-

bases. Interestingly, the profiling methods referencing the Bovine URT, SILVA, and Green-

genes databases produced considerably similar microbial community profiles. Even given the

observation of animal-to-animal variation within the long read data, the phylum and genus

distribution did not vary greatly between methods, substantiating the utility of the Bovine

URT database based on its similarity to the two public databases. However, there was a signifi-

cant difference in the number of unassigned taxa, which was likely a result of greater classifica-

tion accuracy. Indeed, these re-assigned taxa using the Bovine URT database likely accounted

for some of the small differences observed among the analyses when using the Bovine URT

database, such as the phyla Tenericutes, Firmicutes, and Bacteroidetes (S4 File). Nucleotide

variation along the 16S rRNA gene is considerable, and short reads can only capture a fraction

of this variability. Even when full length reads are analyzed, studies have determined that reads

may be taxonomically similar at the genus level. Against the RDP database, one study found as

many as 5.5% full-length reads similar at the genus level [53]. Given the variability of sequence

length and variability of well-characterized species in public databases, short reads are likely

matched to multiple fragments along longer reads of the 16S sequence, resulting in false posi-

tives or misclassifications cofounding analyses and exponentially augmenting species esti-

mates, phylogenetic diversity, and taxonomic assignments [54, 55]. Mock community analyses

with de novo OTU picking strategies have demonstrated inflated OTU counts and diversity

[55, 56], and many of the spurious OTUs detected are present at low abundances. This concept

was supported by the great discrepancy among analyses in the current study pertaining to the

difference in unassigned taxa, as well as the number of genera identified among the three anal-

yses, not to be confused with taxonomic composition and phylogenetic diversity. The Bovine

URT analysis identified 550 genera, whereas the number of genera in the SILVA and Green-

genes analyses were far greater at 981 and 748 respectively (S3 File). This discprepency is

expected to be the result of overestimation due to misclassification to reference sets or low

quality assignment [52]. Importantly, during development of the Bovine URT database, the

taxonomy was assigned to the long-read sequences using Greengenes. However, this does not

imply similar database functionality between the two databases. Once created, the Bovine URT

database was unique from the Greengenes database. When short-read samples were mapped

to both databases for validation, a difference in results would be expected, as there are different

sequences between the databases which can result in the aforementioned differences identified

in the current study.

There are common drawbacks and pitfalls inherent to many microbial community surveys.

Amplification biases due to unequal matching performance of primers across different species

are also considerations of additional sources of error. This can lead to major artifacts in the

reported taxa proportions within the community. These primer biases have been reported in

our previous work and the work of others [29, 30, 57]. However, in this study, this concern is

limited with regard to Bovine URT database validation. We utilized a diverse set of microbial

samples for database construction coupled with the same primer pairs among all replicates for

validation analyses between two distinct databases. Bovine URT database validation using test

sequences among different variable regions may output slightly different results [57], but is

beyond the scope and intent of this study. Ultimately, the near-full length read database repre-

sents a resource to better interpret the data regardless of primers and hypervariable regions.

Longer reads offer greater potential to identify higher quality OTUs [29], and using these

longer reads as a standardized reference is promising to capture accurate microbial
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composition and diversity. The abundance of unassigned taxa among the methods further sup-

ports this theory, and encourages the use of reference databases. The significantly reduced

unassigned taxa alludes to a more thorough community composition analysis when assigning

short reads to a long read reference database. Moreover, assigning short reads to taxa from a

database containing classified long reads that are analyzed and included specifically for the

ecosystem studied allowed for a reduction in redundancy and reduced the likelihood that taxa

went unassigned, as only 793 of over 170,000 sequences were unable to be identified (0.4%) in

the Bovine URT database.

Conclusions

We were able to demonstrate greater bacterial assignment and reduced unassigned reads using

the Bovine URT database developed from near-full-length 16S reads for short-read 16S analy-

ses of URT bacteria in cattle. The analyses utilizing the Bovine URT reference database were

also able to identify bacteria previously reported in bovine BRD research demonstrating its

effective practice [23–25, 33]. Accurate taxonomic annotation of sequencing reads is impera-

tive for profiling the composition of microbiomes. This is also critical in application, as identi-

fying microbiome dysbioses or pathogens permits researchers with greater opportunities to

define the complex interactions in multifactorial disorders, such as BRD. The development of

this Bovine URT reference database provides researchers a tool with considerable improve-

ments in performance for the analysis of bacterial communities, and in this study, those of the

URT relating to cattle diagnosed with BRD.
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