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Abstract

Cilia play essential roles in normal human development and health; cilia dysfunction results in 

diseases such as primary ciliary dyskinesia (PCD). Despite their importance, the native structure 

of human cilia is unknown, and structural defects in the cilia of patients are often undetectable or 

remain elusive because of heterogeneity. Here, we develop an approach that enables visualization 

of human (patient) cilia at high-resolution using cryo-electron tomography of samples obtained 

non-invasively by nasal-scrape biopsy. We present the native 3D structures of normal and PCD-

causing RSPH1-mutant human respiratory cilia in unprecedented detail; this allows comparisons 

of cilia structure across evolutionarily distant species and reveals the previously unknown primary 

defect and the heterogeneous secondary defects in RSPH1-mutant cilia. Our data provide evidence 

for structural and functional heterogeneity in radial spokes, suggest a mechanism for the milder 
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RSPH1-PCD-phenotype, and demonstrate that cryo-electron tomography can be applied to human 

disease by directly imaging patient samples.

Introduction

Motile cilia and flagella are highly conserved and ubiquitous organelles that play important 

roles in propelling cells or liquids along tissues and are critical for the proper function of 

many human organs and systems1,2. Primary ciliary dyskinesia (PCD) is a genetically 

heterogeneous, autosomal recessive, life-shortening disease with a prevalence of ~1/20,000 

live births3. It is caused by mutations in genes that participate in the biogenesis, assembly, 

and/or function of motile cilia, which manifest in multiple clinical phenotypes, including 

respiratory distress in term neonates, chronic oto-sino-pulmonary disease, and – in ~50% of 

patients – organ laterality defects3–6.

Diagnosing PCD has traditionally depended on the detection of ultrastructural defects in 

motile cilia by conventional electron microscopy (EM)7. However, about one-third of PCD 

patients have normal-appearing ciliary ultrastructures by conventional EM6 – even in cases 

with known mutations in ciliary proteins8. In conventional EM, samples are chemically 

fixed, heavy-metal stained, dehydrated and resin embedded before imaging, which can lead 

to reduced structure preservation, artefacts, and insufficient resolution9,10. Therefore, 

advances in imaging techniques are critical for improving our understanding of human cilia 

and the structural defects that underlie PCD and other ciliopathies. Such techniques would 

provide new insights into genotype-phenotype and structure-function relationships, and 

improve diagnostics.

Rapid freezing preserves molecular structures in a pristine, fully-hydrated state without 

chemical fixation or staining. For cryo-electron tomography (cryo-ET) of cryo-immobilized 

samples, ~100 cryo-EM images are recorded at different angles and used to reconstruct the 

3D structure of small intact cells, organelles and macromolecules9. Combining cryo-ET with 

subtomogram averaging is currently the only technique that provides 3D views of native 

cellular structures, including cilia, with a resolution up to ~3 nm11. However, due to the 

challenges involved in obtaining and preparing sufficient human samples with pristine 

ultrastructural preservation, cryo-ET has so far not been applied to studying human cilia or 

specimens from human patients in general.

Motile cilia share a highly conserved core structure, the axoneme, that is composed of nine 

outer doublet microtubules (DMTs) surrounding the two central singlet microtubules of the 

central pair complex (CPC). Radial spokes (RS) extend from the DMTs and interact with the 

CPC11,12. Recently, mutations in the human radial spoke head 1 homologue (RSPH1) gene 

were shown to cause PCD with a mild disease phenotype characterized by a delayed onset of 

pulmonary symptoms and the maintenance of better lung function when compared with 

PCD patients carrying mutations in other genes13. Surprisingly, conventional EM studies of 

human cilia from PCD patients with mutations in RSPH1 or other proposed RS head 

proteins, RSPH4A and RSPH9, have failed to identify clear RS defects, instead reporting 

that the majority of these PCD cilia (more than 80% in some individuals) exhibited normal 

axoneme structure, while a smaller fraction of cilia displayed a heterogeneous set of CPC 
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defects13–18. Likewise, a recent (conventional) electron tomography study of chemically 

fixed cilia from a PCD patient with an RSPH4A mutation characterized the same CPC 

abnormalities in 3D and did not detect RS defects19. These observations differ markedly 

from RS head protein mutants in the model organism Chlamydomonas20,21, and raise 

questions about the role of human RSPH1 in ciliary function and its location in cilia, as well 

as the precise structural defects, disease mechanism and the cause of the attenuated PCD 

phenotype of patients with RSPH1 mutations.

Here, we present the native 3D structures of both normal human and RSPH1 mutant cilia 

using cryo-ET to directly image cilia from healthy humans and a PCD patient. We explore 

the evolutionary conservation and diversity in cilia and flagella, and precisely determine 

both the previously unknown primary, PCD-causing defects and the heterogeneous 

secondary CPC abnormalities in the ciliary structure of individuals with RSPH1 gene 

mutation, providing new insights into the disease mechanism.

Results

Improved method for preparing human axonemes for cryo-ET

Only specimens with pristine structural preservation and a thickness of less than a few 

hundred nanometres can be effectively imaged by cryo-EM/ET. Therefore, cryo-ET studies 

have largely been limited to isolated macromolecular complexes, organelles and small 

bacterial cells, and cannot be applied to most eukaryotic cells or tissues, including typical 

clinical samples taken from patients. In contrast to conventional EM, ciliated cells obtained, 

e.g., by nasal scrape biopsy cannot be imaged directly by cryo-ET. Instead, the development 

of an improved workflow and preparation method for human axonemes was critically 

important for visualizing the native 3D structure of human cilia by cryo-ET. This required 

both a non-invasive method for obtaining a sufficient sample of human respiratory cells and 

a cilia isolation protocol that preserves the native structure of the axonemes. To achieve this, 

we combined recent advances in culturing, expanding and re-differentiating primary human 

respiratory epithelial cells22,23 and tested different modifications of widely used cilia 

isolation procedures24,25 (Fig. 1 and Supplementary Fig. 1). Specifically, a relatively small 

quantity of human respiratory epithelial cells was non-invasively obtained by nasal scrape 

biopsy and expanded though multiple passages in cell culture with irradiated fibroblast 

feeder cells and Rho kinase inhibitor22,23. When transferred to an air-liquid interface culture 

system, these conditionally reprogrammed cells re-differentiated into a ciliated, pseudo-

stratified mucociliary epithelium26,27. This procedure allowed us to amplify the initially 

harvested primary respiratory epithelial cells approximately 50-fold.

We then tested and optimized methods for cilia isolation from the cultured respiratory 

epithelial cells. Cryo-ET of cilia isolated by the dibucaine method, which is commonly used 

to isolate cilia and flagella from protists20,24, revealed substantial artifactual loss of 

axonemal components, including dynein arms and one of the CPC microtubules 

(Supplementary Fig. 1a–d). We also tested different modifications of our cilia isolation 

procedure, which was originally designed for maximal recovery of cilia from cultures of 

human airway epithelial cells28. In the original protocol, cultures of heavily ciliated human 

respiratory epithelial cells were washed vigorously with a buffer containing calcium and 
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detergent to remove the cilia from the apical cell surface. Although this method is widely 

used to isolate cilia from epithelial cells25,28,29, we again observed substantial artifactual 

loss of dynein arms and one of the CPC microtubules in the isolated axonemes 

(Supplementary Fig. 1e–h). Modifications that were successfully tested and incorporated in 

the final isolation procedure included increasing the concentration of protease inhibitors, 

pre-incubating the cultures on ice, reducing the speed and duration of the centrifugation 

steps, and minimising pipetting (see Methods for further details). The most obvious 

improvement in structural preservation, including for the inner dynein arms (IDAs), was 

obtained by arresting ciliary motility by incubating the cells on ice before the isolation 

procedure (Supplementary Fig. 1i–l). Although IDAs b and c (based on the labelling system 

used for Chlamydomonas30) still had weaker electron densities than other IDAs in the 

axonemal averages (Supplementary Fig. 1l), the classification analysis31 of the averaged 

axonemal repeats revealed that these IDAs were missing from axonemal repeats that were 

randomly distributed along the axoneme (Supplementary Fig. 2a–j) rather than being a 

DMT-specific feature such as IDA b (IdaX) in Chlamydomonas flagella30,32. Randomly 

missing IDAs could be a common feature of isolated axonemes because we also observed 

similar effects with IDA extractions for axonemes from other species (Supplementary Fig. 

2k–t). Our improved preparation method allowed us to visualize the ultrastructure of normal 

human cilia in unprecedented detail using cryo-ET of rapidly frozen human respiratory 

ciliary axonemes and subtomogram averaging of the 96-nm axonemal repeats (Figs. 1–3; 

Supplementary Movie 1).

Native 3D structure of the normal human axoneme

Using cryo-ET and subtomogram averaging of normal human ciliary axonemes prepared as 

described above, we visualized the 3D structures at an improved resolution compared with 

previous studies using conventional EM of chemically fixed samples7,13–18,33 

(Supplementary Table 1). The cryo-tomograms show the characteristic 9+2 arrangement of 

nine DMTs surrounding two CPC singlet microtubules (Fig. 2a). Each DMT is composed of 

96-nm-long repeat units with highly regular spacing of axonemal complexes, such as the 

dyneins and RSs (Fig. 2b). The radiation sensitivity of ice-embedded biological specimens 

demands low-dose imaging conditions, leading to noisy raw cryo-tomograms and limited 

resolution. Therefore, we aligned and averaged 850 subtomographic volumes 

(Supplementary Table 1), each containing one 96-nm repeat, which significantly increased 

the resolution of the 3D axonemal reconstruction and the visibility of structural details (Figs. 

2,3; Supplementary Movie 1).

The averaged axonemal repeat of normal human motile cilia exhibits a similar overall 

architecture to that of motile cilia and flagella in other organisms11,12. Specifically, four 

identical outer dynein arms (ODAs; each ODA contains two dyneins: β- and γ-ODA 

according to the nomenclature used for Chlamydomonas30,34) and six different single-

headed IDAs (dyneins a, b, c, d, e, and g) are arranged in two rows on the DMTs (Figs. 2c–

g,3a,b). The double-headed I1 dynein (dynein f) and the Nexin-Dynein Regulatory Complex 

(N-DRC) are located between the ODAs and IDAs (Figs. 2f,g,3a,b). The three full-length 

RSs form typical triplets with a spacing of 40, 32 and 24 nm between RS3 and RS1, RS1 

and RS2, and RS2 and RS3, respectively (Fig. 3b,j). At the achieved resolution of 3.4 nm 
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(Fig. 3i), small features such as individual dynein domains are clearly visible (Fig. 3c–f). 

The improved preservation and resolution of the axonemal structures allowed us to visualize 

even the single coiled-coil stalk of I1 dynein (arrowhead in Fig. 3h), which was not possible 

in prior cryo-ET studies of cilia and flagella in other organisms11.

Comparison of the axonemal structure across species

To explore the evolutionary conservation and diversity of cilia and flagella, we compared 

the ultrastructure of axonemes from two protists, the unicellular green algae 

Chlamydomonas and the heterotrophic ciliate Tetrahymena, and from two metazoans, sea 

urchins and humans. Overall, the relative positions of axonemal components appear highly 

conserved in all observed species (Fig. 4), including the complex arrangements of the IDAs 

(Fig. 4a,d,g,j).

The axonemal repeat of human cilia most closely resembles that of sea urchin flagella, 

whereas it shows greater divergence from Chlamydomonas flagella and Tetrahymena cilia 

(Fig. 4). For example, each ODA in human and sea urchin axonemes is composed of two 

dynein heavy chains (human: β and γ; sea urchin: α and β; Fig. 4a and d), whereas the ODA 

in the two protists consist of three dynein heavy chains (α, β, and γ; Fig. 4g and j). A similar 

dichotomy between protists and metazoans is also apparent in the distal half of the RSs with 

the spoke heads. Although the spacing and architecture of the RS bases appear conserved 

(Fig. 4b,e,h,k), the distal half of the third RS is absent in Chlamydomonas (Fig. 4k) and is 

structurally divergent between the metazoans and Tetrahymena (Fig. 4c,f,i). The spoke 

heads of RS1 and RS2 consist of two structurally identical, rotationally symmetric halves 

that differ from RS3 in all four species (Fig. 4c,f,i,l). However, in the protists, the RS heads 

of RS1 and RS2 have lateral branches that form a connection between the two heads as well 

as larger interfaces towards the CPC (Fig. 4i,l). In human and sea urchin, the RS1 and RS2 

spoke heads resemble a pair of ice skate blades and are clearly separated from each other, 

whereas the RS2 head connects to the RS3 head (Fig. 4a–f); the latter feature is similar to 

that seen in Tetrahymena (Fig. 4g–i).

Structural defects in RSPH1 PCD cilia

To explore the capability of cryo-ET in studying human disease and to precisely characterize 

the defects in RSPH1 mutant cilia, we obtained a nasal scrape biopsy from a PCD patient 

with compound heterozygous mutations in RSPH1 (subject 137013). As an additional 

control, we also obtained nasal epithelial cells from the patient’s mother, who was a carrier 

of one mutation but did not exhibit PCD symptoms. Ciliary axonemes were prepared as 

described above using our improved procedure and then analyzed by cryo-ET in a blinded 

study.

The cryo-tomograms revealed a variety of CPC abnormalities in a subset of RSPH1 mutant 

cilia. This was consistent with previous studies of PCD caused by mutations in putative RS 

head proteins, which revealed a subset of cilia that lacked the CPC (9+0 axoneme) or had 

one of the nine DMTs translocated to the centre of the axoneme ((8+1)+0)13–19. We found 

PCD cilia with an apparently normal 9+2 microtubule arrangement (Fig. 5d), with one of the 

CPC microtubules missing (9+1; Fig. 5e), with the entire CPC missing (9+0; Fig. 5g), with 
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the CPC replaced by one DMT ((8+1)+0; Fig. 5h), or with a doubled CPC with 4 singlet 

microtubules (9+4; Fig. 5f).

Subtomogram averaging allowed us to identify additional small structural differences 

between samples that are not routinely detectable using conventional EM. Intriguingly, our 

cryo-ET analysis revealed that all cilia from the patient with RSPH1 mutations, including 

those with an apparently normal 9+2 axonemal arrangement (Fig. 5d), showed the same 

defect in two of the three RSs (Fig. 5l–p, white arrowheads). Specifically, the head-

containing distal regions of RS1 and RS2 were consistently missing in all studied PCD 

ciliary axonemes from the patient, whereas RS3 appeared normal. These RS defects were 

not observed in either the normal control sample (Fig. 5i,j) or the sample from the 

heterozygote carrier without PCD symptoms (Fig. 5k). Because all averages of individual 

PCD axonemes revealed a pervasive, homogeneous structural defect (Fig. 5l–p), we 

combined the repeats from multiple PCD axonemes to increase the resolution of the 3D 

average (Supplementary Fig. 3c). Similarly, we calculated total averages from both control 

groups (Supplementary Fig. 3a,b). The absence of the distal regions of RS1 and RS2 is 

unequivocal in the final PCD average (Supplementary Fig. 3c, white arrowheads). The head 

of RS3 also appears slightly weaker than in the controls (compare Supplementary Fig. 3a–c). 

A classification analysis focused on RS3 indicates that the weaker electron density is due to 

the loss of the distal half of RS3 in a fraction (30%) of the PCD axonemal repeats 

(Supplementary Fig. 3e,f); the repeats lacking the RS3 head were randomly distributed 

amongst the studied axonemes (Supplementary Fig. 3d). Considering the usually observed 

connection between the heads of RS2 and RS3 in normal human cilia (Fig. 4a–c, red 

arrowheads), the absence of RS3 heads in a minority of axonemal repeats of PCD cilia 

suggests that the RS2 head plays a role in the stable assembly of the RS3 head. We also 

confirmed that in (8+1)+0 PCD cilia (Fig. 5h), the centrally located structure is indeed a 

DMT and not a modified CPC structure, as indicated by the presence of both (defective) RSs 

and dyneins in the averaged structure (Supplementary Fig. 3g–i).

The isosurface renderings of the axonemal averages clearly show that the defects in the 96-

nm repeat of RSPH1-mutant human cilia are specific to the distal regions of RS1 and RS2, 

whereas all other DMT-associated structures appear normal (compare Fig. 5q and 5r). Both 

RS1 and RS2 of RSPH1 PCD cilia display the same defects, that is, the entire spoke head 

and part of the following arch region are missing (Fig. 5r–t; Supplementary Movie 2); the 

rest of the stalk and base structures in RS1 and RS2 appear to be identical between normal 

controls and RSPH1 mutant cilia. Because these structural defects are pervasive in all 

RSPH1 mutant cilia and are consistent with the fact that RSPH1 encodes an RS protein 

homologue, they represent the primary defects in RSPH1 PCD cilia, while the 

heterogeneous abnormalities seen in the CPC are secondary defects.

Discussion

Until the present study, cryo-ET was not used to study human clinical samples mainly due to 

challenges surrounding the collection and preparation of sufficient quantities of human 

samples with good structural preservation. Here, we successfully combined recent 

improvements in the culture and expansion of respiratory epithelial cells22,23 and developed 
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an isolation procedure for human ciliary axonemes that is optimized for structure 

preservation and is compatible with high-resolution cryo-ET imaging (Fig. 1). These 

improvements allowed us to use cryo-ET and subtomogram averaging to determine the 

native 3D structures of human cilia with 3–4 nm resolution, which is sufficient for observing 

features as small as the coiled-coil stalks of dynein motors (Fig. 3c–h). Moreover, the 

application of recently established classification methods31 can efficiently detect and 

localize heterogeneities and therefore allowed us to recognize the normal variability that is 

typically present in clinical samples (Supplementary Figs. 2,3d–f) and distinguish it from 

pervasive disease-specific defects. Using only pristine axonemal repeats, our averaged 

structure represents the 3D molecular architecture of normal human motile cilia in their 

native state (Fig. 3).

Although the overall structures of cilia and flagella are highly conserved, the structural 

diversity observed across species both in the present study and in previous studies warrants 

caution in generalizing findings from model organisms such as Chlamydomonas to 

understand human ciliary function and the defects and mechanisms underlying human 

ciliopathies. In all species examined with three RSs per axonemal repeat, RS3 is structurally 

distinct from RS1 and RS2 (Fig. 4), suggesting a potentially unique proteome for RS3. This 

is strongly supported by our observation that mutations in RSPH1 only affect the structures 

of RS1 and RS2 but not RS3 (Fig. 5). Twenty-three proteins are currently known to 

constitute RS1 and RS2 in Chlamydomonas20,35,36. However, little is known about either the 

proteome or the function of RS3 because knowledge of RSs is mainly derived from 

Chlamydomonas, which lacks a major portion of RS3. In Chlamydomonas, the absence of 

the RS1 and RS2 heads results in complete flagellar paralysis20,21,37, whereas similar 

defects in RS1 and RS2 cause only a moderate motility defect in human RSPH1-mutant 

cilia13, suggesting an important role for intact RS3 in ciliary motility. Future studies are 

required to determine the RS3 proteome, its specific function in motility, and why RS3 is 

present in humans and other organisms but is reduced in Chlamydomonas.

The presence of secondary defects in the RSPH1-mutant PCD cilia (Fig. 5f–h) suggests that 

both intact RSs and RS-CPC interactions are critical for proper and stable CPC assembly. 

When the RSs are not intact, the increased physical space in the centre of the axonemal 

cylinder could lead to the presence of an additional CPC (Fig. 5f) or to CPC destabilization, 

which raises interesting questions about the templating and assembly mechanism of the 

CPC. Similar CPC defects were also observed in the Chlamydomonas pf14 mutant, which 

lacks RS1 and RS238.

Our analysis has precisely determined both the primary and the secondary defects in 

RSPH1-mutant PCD cilia (Figs. 5,6). Relating these structural defects to their motility 

phenotypes and to PCD clinical symptoms provides a deeper understanding of the structure/

function relationships of the axonemal machinery in human cilia and the PCD disease 

mechanism. In particular, we recently reported that patients with mutations in RSPH1 have a 

delay in early clinical manifestations of the disease and a “milder” lung disease13. RSPH1 

patients have a lower incidence of neonatal respiratory distress, and they maintain better 

lung function compared with PCD individuals with mutations in other genes13. In our 

cultured samples, the vast majority of cilia beat with near-normal frequencies but exhibited 
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abnormal circular patterns13. This circular motility may provide a low but substantial rate of 

mucociliary clearance, resulting in a less severe PCD phenotype in RSPH1 patients 

compared with those observed in individuals with other PCD mutations. Recently published 

data from a murine model suggest that maintaining as little as 20% of the normal 

mucociliary clearance rate can greatly reduce the severity of PCD39. Therefore, our data 

suggest that the remaining intact RS3 provides sufficient ciliary function to result in the 

milder disease phenotype in RSPH1 PCD patients, making RS3 a potential target for 

therapeutic interventions in ciliopathy patients (e.g. improve the motility of RSPH1 PCD 

cilia by upregulating the function of RS3).

In conclusion, our proof-of-concept translational study demonstrates that state-of-the-art 

cryo-ET imaging of patient samples can provide unique insights into human disease. We 

introduced an improved protocol that makes it feasible to perform cryo-ET of human cilia, 

including those of ciliopathy patients, and provided the native 3D structure of normal human 

motile cilia as a reference, which will greatly increase the resolution and reliability of future 

ultrastructural studies. We identified the previously undetected primary RS1 and RS2 

defects in cilia from an RSPH1 PCD patient, whereas RS3 was intact. These data are 

consistent with the predicted homology of RSPH1 to RS head proteins, clarify previously 

puzzling observations obtained by conventional EM, which could only resolve the 

secondary CPC abnormalities, and offer an explanation for why this particular variant of 

PCD has a clinically attenuated phenotype.

Methods

Culture of human airway and nasal epithelial cells

Control human airway epithelial cell cultures of non-PCD, non-cystic fibrosis cells were 

used to determine the normal structure of human motile cilia. Human airway epithelial cells 

were obtained from the UNC Cell and Tissue Culture Core Facility under protocols 

approved by the Institutional Review Board for the Protection of the Rights of Human 

subjects at UNC. All human tissue was obtained with informed consent. Cells were cultured 

at an air/liquid interface on collagen-coated culture inserts (Millicell, Millipore) until they 

were heavily ciliated40. Briefly, 106 human airway epithelial cells were plated on 4.2 cm2 

Millicell cell culture inserts (Millipore) coated with 250 μg human type IV collagen 

(Sigma). An air/liquid interface was established when the cells were confluent (~3 days) by 

removing the apical media and feeding from the basolateral side. Cultures were fed 3x 

weekly with a 50:50 mixture of LHC-basal and DMEM-H media supplemented as described 

(ALI media40) for two weeks, after which cultures were fed 2x weekly. The apical surface 

of the cultures was washed with PBS to remove mucus and cell debris along with each 

media change. Ciliated cell differentiation was monitored by phase contrast microscopy and 

cultures became heavily ciliated after approximately 4 weeks at the air/liquid interface.

Nasal epithelial cells from a PCD patient with two mutations in the RSPH1 gene and a 

heterozygous parent (carrier) were obtained by nasal scrape biopsy under protocols 

approved by the Institutional Review Board for the Protection of the Rights of Human 

subjects at UNC13. Cells were first expanded on plastic dishes in media containing 

fibroblast-conditioned media and Rho kinase inhibitor, Y-2763223. After expansion, the 
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cells were passaged onto collagen-coated Millicells and cultured at an air/liquid interface as 

described above until ciliated-cell differentiation occurred.

Isolation of human ciliary axonemes

Ciliary axonemes were isolated from human airway and nasal epithelial cell cultures using a 

modified version of a previously published method28. The final procedure was as follows: 

First, the apical surfaces of well-differentiated cultures were gently washed twice for 5 min 

with PBS to remove mucus and cell debris. Then, the medium was removed, the apical and 

basal compartments of the air/liquid interface culture dish were filled with ice-cold PBS, and 

the culture dish was placed on a bed of ice for approximately 5 min, at which time ciliary 

activity was reduced to near zero. The PBS solution was removed and ice-cold deciliation 

buffer (10 mM Tris pH 7.5, 50 mM NaCl, 10 mM CaCl2, 1 mM EDTA, 0.1% Triton X-100, 

7 mM β-mercaptoethanol, 1% protease inhibitor cocktail (Sigma P8340)) was gently added 

to the apical surface of the culture (50 μl per 12-mm insert). The culture was incubated for 2 

min (without shaking, different from previous protocols), and then the apical solution, which 

contained the cilia, was removed and transferred to a microcentrifuge tube. Mucus and 

cellular debris were gently pelleted by centrifugation at 4°C for 1 min at 500 × g. The 

supernatant was again centrifuged at 4°C for 5 min at 5,000 × g to collect the ciliary 

axonemes. The axonemal pellet was gently dispersed in resuspension buffer (30 mM HEPES 

pH 7.3, 1 mM EGTA, 5 mM MgSO4, 0.1 mM EDTA, 25 mM NaCl, 1 mM dithiothreitol, 

1% protease inhibitor cocktail, 100 g ml−1 soybean trypsin inhibitor (Sigma T9128)) and 

kept on ice until cryo-sample preparation. Ciliary samples from the heterozygous control 

(carrier) and the PCD patient were analyzed by cryo-ET with the investigator blinded to the 

identity of the samples.

Flagella and cilia preparation from model organisms

Live sea urchin sperm were collected from adult male Strongylocentrotus purpuratus 

(purchased from Monterey Abalone Co. (Monterey, CA)) after inducing the spawning by the 

injection of 1–2 ml of 0.5 M KCl into the perivisceral cavity of sea urchins41,42. The sperm 

were diluted in artificial seawater (360 mM NaCl, 50 mM MgCl2, 10 mM CaCl2, 10 mM 

KCl, 30 mM HEPES, pH 8.0) with the ATPase inhibitor erythro-9-[3-(2-hydroxynonyl)]-

adenine (EHNA, 2 mM)43. After a 5 min incubation at approximately 16°C, the sample was 

viewed under a light microscope to confirm that the sperm were completely immotile.

Tetrahymena axonemes were isolated form Tetrahymena thermophila (strain CU428) cells. 

Cells were grown to a density of approximately 3 × 105 ml−1 and collected by centrifugation 

at 3,000 × g, washed with 10 mM Tris pH 7.5, centrifuged at 1,500 × g, and resuspended in 

10 mM Tris pH 7.5, 50 mM sucrose, 10 mM CaCl2 with protease inhibitors. Cilia were 

detached from the cells by the pH-shock method44 and purified by two centrifugation steps 

at 1,860 × g for 5 min each. Purified cilia were collected by centrifugation at 10,000 × g for 

15 min and demembranated in HMEEK buffer (30 mM HEPES, pH 7.4, 25 mM KCl, 5 mM 

MgSO4, 0.1 mM EDTA, 1.0 mM EGTA) with 1% IGEPAL CA-630 (Sigma-Aldrich, St. 

Louis, MO) for 20 min. The axonemes were then collected by centrifugation at 10,000 × g 

for 10 min and resuspended in HMEEK buffer without IGEPAL CA-630.
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Chlamydomonas reinhardtii axonemes were isolated from a pseudo wild-type strain (pf2–

4::PF2-GFP)45. This strain is a rescued mutant that was obtained by transforming the nexin-

dynein regulatory complex-defective pf2-mutant strain with a GFP-tagged wild-type PF2 

gene45,46. This strain is biochemically, structurally, and phenotypically indistinguishable 

from the wild type45. Cells growing in liquid Tris-acetate-phosphate medium were 

harvested, washed, and resuspended in pH-shock buffer containing 10 mM HEPES, pH7.4, 

1mM SrCl2, 4% sucrose, and 1 mM dithiothreitol. Flagella were detached from the cells 

using the pH-shock method44. Then the solution was supplemented with 5 mM MgSO4, 

1mM EGTA, 0.1 mM EDTA, and 100 μg ml−1 aprotinin, pepstatin, and leupeptin, and 

centrifuged at 1,800 × g for 10 min at 4°C. The supernatant containing the flagella was 

collected and purification of the flagella was conducted by two centrifugation steps at 2,400 

× g for 10 min at 4°C with a 20% sucrose cushion. Purified flagella were demembranated 

with 0.1 % IGEPAL CA-630 (Sigma-Aldrich, St. Louis, MO) and axonemes were collected 

by centrifugation at 35,000 x g for 1 hour at 4°C. The axoneme pellet was washed with 

HMEEN buffer (30 mM HEPES, pH 7.4, 5 mM MgSO4, 1 mM EGTA, 0.1 mM EDTA, 25 

mM NaCl, and 0.1 μg ml−1 aprotinin, leupeptin, and pepstatin) and then resuspended in 

HMEEN buffer for cryo-sample preparation.

Cryo-sample preparation and cryo-electron tomography

Isolated axoneme samples (3 μl) and a fivefold-concentrated 10-nm colloidal gold solution 

(1 μl, Sigma-Aldrich) were applied to glow-discharged Quantifoil holey carbon grids (R2/2, 

Quantifoil Micro Tools GmbH, Germany), which were loaded on a homemade plunge 

freezing device. The grid was blotted with filter paper for 1.5 – 2.5 s and immediately frozen 

by plunging into liquid ethane cooled by liquid nitrogen. The vitrified samples were then 

stored in liquid nitrogen until examined by cryo-ET.

Single axis tilt series were acquired using a Tecnai F30 transmission electron microscope 

(FEI, Hillsboro, OR), operated at 300 keV and equipped with a field emission gun and a 

post-column energy filter (Gatan, Pleasanton, CA). Cryo-samples were transferred into the 

microscope with a cryo holder (Gatan) and kept at ~170°C. The samples were imaged under 

low-dose conditions in zero-loss mode (20 eV slit width) with −6 μm or −8 μm defocus. 

Flagella and axonemes that seemed well preserved and not (or only slightly) compressed by 

electron microscopy inspection were selected for electron tomography. Tilt series of images 

were collected by stepwise rotation of the sample from −65 to +65° at 1.5 – 2.5° increments 

using the SerialEM software47. The cumulative electron dose was limited to ~100 e Å−2 for 

individual tilt series to avoid radiation damage. All images were recorded on a 2k × 2k 

charge-coupled device camera (Gatan) at a nominal magnification of 13,500×. The pixel 

size was ~1 nm.

Image processing

The tilt series images with sufficient gold fiducial markers for alignment were aligned and 

reconstructed into 3D tomograms using the IMOD software with weighted backprojection48. 

Tomograms of compressed flagella or axonemes (caused by embedding in too thin ice 

during cryo-sample preparation) were excluded from further subtomogram averaging and 

analysis. Subtomogram averaging with missing wedge compensation was performed with 
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PEET software49 to achieve enhanced signal-to-noise ratio and improved resolution. Two 

different aligning strategies were employed: (a) to optimize the alignment accuracy for the 

entire 96-nm axonemal repeat, subtomograms containing the 96-nm axonemal repeats were 

extracted from the tomograms, aligned and averaged in 3D (Figs. 2,3,4a,b,d,e,g,h,j,k,5a–r, 

and Supplementary Figs. 1–3); (b) to resolve the RSs at the highest possible detail, smaller 

subtomograms containing the structures of interest were extracted, locally aligned 

(calculated centred on the structure of interest) and averaged (Figs. 4c,f,i,l,5s,t). The 

resulting averages of each RS with local alignment provide a slightly higher level of detail. 

To analyze the heterogeneity of the axonemal structures, we further performed automated 

classification on the subtomograms using a clustering approach implemented into the PEET 

program31. The classified 3D volume was limited to the structures of interest using 

appropriate masking. The resolution of the resulting averages was estimated in a 20-nm3 

sub-volume in the centre of 96-nm axonemal repeat using the Fourier shell correlation 

method and the 0.5 criterion50. The IMOD software42 and the UCSF Chimera package51 

were used for visualization of the tomographic slices and 3D visualization by isosurface 

rendering, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Workflow for visualizing the native ultrastructure of human motile cilia
Human respiratory epithelial cells were obtained by nasal scrape biopsy, cultured, expanded, 

and re-differentiated in an air-liquid interface culture. Ciliary axonemes were isolated using 

our method optimized for cryo-ET. Freshly isolated axonemes were rapidly frozen and 

transferred to a transmission electron microscope, where tilt series were recorded by 

stepwise rotation of the axonemes. Image processing was performed in silico to reconstruct 

the cryo-tomograms and increase the resolution by subtomogram averaging of the 96-nm 

repeats. The averaged native 3D structure of the human axonemal repeat can be visualized 

by isosurface-rendering.
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Figure 2. Native 3D architecture of normal human ciliary axonemes
(a and b) Tomographic slices show an intact axoneme in cross-sectional (a; 100-nm-thick in 

proximal-to-distal orientation) and longitudinal (b; 15-nm-thick with proximal on left) views 

(orientations are consistent in all subsequent figures). Nine DMTs surround the CPC; 

orientation of (b) is indicated in (a); boxes in (b) highlight 96-nm repeats. (c–e) 
Tomographic slices show the averaged 96-nm repeat from 12 tomograms of axonemes in 

cross-sectional (c; 5-nm-thick) and longitudinal (d,e; 10-nm-thick) views; orientations of (d 
and e) are indicated in (c). (f and g) Diagrams of a 96-nm repeat of human motile cilia with 

four ODAs (dyneins β and γ), six single-headed IDAs (dyneins a–e, and g), the double-head 

IDA I1/f, the N-DRC, and three RSs (RS1-3); At/Bt, A- and B-tubules. Scale bars: (a and b) 

50 nm, (c–e) 25 nm.
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Figure 3. Native 3D ultrastructure of the 96-nm axonemal repeat in normal human cilia
(a and b) Isosurface-renderings show cross-sectional (a) and longitudinal-front (b) views of 

the averaged 96-nm repeat from 12 tomograms of axonemes. (c–f) Tomographic slice (c; 1-

nm-thick) and isosurface-rendering (d) of β-ODA from the averaged 96-nm repeat; note 

major dynein domains: tail (pink), linker (magenta), head (green) and coiled-coil stalk 

(arrowheads). A diagram (f) shows the domain organization of dynein, including the 

microtubule-binding-domain (MTBD). (g and h) Isosurface-rendering (g) and tomographic 

slice (h; 1-nm-thick) show the I1 dynein (pink) and N-DRC (yellow); note ultrastructural 

details, such as the I1 stalk (arrowhead). (i) Resolution of the averaged axonemal repeat 

(FSC=0.5). (j) Isosurface-rendering shows a longitudinal back view of the averaged 96-nm 

repeat. Scale bars: (c) 10 nm, (h) 20 nm.
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Figure 4. Comparison of cilia and flagella across species
(a–l) Isosurface-renderings show the averaged 96-nm axonemal repeat from four different 

species: H. sapiens (a–c; from 12 tomograms), S. purpuratus (d–f; from 9 tomograms), T. 

thermophila (g–i; from 12 tomograms) and C. reinhardtii (j–l; from 5 tomograms). Each 

species is shown in 3 orientations: longitudinal front (a, d, g, and j), back (b, e, h, and k), 

and bottom views (c, f, i, and l; looking from the CPC toward the DMT). Red arrowheads 

highlight the connections between RSs.
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Figure 5. Comparison of normal human and RSPH1 PCD mutant cilia reveal primary and 
secondary defects
(a–h) 100-nm-thick cross-sectional tomographic slices show individual 3D reconstructed 

axonemes from normal control (a and b), carrier (c), and RSPH1 PCD patient cilia (d–h). (i–
p) 10-nm-thick longitudinal tomographic slices show the averaged 96-nm repeat of 

individual axonemes from normal control (i and j; 12 tomograms), carrier (k; 5 tomograms), 

and RSPH1 PCD patient cilia (l–p; 20 tomograms). Black and white arrowheads indicate 

intact and defective RS1/RS2, respectively. (q and r) Isosurface-renderings of the averaged 

96-nm repeat from normal control (q) and RSPH1 PCD cilia (r). (s and t) Isosurface-

renderings of the averaged RS1 (s) and RS2 (t) viewed from the longitudinal back (top) and 

the proximal side (bottom). Differential maps obtained by superimposing the normal control 

structure (grey) with the RSPH1 PCD structure (green or blue) highlight structural defects in 

mutant cilia; RS domains are indicated (right scales). Scale bars: (a–h) 50 nm, (i–p) 20 nm.
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Figure 6. Cryo-ET provides new insights into the structural basis of human RSPH1 PCD
Schematic representation of the comparison between the native 3D structures of respiratory 

cilia from normal controls (including RSPH1−/+ carrier) and PCD patient (RSPH1−/−). Our 

cryo-ET analysis revealed both unprecedented structural details of normal respiratory cilia 

(left column) and the previously unknown, yet consistently present primary RS defects and 

the heterogeneous secondary CPC defects in the RSPH1 mutant cilia (right column). At/Bt, 

A- and B-tubules
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