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Abstract: The prognosis of the remaining useful life (RUL) of turbofan engine provides an important
basis for predictive maintenance and remanufacturing, and plays a major role in reducing failure
rate and maintenance costs. The main problem of traditional methods based on the single neural
network of shallow machine learning is the RUL prognosis based on single feature extraction, and
the prediction accuracy is generally not high, a method for predicting RUL based on the combination
of one-dimensional convolutional neural networks with full convolutional layer (1-FCLCNN) and
long short-term memory (LSTM) is proposed. In this method, LSTM and 1- FCLCNN are adopted
to extract temporal and spatial features of FD001 andFD003 datasets generated by turbofan engine
respectively. The fusion of these two kinds of features is for the input of the next convolutional neural
networks (CNN) to obtain the target RUL. Compared with the currently popular RUL prediction
models, the results show that the model proposed has higher prediction accuracy than other models in
RUL prediction. The final evaluation index also shows the effectiveness and superiority of the model.

Keywords: remaining useful life (RUL); long short-term memory (LSTM); one-dimensional convo-
lutional neural networks with full convolutional layer (1-FCLCNN); temporal and spatial features;
turbofan engine

1. Introduction

Turbofan engine is a highly complex and precise thermal machinery, which is the
“heart” of the aircraft. About 60% of the total faults of the aircraft are related to the tur-
bofan engine [1]. The RUL prediction of the turbofan engine will provide an important
basis for predictive maintenance and pre maintenance. In recent years, because of the
rapid development of machine learning and deep learning, the intelligence and work effi-
ciency of turbofan engines have been greatly improved. However, as large-scale precision
equipment, its operation process cannot be separated from the comprehensive influence of
internal factors such as physical and electrical characteristics and external factors such as
temperature and humidity [2]. The performance degradation process also shows temporal
and spatial characteristics [3], which provide necessary data support and bring challenges
for the RUL prediction of the turbofan engine. At the same time, the data generated
by the operation process of turbofan engine have the characteristics of nonlinearity [4],
time-varying [5], large scale and high dimension [6], which results in the failure of effective
feature extraction, and the non-linear relationship between the extracted features and the
RUL cannot be mapped, which are the key problems to be solved urgently.

Many models have been developed to predict the RUL of turbofan engines. Ah-
madzadeh et al. [7] divided the predicting methods into four categories, including experi-
mental, physics-based, data driven, and hybrid methods. Experimental type relies on prior
knowledge and historical data, but the operating conditions and operating environment of
the equipment are uncertain, which leads to large prediction accuracy error, and cannot
be promoted in complex scenarios. The physical model uses the physical and electrical
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characteristics of the equipment to construct accurate mathematical equations to describe
the degradation law of the equipment and predict its remaining life. Usually, it is difficult
to obtain the physical model for large precision equipment such as turbofan engines, and its
application is restricted. Data driven is independent of the failure mechanism of equipment,
its key is to monitor and extract effective performance degradation data. The method lacks
an analysis of the uncertainty of the predicted results, and a large amount of historical
data is needed to build a high-precision model. Hybrid model is a new prediction method
which combines two or more neural network models, which has become the mainstream
research trend. Among them, the hybrid model composed of CNN [8-10] and LSTM is the
most common one in the field of RUL prediction of turbofan engine. CNN has a strong
feature extraction ability, which cannot only extract local abstract features, but also pro-
cess the data with multiple working conditions and multiple faults [11-13], especially the
one-dimensional CNN can be well applied to the time series analysis generated by sensors
(such as gyroscope or accelerometer data [14-16]). It can also be used to analyze signal with
fixed length period (such as audio signal). Zhang et al. [17] adopted a fully convolutional
neural network for feature self-learning and reduced training parameters; a weighted
average method was used to denoise the prediction results, and the bearing-accelerated life
experiment verified the effectiveness of the proposed method. Yang et al. [18] proposed an
intelligent RUL prediction method based on the dual CNN model architecture to predict
the turbofan engine RUL, the first CNN model determines the initial failure point, and
the second CNN model is used for RUL prediction. This method does not require any
feature extractor. The original vibration signal can be received, and useful information can
be retained as much as possible. The prediction results and evaluation indicators prove
the effectiveness and superiority of the method. Hsu [19] applied several deep learning
methods to assess the status of aircraft engines in operation, and to classify the stages of
operational degradation so as to predict the functional remaining lifespan of components.
Li et al. [20] designed a new data-driven method using deep convolutional neural network
(DCNN) for prediction, time windows are used for sample preparation to better extract
features, and experiments based on the C-MAPSS data set have confirmed the effectiveness
of this method. In fact, for the turbofan engine dataset (C-MAPSS), recent studies have
used CNN to extract its features and achieved good results, while one-dimensional CNN
can extract sensor data from the dataset and the full convolutional layer can reduce training
parameters and weights.

Long short-term memory network (LSTM) is a kind of time recurrent neural network
(RNN), which can solve the problems of gradient disappearance and gradient explosion
in RNN. For LSTM, the special "three gate structure" enables it to capture a long range of
dependence and process time series data. While, the RUL prediction of turbofan engine
needs to process the time series data, and LSTM can obtain the optimal features of the
time series data generated by the turbofan engine, and can also mine rules in time series.
Zhang et al. [21] applied a method based on LSTM, which is specifically used to discover
the underlying patterns embedded in the time series, so as to track the system performance
degradation, thereby predicting RUL. Kong et al. [22] utilized polynomial regression to
obtain health indicators, and then combined them with CNN and LSTM neural networks to
extract spatiotemporal features. Song et al. [23] proposed a hybrid health prediction model
that combines the advantages of the autoencoder neural network and the bidirectional
long-term short-term memory (BLSTM) neural network, using the autoencoder as a feature
extraction tool, and the BLSTM captures the characteristics of the bidirectional long-range
dependence of features. The above methods are all tested on the C-MAPSS data set to verify
the effectiveness and accuracy; however, there are common problems such as complex
training process and low prediction accuracy.

We found that the data set of turbofan engine is composed of multiple time series, the
data in different data sets contain different noise levels, so it is necessary to normalize the
original data, which will eliminate the influence of noise, and realize data centralization to
enhance the generalization ability of the model. At the same time, it is difficult to capture
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multi fault mode and multi-dimensional feature data in different operating environments.
It is also necessary to use multi scene and multi time point data to extract effective features
to improve prediction accuracy, traditional methods cannot extract temporal and spatial
features simultaneously and effectively fuse them. In addition, single neural network
model is difficult to extract enough effective information in the face of multiple working
conditions and multiple types of features.

The main contributions of this paper include: (1) use LSTM to extract the temporal
characteristics of the data sequence, and learn how to model the sequence according to
the target RUL to provide accurate results. (2) A one-dimensional full-convolutional layer
neural network is adopted to extract spatial features, and through dimensionality reduction
processing, the parameters and computational complexity of the training process are greatly
reduced. (3) The spatiotemporal features extracted by the two models are fused and used
as the input of the one-dimensional convolutional neural network for secondary processing.
Comparing this method with other mainstream RUL prediction methods, the score and
error control of the method proposed in this article are better than others, which proves the
feasibility and effectiveness of this method.

The rest of this article is arranged as follows: Part 2 is the basic theory, mainly
introducing the model structure of neural network and evaluation indicators. The third
part is the focus of this article, mainly including the proposed model structure, algorithm,
training process, implementation flow. The fourth part is the experiment and result analysis,
and the last part is summary and prospect.

2. Basic Theory
2.1. Convolutional Neural Network

Convolutional neural network has been widely used in image recognition, complex
data processing [24]. The convolutional neural network consists of the input layer, convo-
lutional layer, pooling layer, full connection layer, and output layer. Its basic components
are shown in Figure 1.

Convolution . Pooling " Flattening
Operation D
> |:>D m > > >. Y
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Convolution layer Pooling layer Fully connected layer ~ Fully connected layer Output layer

Figure 1. Traditional convolutional neural network.

The convolutional layer includes convolution kernel, convolutional layer parameters,
and activation function. The main function is to extract features from the input data. Each
element in convolution kernel has its own weight coefficient and bias. The convolution
kernel regularly scans the input features, and performs matrix element multiplication and
summation on the input features in the receptive field and superimposes the deviation [25],
the core step is to solve the error term. To solve the error term, we first need to analyze
which node needs to be calculated and which node or nodes in the next layer are related,
because the node affects the final output result through the neurons connected with the
node in the next layer, which also needs to save the relationship between each layer node
and the node in the previous layer.
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Input layer

In the formula, i, j are pixel indexes, d is the bias in the calculation process, W is the
weight matrix, and A", A""! represent the input and output of the n+1 layer, N, 1 is the
size of A, M is the number of convolution channels, ¢t is the step size, and p and f are
the padding and convolution kernel size. The activation function is usually used after the
convolution kernel, in order to make the model fit the training data better and accelerate
the convergence, avoid the problem of gradient vanishing, in this article, ReLU is selected
as the activation function, as follows:

f(x) = max(0, x) (3)

x is the input value of the upper neural network. the convolutional layer performs
feature extraction, and the obtained information is used as the input of the pooling layer.
The pooling layer can further filter the information, which not only reduces the dimension
of the feature, but also prevents the risk of overfitting. Pool layer generally has average
pool and maximum pool. The expression for the pooling layer is as follows [26]:

=

Zn(i,)) = [0, Y0 7 (bxitx b j+y)] )

where ¢ is the step size, pixel (i, j) are the same as convolutional layer, s is a specified pa-
rameter. When s = 1, the expression is average pooling, and when s — oo, the expression
is maximum pooling. m is the number of channels in the feature map, Z is the output
of pooling layer, and the value of s determines whether the output is average pooling or
maximum pooling. The other variables have the same meaning as convolution.

After feature extraction and dimensionality reduction of convolutional layer and pool-
ing layer, the fully connected layer maps these features to the labeled sample space. After
smoothing, the fully connected layer transforms the feature matrix into one-dimensional
feature vector. The full connection layer also contains the weight matrix and parameters.
The expression of the full connection layer is as follows:

Y = o(WI+Db) (5)

where I is the input of the fully connected layer, Y is the output, W is the weight matrix,
and b is the bias. ¢() is a general term for activation function, which can be softmax,
sigmoid, and ReLU, and the common ones are the multi-class softmax function and the
two-class sigmoid function.

2.2. Fully Convolutional Neural Network

In 2015, Long et al. [27] proposed the concept of a fully convolutional neural net-
work, realized the improved segmentation of the PASPA VOC data set (PASCAL Visual
Object Classes), and confirmed the feasibility of converting a fully connected layer into a
convolutional layer. The difference between fully connected layer and the convolutional
layer is that the connections of the neurons in the convolutional layer are only related
to a local input region, and the neurons in the convolutional layer can share parameters.
This greatly reduces the parameters in the network, improves the calculation efficiency of
neural network, and reduces the storage cost. The structure of the full convolution model
is shown in Figure 2.

s—@—1-8-1-»

Convl pooll FC->Conv2 FC->pool2

Figure 2. The structure of full convolution model.
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2.3. LSTM Neural Network

LSTM (long short term memory) is an improved recurrent neural network (RNN) [28].
LSTM is usually used to deal with time series data. The emergence of LSTM solves the
problem of gradient disappearance and gradient explosion in the long-term training process.
The output structure of the traditional RNN is composed of bias, activation function, and
weight, and the parameters of each time segment are the same. However, LSTM introduces
a "gate" mechanism to control the circulation and loss of features. The whole LSTM can be
regarded as a memory block, in which there are three “Gates” (input gate, forget gate and
output gate) and a memory unit. In LSTM, the order of importance of gate is forget gate,
input gate, and output gate. The chain structure of LSTM unit is shown in Figure 3.
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Figure 3. The cell structure of long short-term memory (LSTM).

(1) Forget gate:

ft = U’(Wf . [at_l,xt] + df) 6)

where f; is the forget gate, which means that some features of C;_; are used in the calcula-
tion of C;. The value range of elements in f; is between [0, 1], while the activation function
is generally sigmoid, Wy is the weight matrix of forgetting gate, d is the bias, and ® is the
gate mechanism, which represents the relational operation of bit multiplication.

(2) Input gate and memory unit update

ur = o(Wy-[ay_1, xt] + du) @)
Cr = tanh(We-[a;—1, x| +dc) 8)
Ci=fioC1+uoC )

Among them, C; is the current state of the unit, C;_; is the last state of the unit, and
C; represents the update state of the unit, which is obtained from the input data x; and
a;_1 through the neural network layer. The activation function of the unit state update
is tanh. W), is the weight matrix of the input gate and W, is the weight matrix of the
output gate. d,, and d, are bias of the input gate and bias of the output gate, respectively.
u; is the input gate, and the element value range is [0, 1], which is also calculated by the
sigmoid function.

(3) Output gate
or = 0(Wo-[ar—1,x¢] + do) (10)

ay = o o tanh(Cy) (11)
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Among them, a; is derived from the output gate o; and the cell state C;, and the
average value of d, is initialized to 1.

2.4. Evaluating Metrics

In order to better evaluate the prediction effect of the model, this article adopts two
currently popular metrics for evaluating the RUL prediction of turbofan engines: root
mean square error (RMSE) and scoring function (SF), as shown in Figure 4.

160
140
120

100

=RMSE score

Figure 4. The curve of root mean square error (RMSE) and scoring function (SF).

RMSE: it is used to measure the deviation between the observed value and the actual
value. It is a common evaluation index for error prediction; RMSE has the same penalty
for early prediction and late prediction in terms of prediction. The calculation formula is

as follows:
1 «—x,
RMSE = /X—nzl.zl Y2 (12)

where X, is the total number of test samples of turbofan engine; Y; refers to the difference
between the predicted value pv of RUL of the i-th turbofan engine and the actual value av
of RUL.

SF: SF is structurally an asymmetric function, which is different from RMSE. It is
more inclined to early prediction (in this stage, RUL prediction value pv is less than the
actual value av) rather than late prediction to avoid serious consequences due to delayed
prediction. The lower the value of RMSE and SF score, the better the effect of the model.
The calculation formula is as follows:

)—1,Y,<0;

Xn (
score = Lty € ] (13)
T —1, Y, >0

1

<

S

In the formula, score represents the score. When RMSE, score, and Y; are as small as
possible, the effect of the model will be better.

3. 1-FCLCNN-LSTM Prediction Mode
3.1. Overall Frameworks

The life prediction model 1-FCLCNN-LSTM proposed in this paper adopts the idea
of classification and parallel processing; 1-FCLCNN and LSTM network extract spatio-
temporal features separately, and the two types of feature are fused and then input to the
one-dimensional convolutional neural network and fully connected layer. Specifically, first,
by preprocessing the C-MAPSS data set, the data are standardized and divided into two
input parts: INP1 and INP2. These two parts are input to the 1-FCLCNN and the LSTM
neural network. Among them, the 1-FCLCNN is used to extract the spatial feature of the
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C-MAPSS
Dataset

data set. At the same time, the LSTM is adopted to extract the time series feature of the data
set. After the feature extraction, the algorithm 1 is applied to fuse the two types of feature
and then inputs them into one-dimensional convolutional neural network. Finally, the
data through the pooling layer and fully connected layer, is delt with algorithm 2, and the
predicted RUL result is obtained. The overall framework of the model is shown in Figure 5.

1D Max 1D Max 1D Max
—»
NP1 | CONV ] Pooline | "] CONV || Pooling | 7| CONV || Pooling
INP2
> LSTM > LSTM » LSTM
Max D
Cutput [« FC 4— FC ¢+ Flatten [+— Pooling 1 conv 1—{ concatenate

1D CONV: One dimensional convolution layer
INP: input data

FC: fully connected laver

Flatten: Flatten operation

Concatenate: Keras function

Figure 5. The overall framework of the model.

The feature fusion method, which only splices the feature information without chang-
ing the content, preserves the integrity of the feature information, and can be used for
multi-feature information fusion. Specifically, in the feature dimension splicing, the number
of channels (features) increases after the splicing, but the information under each feature
does not increase, and each channel of the splicing maps the corresponding convolution
kernel, the expression is as follows:

A={A;li=1,2,3,--- ,channel} (14)
B={B|li=1,2,3,---,channel} (15)

channel channel
Dsingle = Lii=1 Ai* Ki + Zi:l B; * Kit channel (16)

In the formula, the two input channels are A and B respectively, the single output
channel to be spliced is Dsjpgje, * means convolution, and K is the convolution kernel.
The algorithm of the spatio-temporal feature fusion and RUL prediction in this paper are
as follows.

Algorithm 1 Spatio-temporal Feature Fusion Algorithm

Input: INP1, INP2
Output: Spatio-temporal fusion feature

1.  Conduct regular processing.

2. Keep the chronological order of the entire sequence, and use one-dimensional convolutional
layer to extract local spatial features to obtain spatial information.

3. Extract local spatial extreme values by one-dimensional pooling layer to obtain a
multi-dimensional spatiotemporal feature map

4. Learn the characteristics of the data sequence over time through LSTM.

5. Splice the above two features to get the final spatiotemporal fusion feature.
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INP1

1DCONV
filters (128 x 1)

Algorithm 2 RUL Prediction Algorithm

Input: fusion feature
Output:RUL

1. Input the fusion feature into one-dimensional convolutional layer for further feature
extraction. The convolution kernel contains m filters of size n, each filter learns a single
feature, and each column of the output matrix contains a filter weight.

2. Set the maximum pooling layer size to reduce the complexity of output and prevent data
from overfitting.

3. Make the multi-dimensional input into one dimension for the transition from the
convolutional pooling layer to the fully connected layer.

4. Accelerate the convergence by ReLU function, at this time, each neuron in the first layer is
fully connected with the upper node.

5. Reduce the joint adaptability of neurons and improve the generalization ability by the
method of the parameter regularization Dropout.

6.  Map the learned features to the labeled sample space by the non-linear mapping ability of
the fully connected layer network, and the spatio-temporal features are matched with the
actual life value to obtain the RUL prediction value.

3.2. Model Settings

Compared with multivariate data points composed of single time step sampling,
time series data provides more information. In the paper, the sliding window strategy
and multivariable time information are adopted to meet the data input requirements of
the two network paths. The entire model structure is composed of 1-FCLCNN network,
LSTM network, and fully connected layer network. Next are the specific settings of
each component.

3.2.1. 1-FCLCNN Network

The input of the 1-FCLCNN path is INP1. There are three 1D-CNN layers, which are
used to extract the spatial features. The stacked CNN [29] layers are parsed by three max
pooling layers. The first ID-CNN layers consist of 128 filters (filters = 128 x 1). The second
consist of 64 filters (filters = 64 x 1), and the third consist of 32 filters (filters = 32 x 1). The
convolution kernel size of the three 1D-CNN layers is the same (kernel size = 3). “ReLU”
activation function(formula 3) is used for the 1ID-CNN layers. The Settings of the max
pooling layers: pool_size = 2, padding = "same”, strides = 2. The batch normalization
speeds convergence and controls overfitting after each max pooling layer. The 1-FCLCNN
path can be used with or without dropout, making the network less sensitive to initial
weights. The detailed architecture is shown in Figure 6.

s ’ C t t
Max Pooling 1pCONV Max Pooling 1DCONV Max Pooling o onate

(2x1) filters (64x1) (2%1) filters (32x1) (@2x1)

B

Figure 6. The detailed architecture of the 1-FCLCNN path.

3.2.2. LSTM Network

This part is composed of three LSTM layers, which are used to extract time series
features of turbofan engines. The input of the LSTM path is INP2. The first LSTM is
defined by 128 cell structures, while the second and the third LSTM consist of 64 and 32
cell structures separately. In the LSTM path, the result of each hidden layer is the input
of the next layer. Meanwhile, return_sequences = True indicates that the hidden state of
output contains the results of total time steps.
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3.2.3. Fully Connected Layer

The output of the 1-FCLCNN path is concatenated with the output features of the
LSTM path. The resultant vector will be applied as input to the fully connected path. The
fully connected path comprises of a convolutional layer, a pooling layer, a flatten layer, and
three full connection layers. The convolutional layer consists of 256 filters filters = 256 x 1,
the parameter setting of the max pooling layer is consistent with 1-FCLCNN network.
Then the data are flattened by flatten layer (transform multidimensional data into one-
dimensional data, which are commonly used in the transition from convolutional layer
to full connected layer). The first two full connected layers consist of 128 and 32 neurons
separately and “ReLU” activation function is utilized. The third layer has 1 neuron as the
output to estimate the RUL.

3.3. The Process of Model Training

In this paper, the FD001 and FD003 data sets are used. The difference of sensor and
engine will cause different physical characteristic state result, therefore, in order to improve
the accuracy of the model and the convergence speed of the model, the original monitoring
status data are processed by the normalization method. The model limits the data size to
between [0, 1].

min
_ Xun — Xy

X* _—
M T yrmax _ ymin’
Xn Xu

Vm, n (17)

In the formula, X7, , represents a value of the mth data point of the nth feature after
normalization processing. X, , represents the initial data before processing. X4x, X/1in
are the maximum and minimum values of the features respectively.

In the model training section, the purpose of training is to minimize the cost function
and the loss, and to obtain the best parameters. The cost function as RMSE is defined by
the model (Formula (12)). In the meantime, Adam algorithm [30] and Early stopping [31]
are adopted to optimize the training process. The Early stopping can not only verify the
effect of the model in the training process, but also avoid overfitting. During the training,
the normalized data are segmented by sliding window. The input data INP1 and INP2 are
in the form of two-dimensional tensors with the size of ssw x nf, which are processed in
parallel paths separately, they are 1D convolutional layer and LSTM network. In order to
make the gradient larger and reduce the gradient disappearance problem [32], normalized
operation is used after each max pooling layer. In addition, the normalized operation
normalizes the activation values of each layer of the neural network to maintain the same
distribution. In the meantime, a larger gradient means an increase in convergence and
training speed.

The 1-FCLCNN-LSTM training algorithm is as follows:

Algorithm 3 1-FCL CNN -LSTM training algorithm

Input: C-MAPSS dataset(FD001, FD003)
Output: 1-FCLCNN -LSTM model based on weight determination.

1. Feature selection of data and standardization of data.

2. Prepare training set and test set; normalization processing of training set and test set

3. Calculate the test set label.

4 Extract input data of the network; Use a sliding window to split the data (Define the sliding

window function to extract features).

Use sliding window to extract training set label and test set label.

6. Use Adam optimization algorithm to update weights. When the number of training periods
of 1-FCLCNN -LSTM model is less than the set value or does not reach Early Stopping
condition, the extracted features will be input into 1-FCLCNN -LSTM for forward
propagation and the predicted output will be obtained. Calculate the error between the
predicted value and the actual value.

7. Obtain the trained 1-FCLCNN-LSTM model.

St
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The overall flow of the proposed method in this paper is shown in Figure 7:

| C-MAPSS dataset J

v

| Feature selection I

v

Data normalization

v

Set RUL labels to training sets and
test sets

Split the training data to training and validation ;eiﬁng
ata

Training Data

Construct 1-FCLCNN-

Validation LSTM Model
Data
Initialize the
parameters
v

train the model and update the model parameters, |
optimize the prediction error

Calculate loss in
validation data

Yes

¢ validation

Save model parameters

Complete model
training

Input test data <

Trained 1-FCLCNN-LSTM
model

output RUL

Figure 7. The flow chart of the proposed method.

4. Experiments and Analysis

First, the C-MAPSS data set is introduced in detail, second, preprocesses the data,
test and verify the proposed prediction model on the data set. Then parameter settings
are adjusted through the training model. Finally, compares the experimental results with
other methods.
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4.1. C-MAPSS Data Set

In this paper, NASA C-MAPSS turbofan engine degradation data set (https://ti.arc.
nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/) [33] was used, which
was derived from C-MAPSS database created by NASA Army Research Lab. The main
control system consists of fan controller, regulator, and limiter. Fan controls the normal
operation of the flight conditions, sending air into the inner and outer culverts, as shown
in Figure 8. A low pressure compressor (LPC) and high pressure compressor (HPC)
supply compressed high temperature, high pressure gases to the combustor. Low pressure
turbine (LPT) can decelerate and pressurize air to improve the chemical energy conversion
efficiency of aviation kerosene. High pressure turbines (HPT) generate mechanical energy
by using high temperature and high pressure gas strike turbine blades. Low-pressure
rotor (N1), high-pressure rotor (N2), and nozzle guarantee the combustion efficiency of
the engine.

Fan Combustor NI  LPT

2

\ Nozzle
HPT

LPC  HPC N2

Figure 8. C-MAPSS turbofan engine diagram [34].

The C-MAPSS database contains four subsets of data (FD001-FD004) generated from
different time series and including cumulative spatial complexity. Each data subset includes
a test data set and a training data set and the number of engines varies in each data subset.
Each engine has varying degrees of initial wear-and-tear, and this kind of wear-and-tear is
considered normal. There are three operating settings that have a significant impact on
engine performance. The engine works normally at the beginning of each time series and
fails at the end of the time series. In the training set, the fault increases until the system fails
and in the test set, the time series ends at some time before the system fails [35]. In each
time series, 21 sensor parameters and 3 other parameters show the running state of the
turbofan engine. The data set is provided as a compressed text file. Each row is a snapshot
of the data taken during a single operation cycle, and each column is a different variable.
The specific contents are shown in Tables 1 and 2.

Table 1. Column contents of data set file.

Serial NUMBER Variable Name

unit number
time, in cycles
operational setting 1
operational setting 2
operational setting 3
sensor measurement 1
sensor measurement 2

O O IO Ul WN —

sensor measurement26
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Table 2. Data description of turbofan engine sensor.

Sensor Number Sensor Description Units
1 (Fan inlet temperature) (°R)
2 (LPC outlet temperature) (°R)
3 (HPC outlet temperature) (°R)
4 (LPT outlet temperature) (°R)
5 (Fan inlet Pressure) (psia)
6 (bypass-duct pressure) (psia)
7 (HPC outlet pressure) (psia)
8 (Physical fan speed) (rpm)
9 (Physical core speed) (rpm)
10 (Engine pressure ratio L

(P50/P2)
11 (HPC outlet Static pressure) (psia)
12 (Ratio of fuel flow to Ps30) (pps/psia)
13 (Corrected fan speed) (rpm)
14 (Corrected core speed) (rpm)
15 (Bypass Ratio)
16 (Burner fuel-air ratio) —_—
17 (Bleed Enthalpy) —_—
18 (Required fan speed) (rpm)
(Required fan conversion
19 speed) (rpm)
20 (High—press.ure turbines Cool (Ib/s)
air flow)
21 (Low-pressgre turbines Cool (Ib/s)
air flow)

According to the needs of experiment, this paper adopts the data set FD001 and FD003
for model verification, and the specific description of the data set is shown in Table 3:

Table 3. Data sets FD001 and FD003 are detailed.

Data Set Training Set  Test Set  Operating Conditions Fault Mode  Number of Sensors Type of Operating
Parameters
FDO001 100 100 1 1 21 3
FD003 100 100 1 2 21 3

In this table, the training set in the data set includes the data of the entire engine life
cycle, while the data trajectory of the test set terminates at some point before failure. FD001
and FD003 were simulated under the same (sea level) condition. FD001 was only tested in
the case of HPC degradation, and FD003 was simulated in two fault modes: HPC and fan
degradation. The number of sensors and the type of operation parameters are consistent
for the four data subsets (FD001-FD004). The data subsets FD001 and FD003 contain
actual RUL values, so that the effect of the model can be seen according to the comparison
between the actual value and the predicted value. The result of the experiment is to predict
the number of remaining running cycles before the failure of the test set, namely RUL.

4.2. Data Preprocessing

In the training stage of the model, the original turbofan engine data should be pre-
processed, and the pre-processed data can be put into the model to obtain the parameters
required by the model. The pre-processing process includes feature selection, data stan-
dardization and normalization, setting the size of sliding window, and RUL label setting of
training set and test set. The FD0O01 dataset contains 21 sensor features and 3 operating
parameters (flight altitude, Mach number, and throttling parser Angle). The number of
running cycles is also one of the features, so with a total of 25 features. In order to ensure
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the consistency of the input and output of the model and the comparison effect of different
data sets, the feature selection of FD003 is consistent with FD001. Because multiple sensors
will produce multiple features, in order to eliminate the influence of different dimensions
on the prediction results, the normalization method of formula (14) is adopted. The input
data are a 2D matrix containing ssw (as the size of the sliding window) with nf (as the
number of the selected features). In order to keep the size of input and output of FD001
and FD003 data subsets constant and the data processing process is accelerated. This paper
uses a larger window to get more detailed features. The sliding window and the number
of features is set to 50 and 25 respectively.

In the neural network model, we need to get the corresponding output according to
the input data. The state of the system at each time step and the specific information of
the target RUL are based on the physical model and are difficult to determine. To solve
this problem, different solutions have been proposed. One solution is to simply allocate
the required output as the actual time remaining before a functional failure, but at the
same time the state of the system will decline linearly [36]. Another option is to obtain
the desired output value based on the appropriate degradation model. Referring to the
current literature, this paper adopts piece-wise linear degradation model to determine
the target RUL [37—40]. Piece-wise linear regression model can prevent the algorithm
from overestimating RUL. For an engine, equipment can be considered healthy during its
initial period. The degradation process will be obvious before the whole equipment runs
for a period of time or is used by a certain extent, that is, near the end of the life of the
equipment. Set the normal working state of the device to a constant value, and the RUL
of the device will drop linearly with time after a certain period of time. This model limits
the maximum value of RUL, which is determined by the observed data in the degradation
stage. The maximum RUL value of the data set observed from the degradation phase of
the experiment is set to 125, and the part exceeding 125 is uniformly specified as 125. When
the critical period is reached, RUL decreases linearly as the running period increases. The
Piece-wise Linear RUL Target Function is shown in Figure 9.

Piece-wise Linear RUL Target Function

140

120

100

Linear Degradation

- % Phase
-
= Critical Phase

40

20

0

0 50 100 150 200 250 300

Time
Figure 9. Piece-wise linear remaining useful life (RUL) target function.

4.3. Parameter Settings

Because the model needs to adjust parameters in the training process, it is important
to select the appropriate parameters for the whole experiment. For two data subsets,
FD001 and FD003, each data subset is divided into training set accounting for 85% and
verification set accounting for 15%. All data sets are trained in the mini-batch method [35].
For the main parameters involved in the data set in this experiment, this paper adopts
a one-by-one optimization method according to the most commonly used values of the
parameters. The selection of parameters included epoch (value: 40, 60, 80,100), batch size
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(value: 64,128,256,512), dropout rate (value: 0.1, 0.2, 0.3, 0.4). In the course of experimental
training, if the training error and verification error do not decrease in the five training
periods, the training shall be stopped in advance. The parameter results of FD0O01 are
shown in Figure 10. The parameter results of FD003 are shown in Figure 11.
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Figure 10. Experimental results of different parameters of FD001.
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Figure 11. Experimental results of different parameters of FD003.

After model training and comparative analysis of experimental results, the parameter
setting of FD001 and FDO003 data subsets with the best model performance is finally
obtained, as shown in Table 4.
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Table 4. Model parameter Settings for FD001 and FD003 data subsets.

ﬂ FD001 FD003
Parameter
epoch 60 60
batch size 256 512
dropout 0.2 0.2

4.4. Experimental Results and Comparison

In this section, we mainly introduce the prediction results of this model and the
comparative analysis with the recent popular research methods. With the same data input
and the same pretreatment process, the prediction results of the traditional convolutional
neural network are compared with the 1-FCLCNN-LSTM model proposed in this paper.
The traditional convolutional neural network consists of two convolutional layers, two
pooling layers, and a full connected layer. For FD001 and FD003 data subset, this paper
compares the training effect of convolutional neural network and FCLCNN-LSTM model
under the same data set and engine. The training effects of engines with FD001 and FD003
data subsets on the two models are shown in Figures 12 and 13. The training diagrams of
the two models in a single data subset can be obtained as follows: RUL began to decrease
with the increase of time step, and finally failed. From the process of RUL reduction, it can
be observed that with the increase of time, the higher the prediction accuracy, the closer the
predicted value and the actual the values are, which means that the smaller RUL is closer
to the potential fault. In this paper, RMSE is used to express the training effect of FD001
and FDO0O03 training sets, as shown in Formula (12). The comparison results are shown in
Table 5.
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(a) Training diagram of CNN model
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Figure 12. Training diagram of the same FDO001 engine under two models.
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(a) Training diagram of CNN model.

Figure 13. Training diagram of the same FDO003 engine under two models.

Time Step

(b) Training diagram of 1-FCLCNN-LSTM model.
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Table 5. RMSE training values of FD001 and FD003 under the two models.

FDo001 FD003
CNN 8.25 14.00
1-FCLCNN-LSTM 4.87 7.56

From Table 5 and the training diagrams of the two models on different data sets, it
can be concluded that the 1-FCLCNN-LSTM proposed in this paper performs better in
the training process than the traditional single CNN neural network. Among them, the
RMSE of 1-FCLCNN-LSTM model on FD0O01 training set was 41% lower than that of CNN
model, and the RMSE of 1-FCLCNN-LSTM model on FD003 training set was 46% lower
than that of CNN model. FD003 has two fault modes while FD001 has only one, which
indicates that the multi-neural network model has certain advantages in dealing with
complex fault problems.

The test sets of FD001 and FD003 were input into the trained CNN and 1-FCLCNN-
LSTM models to obtain the prediction results, which are shown in Figures 14 and 15,

respectively.
150 A
160 A \
/j’r»y 1404 \
wo{ \ ‘ \ 130
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100 100 -
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(a) Prediction results of CNN model. (b) Prediction results of 1-FCLCNN-LSTM model.

Figure 14. RUL prediction results of FD001 with different models.
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(a) Prediction results of CNN model. (b) Prediction results of 1-FCLCNN-LSTM model.

Figure 15. RUL prediction results of FD003 with different models.

In this paper, the RMSE is used to express the effects of FD001 and FD003 test sets, as
shown in Formula (12). See Table 6 for details.
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Table 6. RMSE predicted by FD001 and FD003 under the two models.

FDo001 FD003
CNN 17.22 15.50
FCLCNN-LSTM 11.17 9.99

It can be seen from Table 6 that the training effect of the model directly affects the
performance of the test set of the model. As shown in the above table, the RMSE of 1-
FCLCNN-LSTM model on FD0O01 test set is 35% lower than that of CNN model and the
RMSE of 1-FCLCNN-LSTM model on FD003 is 35.5% lower than that of CNN model.

In order to measure the prediction performance of the model more comprehensively,
this paper selects the latest advanced RUL prediction method, and compares the deviations
of various methods under the same data set. The evaluation indicators are RMSE and the
score function, both of which are as low as possible. The comparison results of FD001 data
set are shown in Table 7, and the comparison results of FD003 data set are shown in Table 8.

Table 7. Comparison results of various models on the FD001 dataset.

Models RMSE Score
1-FCLCNN-LSTM 11.17 204
HDNN [29] 13.02 245
DCNN [20] 12.61 274
LSTM-ENN [41] 16.14 338
LSTMBS [42] 13.27 216
Autoencoder-BLSTM [23] 13.63 261
VAE-D2GAN [40] 11.60 221
D-LSTM [43] 16.14 338
RF [44] 17.91 480
BiRNN-ED [45] 14.74 273

Table 8. Comparison results of various models on the FD003 dataset.

Models RMSE Score
1-FCLCNN-LSTM 9.99 234
HDNN [29] 12.22 288
DCNN [20] 12.64 284
LSTMBS [42] 16.00 317
D-LSTM [43] 16.18 852
RF [44] 20.27 711

SVM [44] 46.32 22542
Rulclipper [45] 16.00 317
FADCNN [46] 19.82 1596
GB [44] 16.84 577

The comparison results with multiple models show that the model proposed in
this paper has the lowest score and RMSE values on both FD001 and FD003 data sets.
The RMSE of 1-FCLCNN-LSTM model on FD001 was 11.4-36.6% lower than that of RF,
DCNN, D-LSTM, and other traditional methods, and the RMSE of 1-FCLCNN-LSTM
model on FD003 was 37.5-78% lower than that of GB, SVM, LSTMBS, and other traditional
methods. The above results are attributed to the multi-neural network structure and
parallel processing of feature information in this model, which can effectively extract
RUL information. Compared with the current popular multi-model Autoencoder-BLSTM,
VAE-D2GAN, HDNN, and other methods, the RMSE of FD001 was decreased by 4-18%,
and the RMSE of FD003 was decreased by 18-37.5% compared with that on HDNN,
DCNN, Rulclipper, and other methods. The above results are attributed to the same multi-
model structure and multi-network structure, the 1-FCLCNN-LSTM model has advantages
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in feature processing in thel-FCLCNN path, and the fused data are processed by the 1D
full-convolutional layer to obtain more accurate prediction results. The score of 1-FCLCNN-
LSTM model in FD001 was 5% lower than the optimal LSTMBS in the previous model. The
score of 1-FCLCNN-LSTM model in FD003 was 17.6% lower than the optimal DNN in the
previous mode. This indicates that the prediction accuracy of this model in C-MAPSS data
set is improved, and no expert knowledge or physical knowledge is required, which can
help maintain predictive turbofan engines, as a research direction of mechanical equipment
health management.

5. Conclusions

This paper has presented a method for RUL prognosis of spatiotemporal feature
fusion modeled with 1-FCLCNN and LSTM network. From the current data sets which are
issued from some location and state sensors, the proposed method extracts spatiotemporal
feature and estimates the trend of the future remaining useful life of the turbofan engine. In
addition, for different data sets and prognosis horizon, it is shown that the RUL prognosis
error is superior to other methods. Future research will improve the use of the approach for
online applications. The main challenge is to incrementally update the prognosis results.
The use of the approach for other real applications and large machinery systems will also
be considered.
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