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Abstract: Melanin granules cluster within supra-nuclear caps in basal keratinocytes (KCs) of the
human epidermis, where they protect KC genomic DNA against ultraviolet radiation (UVR) damage.
While much is known about melanogenesis in melanocytes (MCs) and a moderate amount about
melanin transfer from MC to KC, we know little about the fate of melanin once inside KCs. We
recently reported that melanin fate in progenitor KCs is regulated by rare asymmetric organelle move-
ment during mitosis. Here, we explore the role of actin, microtubules, and centrosome-associated
machinery in distributing melanin within KCs. Short-term cultures of human skin explants were
treated with cytochalasin-B and nocodazole to target actin filaments and microtubules, respectively.
Treatment effects on melanin distribution were assessed by the Warthin–Starry stain, on centrosome-
associated proteins by immunofluorescence microscopy, and on co-localisation with melanin granules
by brightfield microscopy. Cytochalasin-B treatment disassembled supra-nuclear melanin caps, while
nocodazole treatment moved melanin from the apical to basal KC domain. Centrosome and centrio-
lar satellite-associated proteins showed a high degree of co-localisation with melanin. Thus, once
melanin granules are transferred to KCs, their preferred apical distribution appears to be facilitated
by coordinated movement of centrosomes and centriolar satellites. This mechanism may control
melanin’s strategic position within UVR-exposed KCs.

Keywords: melanin distribution; epidermis; Stratum basale keratinocytes; ex vivo human skin; skin
phototype; centrosome; microtubules; centriolar satellites; actin

1. Introduction

Melanin is predominantly restricted to the basal layer (or Stratum basale) of the human
epidermis, where it is found in both melanocytes (MCs), the cells that make melanin, and in
nearby keratinocytes (KCs), the cells of the epidermis that accept melanin. Melanin granules
tend to be distributed in an ultraviolet radiation (UVR)-protective manner in KCs [1,2],
forming supra-nuclear caps that co-localise with the cytoskeletal motor protein dynein [3].
We recently reported that melanin granule distribution in human skin is regulated primarily
within in the Stratum (S.) basale of the epidermis, where they accumulate (and are largely,
and remarkably, retained) via an asymmetric mode of organelle distribution [4]. This view
challenged a long-held dogma, which explained a histologically apparent “depletion” of
melanin in the epidermis above the S. basale as “degradation” of the melanin biopolymer,
for which no convincing biochemical evidence has yet been advanced [5,6]. Instead,
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most melanin within dividing progenitor S. basale KCs appears to be inherited by the
non-stratifying daughter KC. As a result, only a minor portion of melanin transits to the
S. spinosum of the human epidermis via the stratifying daughter KC [4]. This mode of
melanin distribution can explain the long-appreciated concentration of melanin within the
S. basale and does so without invoking degradation of the super-resilient eumelanin indole
biopolymer within an eminently degradable proteinaceous melanosomal capsule [7,8].

The transport of melanosomes inside epidermal MCs has been extensively studied
and there are several excellent recent reviews on this topic [9,10]. The “highways and local
roads” model suggests that melanosomes are transported along microtubules (MTs) be-
tween the MC centre and periphery (i.e., so-called long distances), before the melanosomes
transition via short-range movements along the actin network [11]. This model has evolved
in complexity into the “cooperative capture” model [10,12]. Recently, a “centrifugal and
centripetal” model has been proposed, which envisions a role for actin also in long dis-
tance movements [13–15]. Nevertheless, all models agree on a role for both MTs and
actin, together with their respective motor proteins, in melanosome movement within the
epidermal MC.

Motor proteins are key molecules involved in the movement of organelles, including
melanosomes, along the cytoskeleton. For example, Myosin Va can facilitate unidirectional
movement of melanin along actin [12,16–18], while organelle transport via MTs undergoes
both retrograde (to the –ve end of MT/cell nucleus) and anterograde (to the positive
end of MTs/cell periphery) movement [19]. Retrograde melanosome transport along
MTs is regulated by melanoregulin and Rab36, by interacting with the dynein–dynactin
motor complex [20,21], while anterograde transport occurs through kinesins [22–24]. The
motor protein Ninein-like [25], encoded by the NINL gene, has recently been implicated
in melanosome transport and is variably expressed in S. basale epidermis of human skin
according to skin colour (using L*), with its highest expression in medium pigmented skin
followed by highly pigmented skin [25].

While progress on intra-MC melanosome transport has been impressive, our knowl-
edge of melanin transport from MC to KC, and especially thereafter within the KC itself, is
still relatively poor. The latter steps in the melanin journey are especially important for
understanding how melanin distribution in the human epidermis is regulated, not only
in normal skin melanin where it offers a protective strategy against skin cancer, but also
in hypo- or hyper-pigmentary clinical conditions [2]. Some insights of intra-epithelial cell
melanin granule choreography may be gleaned from the retinal pigmented epithelium
(RPE) [26]. While both RPE and KCs are epithelial cells, the former is distinctive as RPE
cells synthesise melanin themselves, albeit during a very time-limited period of embryo-
genesis [26]. Thereafter, melanin matures and accumulates in the apical compartment of
the RPE cell. Despite this significant difference with KCs, Jiang et al. (2020) have shown
how RPE melanosomes move along MTs until they reach the apical, actin-rich, RPE cell
domain, a process dependent on motor proteins [27]. Thereafter, melanin remains for a
lifetime, unless aging or disease perturb it. In the context of our study, RPE cells display
significant cell polarity, with distinctive actin-rich apical cilia. Skin KCs may be less ob-
viously polarised than RPE cells but still, they form a highly stratified epidermis with an
organisation that requires the polarity of its constituent cells [28,29]. Another way skin KCs
show cell polarity is via the characteristic distribution of melanin granules within “caps”
and “parasols” in the apical KC domain (Figure 6).

MT networks are key contributors and responders to cell polarity [30], and the cen-
trosome is considered the MT-organising centre (MTOC) in human somatic cells. The
centrosome, consisting of two barrel-shaped centrioles embedded in a matrix of proteins
known as the pericentriolar material, plays a key role in the transmission of cell polarity
to daughter cells after cell division [31]. Pericentrin (PCNT) is an integral component of
the pericentriolar material, to which it recruits multiple proteins (e.g., the MT nucleation
component γ-tubulin), thereby ensuring proper centrosome and mitotic spindle formation.
In this way, the centrosomes are responsible for the uninterrupted progression of symmetric
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and asymmetric cell divisions [32]. Another essential, but well-understood, part of the MT
cytoskeletal machinery is the centriolar satellites. Centriolar satellites are non-membranous
cytoplasmic granules, located around the centrosome (and the basal body of primary
cilia), and are involved in the transport of proteins towards the centrosome and primary
cilium [33]. PCM1 (Pericentriolar material 1) was the first centriolar satellite protein identi-
fied [34], followed more recently by others [35]. Importantly, centriolar satellites exhibit
cell cycle-dependent assembly and disassembly [36].

In this study, we aimed to explore the role of the MT/actin cytoskeleton and associated
centrosomal machinery in melanin distribution and localisation within KCs of the human
epidermis, with a primary focus on the role of S. basale KC polarity in melanin distribution
in human skin.

2. Results

We employed a small molecule approach to intervene in the dynamics of MT (via noco-
dazole) and actin (via cytochalasin B) [37] in KCs using our previously described ex vivo
full-thickness human skin histoculture model [38]. While we have also examined epidermal
KCs and MCs in vitro using mono-layer co-cultures [4,39] and pigmented epidermis 3D
skin equivalents [4], we have concluded that these approaches may be limited in their
capacity to faithfully recapitulate normal human epidermis cell dynamics. Specifically, we
consider the principal deficiency of the aforementioned is the challenge of establishing and
retaining epidermal cell polarity (data not shown), which we consider key to interrogating
the fundamental biology of melanin dynamics in human skin. Thus, the approach adopted
in the current study allows us to study melanin distribution and localisation not only in a
3D context, but also in one where it was possible to maintain most characteristics of human
epidermis for a limited time ex vivo. Using this approach, we first examined whether MTs
play a significant role in the distribution of melanin in KCs of the S. basale.

2.1. Microtubules Are Involved in the Localisation of Melanin into Supranuclear Caps in
S. basale KCs

Nocodazole is widely used in biomedical research to depolymerise microtubules,
including in melanin movement studies [15] and epidermal proliferation [40]. Here, we
used this small molecule to study MT behaviour in S. basale KCs, exploring melanin
localisation with the help of our recently re-introduced Warthin–Starry (WS) stain for
melanin detection SPTII-III [41].

Our readouts for the successful disruption of MTs by nocodazole was the latter’s
impact on KC α-tubulin expression and on the progress to completion of KC mitosis in the
ex vivo human skin post-treatment. Nocodazole-treated skin lacked long α-tubulin fibres,
which were instead replaced by isolated, punctate α-tubulin-positive staining, especially
in the S. basale, suggesting disrupted polymerisation of α-tubulin during the formation
of the MTs (Figure 1a–c). The number of mitotic cells was assessed using the mitosis-
specific marker pH3(Ser10) [42]. Nocodazole-treatment resulted in the increased detection
of mitotic cells, indicating that disrupted MT polymerisation induced mitotic arrest, i.e.,
prevented those S. basale KCs that have started mitosis during the period of drug exposure
from proceeding to completion of cell division, i.e., cytokinesis. Indeed, the fraction of
mitotic KCs per total S. basale cells was significantly higher in nocodazole-treated skin in
comparison to the vehicle-treated control (Figure 1d–f).
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Figure 1. Microtubule depolymerisation (nocodazole treatment) influences the subcellular localisation of melanin aggre-
gation in Stratum basale KC of human ex vivo skin epidermis. (a) Localisation of α-tubulin (green) showing microtubules 
in VC- and (b) nocodazole-treated ex vivo skin tissue after 24 h in culture; scale bar = 20 µm. (c) Negative control (omission 
of primary antibody) showed lack of non-specific binding. (d) Proliferating (Ki67 in red) and mitosis-stalled (pH3(Ser10) 
in green) KCs in VC- and (e) nocodazole-treated human ex vivo skin after 24 h in culture; scale bar = 50 µm as stated in 
the figure. (f) Percentage (%) of pH3(Ser10)-positive KCs per S. basale KC in VC- and nocodazole-treated cells. ** shows p-
value < 0.01 in an unpaired t-test. (g) Warthin–Starry stain shows melanin localisation in vehicle control- (VC) and (h) 
nocodazole-treated ex vivo skin tissue after 24 h in culture; scale bar = 20 µm. Nuclei were counterstained with 4′,6-dia-
midino-2-phenylindole (DAPI in blue). Representative images from three individual donors. (i) Quantification of subcel-
lular localisation of melanin. Graph shows the percentage (%) of S. basale cells with apical, perinuclear, and basal located 
melanin granules. Data are the mean ± SD of three independent biological experiments (n = 3 donors; 58–110 cells/repli-
cate), *** indicates p-value < 0.001 and ns indicates not significant in a two-way ANOVA test. 

Figure 1. Microtubule depolymerisation (nocodazole treatment) influences the subcellular localisation of melanin aggrega-
tion in Stratum basale KC of human ex vivo skin epidermis. (a) Localisation of α-tubulin (green) showing microtubules in VC-
and (b) nocodazole-treated ex vivo skin tissue after 24 h in culture; scale bar = 20 µm. (c) Negative control (omission of pri-
mary antibody) showed lack of non-specific binding. (d) Proliferating (Ki67 in red) and mitosis-stalled (pH3(Ser10) in green)
KCs in VC- and (e) nocodazole-treated human ex vivo skin after 24 h in culture; scale bar = 50 µm as stated in the figure.
(f) Percentage (%) of pH3(Ser10)-positive KCs per S. basale KC in VC- and nocodazole-treated cells. ** shows p-value < 0.01 in
an unpaired t-test. (g) Warthin–Starry stain shows melanin localisation in vehicle control- (VC) and (h) nocodazole-treated
ex vivo skin tissue after 24 h in culture; scale bar = 20 µm. Nuclei were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI in blue). Representative images from three individual donors. (i) Quantification of subcellular localisation of melanin.
Graph shows the percentage (%) of S. basale cells with apical, perinuclear, and basal located melanin granules. Data are the
mean ± SD of three independent biological experiments (n = 3 donors; 58–110 cells/replicate), *** indicates p-value < 0.001
and ns indicates not significant in a two-way ANOVA test.
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Melanin distribution in the vehicle control (VC)-treated skin showed granules pre-
dominantly present in the S. basale of the epidermis (Figure 1g), as occurs in vivo [2,4].
Moreover, the intracellular localisation of melanin was predominantly restricted to the
apical domain of S. basale KCs. Specifically, melanin was aggregated into supra-nuclear
“caps” (Figure 1g and Figure 6) in almost 70% of pigmented S. basale KCs. By contrast,
melanin was almost absent from the basal domain of the KCs (<4% of cells), while the
remaining approximately 25% of KCs had some melanin dispersed throughout the cell
(Figure 1c). Nocodazole depolymerisation of MTs resulted in a dramatic alteration in the
distribution of melanin granules inside S. basale KCs at the end of this short 24 h period of
ex vivo culture. MT disruption caused a flipping of the melanin aggregate caps from the
apical to the basal domains of the KC so that melanin was not adjacent to the basement
membrane zone (BMZ) of the epidermis, i.e., close to the papillary dermis (Figure 1b).
Approximately 10% of KCs still exhibited an apical domain preference for at least some
melanin at the end of this short (24 h) histoculture period. The extent of non-aggregated or
perinuclear melanin was not significantly different in nocodazole-treated and VC-treated
tissues (Figure 1i). A broadly similar melanin distribution was found after 48 h of treatment
(Supplementary Figure S1).

As melanin movement within MCs is in part mediated via actin, we next assessed the
impact of disrupting actin polymerisation on melanin movement within epidermal KCs.

2.2. The Actin Cytoskeleton Is Involved in Melanin Granule Aggregation in S. basale KCs

Cytochalasin B is a small drug widely used to impede actin polymerisation [43,44].
The impact of cytochalasin B treatment in our ex vivo human skin culture was assessed by
phalloidin staining, which reflects cellular levels of polymerised actin. Polymerised actin
filaments were shorter in S. basale KCs after cytochalasin B treatment (Figure 2b) compared
to VC-treated skin (Figure 2a). This effect appeared to be restricted to the S. basale, as actin
was similarly and strongly detected in KCs above, including in supra-basal KCs of both
VC- and cytochalasin B-treated skin (Figure 2a,b). We next assessed the impact of actin
polymerisation disruption on melanin movement within epidermal KCs. Cytochalasin B
treatment significantly reduced apical domain distribution of melanin granules in human ex
vivo skin tissue (SPTII-III) from 70% (VC-treated control) to approximately 30% (Figure 2e).
When melanin was still present in the apical domain of cytochalasin B-treated KCs, its
aggregation into supra-nuclear melanin caps was less commonly observed (Figure 2c,d).
Similar melanin distribution was found after 48 h of treatment (Supplementary Figure S2).

With changes to MT and actin-associated cytoskeleton shown to influence melanin
distribution in human epidermis (see above), we next examined whether the cell’s MT
organising centre (MTOC), the centrosome, is also implicated in melanin distribution in
the human epidermis.
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red in VC- and (b) cytochalasin B-treated skin after 24 h in culture. Nuclear counterstain (DAPI) is 
shown in blue. (c) Warthin–Starry stain shows melanin localisation in VC- and (d) cytochalasin B-
treated ex vivo skin after 24 h in culture. Scale bar = 20 µm. The basement membrane zone is 
shown by a white dotted line. (e) Quantification of subcellular localisation of melanin. Graph 
shows the percentage (%) of S. basale cells with apical, perinuclear, and basal located melanin. Data 
are the mean ± SD of three independent biological experiments (n = 3 donors; 61–131 cells/repli-
cate). *** indicates p-value < 0.001 and ns indicates not significant in a two-way ANOVA test. 

2.3. The Centrosome, Centriolar Satellites and Melanin Granules Show a Coordinated Movement 
To assess whether melanin granule movement within progenitor KCs is coordinated 

by the centrosome and its associated centriolar machinery, we examined the positional 
changes of key related proteins, including PCNT (centrosome) and PCM1 (centriolar sat-
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Figure 2. Reduced actin polymerisation after cytochalasin B treatment affects melanin aggregation
in the S. basale KCs in human skin ex vivo. (a) Polymerised actin (phalloidin staining) is shown in
red in VC- and (b) cytochalasin B-treated skin after 24 h in culture. Nuclear counterstain (DAPI)
is shown in blue. (c) Warthin–Starry stain shows melanin localisation in VC- and (d) cytochalasin
B-treated ex vivo skin after 24 h in culture. Scale bar = 20 µm. The basement membrane zone is
shown by a white dotted line. (e) Quantification of subcellular localisation of melanin. Graph shows
the percentage (%) of S. basale cells with apical, perinuclear, and basal located melanin. Data are
the mean ± SD of three independent biological experiments (n = 3 donors; 61–131 cells/replicate).
*** indicates p-value < 0.001 and ns indicates not significant in a two-way ANOVA test.

2.3. The Centrosome, Centriolar Satellites and Melanin Granules Show a Coordinated Movement

To assess whether melanin granule movement within progenitor KCs is coordinated
by the centrosome and its associated centriolar machinery, we examined the positional
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changes of key related proteins, including PCNT (centrosome) and PCM1 (centriolar
satellites), after nocodazole disruption of the cytoskeleton in S. basale KCs.

Nocodazole treatment caused a striking movement of the centrosome (PCNT) from
the apical to the basal domains of S. basale KCs, with a basal centrosome position seen
in the majority (~70%) of cases. By contrast, the majority of centrosomes in VC-treated
skin showed a retention of their original apical domain position (Figure 3a–c). Moreover,
nocodazole treatment caused a similar translocation of the centriolar satellites (PCM1), from
the apical to basal domain of the KCs. While the satellites exhibited a characteristic [33,45]
punctate “cloud” distribution around the centrosome in the apical domain of KCs in
VC-treated skin (Figure 3d), nocodazole treatment caused these centriolar satellites to
adopt a much more restricted localisation around the centrosome when moved to the basal
domain of the KC (Figure 3e). In this way, centriolar satellite (PCM1) movement paralleled
that of the centrosome (PCNT) after nocodazole treatment (Figure 3f). A similar effect
of nocodazole treatment on the positions of the centrosome and centriolar satellites was
observed when human skin was treated for 48 h in ex vivo histoculture (Supplementary
Figure S3). The high level of coordination between these two structures was evidenced by
co-localisation of PCNT and PCM1 in the vast majority of KC in both VC- and nocodazole-
treated tissues after 24 h in culture. However, after 48 h in culture, we observed that the
co-localisation was even higher in nocodazole-treated skin (Figure 3g–i).

To assess whether this coordinated movement of centrosomes and their associated cen-
triolar satellites may also influence the observed treatment-affected movement of melanin
granules within S. basale KCs in these histocultures, we attempted to assess whether
the modulated positioning of the latter melanin granules matched that of the centro-
some/centriolar satellites. This was technically challenging, especially in low pigmented
SPTII and III skin, because of the difficulty of combining Warthin–Starry with immunoflu-
orescence staining. Still, we were able to determine that melanin granule and PCNT
(centrosome) expression indeed shared a common intracellular localisation in both VC- and
nocodazole-treated tissues (Supplementary Figure S4), and therefore, indirectly allowed us
to correlate overall melanin and centrosome co-localisation in these S. basale KCs.

We also assessed whether the observed change in melanin behaviour, seen after this
small molecule treatment, was due to (drug) treatment effects on KC differentiation within
the histocultures. The similar expression of the early differentiation marker keratin 10
(KRT10) in the S. basale KCs of both nocodazole-, cytochalasin B, and VC-treated skin
(Supplementary Figure S5) suggests that we were observing direct effects of both MT and
actin cytoskeleton on melanin movement within the S. basale KC. Thus, the absence of KC
differentiation effects during the very short time course of our experiments supports the
usefulness of this model, with or without drug treatments.

Melanin biology in low and high pigmented human skin types shows several distinc-
tive features, not least in the size and processing of their melanosomes/melanin granules [2].
Therefore, we were keen to examine how the centrosome/microtubule machinery is organ-
ised in skin of different intrinsic melanin levels, and secondly, whether this may affect how
skin phototype may impact melanin granule distribution in the epidermis.
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Figure 3. Microtubule depolymerisation (after nocodazole treatment) affects the subcellular localisation of the centrosome
(PCNT) and centriolar satellites (PCM1) in S. basale KCs in human skin ex vivo. (a) Localisation of the centrosome (red) in
VC- and (b) nocodazole-treated ex vivo skin after 24 h in culture. (c) Quantification of subcellular localisation of centrosome.
Graph shows the percentage (%) of S. basale KCs with apical, basal and central PCNT localisation. ** indicates p-value <
0.01, *** indicates p-value < 0.001 and ns indicates not significant in a two-way ANOVA test (n = 3 donors; 33–55 PCNT
dots/replicate). (d) Localisation of centriolar satellites (green) in VC- and (e) nocodazole-treated ex vivo skin after 24 h in
culture. (f) Quantification of centriolar satellite localisation. Graph shows the percentage (%) of PCM1 satellite clouds with
apical, basal and central localisation. *** indicates p-value < 0.001 and ns indicates not significant in a two-way ANOVA
test (n = 3 donors, 25–45 PCM1 clouds/replicate). (g) Co-localisation (orange/yellow) of centrosome (PCNT, red) and
centriolar satellites (PCM1, green) in VC- and (h) nocodazole-treated ex vivo tissues after 24 h in culture. (i) Quantification
of centrosome co-localisation with centriolar satellites. Graph shows the percentage (%) of co-localisation in S. basale KCs.
* indicates p-value < 0.05, ns indicates not significant using one-way ANOVA (n = 3 donors, 22–60 cells/replicate).
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2.4. The Status of the Centrosome/Microtubule Machinery in Low versus High SPT Human Skin
In Situ

The localisation of centrosome (PCNT) and centriolar satellites (PCM1) was compared
in lightly (i.e., SPT I/II) and darkly pigmented skin in situ (i.e., SPT V/VI) using brightfield
microscopy (Figure 1a,e), given that melanin granules are much more numerous outside the
S. basale (i.e., in the supra-basal layers of the epidermis) in darkly versus lightly pigmented
human epidermis [4]. The most common localisation for the centrosome and centriolar
satellites was in the apical domain of the S. basale KCs in vivo (Figure 4b,c,f,g and quantified
in Figure 4j,k), i.e., similar to what we observed in the VC-treated ex vivo tissue (Figure 3).
Indeed, no significant differences were found in either the number (Figure 4i) or localisation
(Figure 4j) of PCNT dots between lightly (SPTII/II) and darkly (SPTV/VI) pigmented skin.
Moreover, around 80% of S. basale KCs showed co-localisation between PCNT and PCM1
stainings of both light and darker pigmented skin tissues in vivo (Figure 4l).

2.5. Melanin Co-Localises with the Centrosome (PCNT) in Both Light and Dark Skin Phototypes
In Vivo

The association of melanin granules with the centrosome and centriolar satellites was
analysed in the S. basale KCs of highly pigmented (SPT-V and SPT-VI) human skin, where
melanin localisation, after Warthin–Stary staining, can be directly analysed by brightfield
microscopy (Figure 4a,e). Melanin co-localisation with the centrosome was found to occur
in nearly all (~90%) S. basale KCs in vivo (Figure 5b,d,e). To assess if the occurrence of this
co-localisation was confined to the apical domain of the KC, we compared total detectable
centrosomes in the apical domain of KCs with total detectable centrosomes that co-localised
with melanin anywhere in the KC. The proportion of total centrosomes that co-localised
with melanin was always statistically significantly higher than the number of centrosomes
restricted to the apical domain of the KCs (Figure 5g,h), indicating a coordinated (i.e.,
non-random) relationship between the centrosome machinery and melanin in the human
epidermis. As mentioned above, centriolar satellites tend to be distributed in human skin
KCs in the form of diffuse “clouds” (Figure 4). Interestingly, full or complete co-localisation
of PCM1 satellite “clouds” with melanin granules occurred in ~30% of KC, while partial
co-localisation with melanin was observed in ~60% of KC in SPT-V/VI skin (Figure 5b,d,f).

While melanin granule distribution in S. basale KCs of the human epidermis exhibited
an apparently coordinated, domain-specific, localisation with both the centrosome and
centriolar satellites, this was not seen for the expression of key motor proteins dynactin
(DNCT1) and ninein-like (NINL), which were observed throughout the KC cytoplasm
(Supplementary Figure S6). This finding indicates no specific co-localisation of these
proteins with melanin granules in the steady-state epidermis.



Int. J. Mol. Sci. 2021, 22, 3143 10 of 19

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 4. Centrosome (PCNT) and Centriolar satellites (PCM1) in low vs. high SPT skin. Representative images (scale bar 
= 20 µm) of SPT-II/III human skin tissue; (a) brightfield image showing low level of pigmentation, (b) in situ localisation 
of centrosomes (PCNT in red) and (c) centriolar satellites (PCM1 in green). (d) Merged image of b and c. Representative 
images of SPT-VI human skin tissue; (e) brightfield image showing high level of pigmentation, (f) in situ localisation of 
PCNT in red and (g) PCM1 in green. (h) Merged image of f and g. (i) Quantification of S. basale KCs with more than one 
centrosome. Graph shows the percentage (%) of S. basale KC with more than one centrosome (i.e., PCNT dot) in SPT-II/III 
(black), V (red) and VI (blue) human skin. No significant differences were found using one-way ANOVA test (each dot 
represents the summary data for one donor, n = 12). (j) Quantification of subcellular localisation of centrosomes. Graph 
shows the percentage (%) of the total centrosomes (PCNT dots) that showed an apical, basal and perinuclear/central lo-
calisation in SPTII/III (black), SPTV (red) and SPTVI (blue) human skin. No significant differences were found using mul-
tiple t-test (each dot represents the summary data for one donor, n = 12). (k) Quantification of subcellular localisation of 

Figure 4. Centrosome (PCNT) and Centriolar satellites (PCM1) in low vs. high SPT skin. Representative images (scale bar =
20 µm) of SPT-II/III human skin tissue; (a) brightfield image showing low level of pigmentation, (b) in situ localisation of
centrosomes (PCNT in red) and (c) centriolar satellites (PCM1 in green). (d) Merged image of b and c. Representative images
of SPT-VI human skin tissue; (e) brightfield image showing high level of pigmentation, (f) in situ localisation of PCNT in
red and (g) PCM1 in green. (h) Merged image of f and g. (i) Quantification of S. basale KCs with more than one centrosome.
Graph shows the percentage (%) of S. basale KC with more than one centrosome (i.e., PCNT dot) in SPT-II/III (black), V
(red) and VI (blue) human skin. No significant differences were found using one-way ANOVA test (each dot represents
the summary data for one donor, n = 12). (j) Quantification of subcellular localisation of centrosomes. Graph shows the
percentage (%) of the total centrosomes (PCNT dots) that showed an apical, basal and perinuclear/central localisation in
SPTII/III (black), SPTV (red) and SPTVI (blue) human skin. No significant differences were found using multiple t-test
(each dot represents the summary data for one donor, n = 12). (k) Quantification of subcellular localisation of centriolar
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satellites (PCM1). Graph shows the percentage (%) of the total PCM1 clouds with an apical, basal and perinuclear/central
localisation in SPTII/III (black), SPTV (red) and SPTVI (blue) human skin (each dot represents the summary data for one
donor, n = 7). (l) Number of S. basale KC (%) showing PCNT co-localisation with PCM1 (each dot represents the summary
data for one donor, n = 7). Each individual donor is represented using the same colour shade in all graphs of this figure.
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a merged with brightfield microscopy view. (c) Representative image of PCNT (red) and PCM1 (green) localisation in SPT
VI skin. (d) Image (c) merged with brightfield microscopy view. (e) Percentage (%) of pigmented S. basale KC showing
co-localisation of PCNT and melanin; ns indicates not significant in an unpaired non-parametric t-test (Mann–Whitney).
(f) Percentage (%) of PCM1 clouds (centriolar satellites) showing full, partial or no co-localisation with melanin; ns
indicates not significant in a two-way ANOVA. (g) Percentage (%) of centrosomes (PCNT) showing an apical localisation in
pigmented S. basale cells in comparison with the percentage (%) of centrosomes co-localising with melanin independently of
its subcellular localisation; * indicates p value < 0.05 in a paired non-parametric t-test (Wilcoxon, n = 8 donors). For e, f and
g, each coloured dot represents a different donor, red shades indicate SPTV (n = 3) and the blue shades indicate SPT-VI
(n = 3–5). (h) Example of S. basale KC showing basal PCNT co-location with melanin in SPT-VI skin. Scale bar = 20 µm
unless indicated otherwise. Nuclei were counterstained with DAPI. Basement membrane is shown with a dotted white line.

3. Discussion

For perhaps more than a century, discussion on the fate of melanin granules in the
human epidermis, after their transfer from MC to KC, has focused on some form of melanin
“degradation”. More recently, this has included reference to autophagy-mediated melanin
degradation [46–49], which is purported to be a consequence of KC differentiation and
stratification [50]. In the absence of empirical supporting evidence, this view has proved
insufficient to explain the biology of melanin distribution in the human epidermis [4–6],
particularly given that no mammalian enzyme chemistry has yet been described that can
obliterate the highly stable indole biopolymer that is eumelanin [7]. Our laboratory has,
therefore, sought to reassess the basis for the striking basal layer predominance of melanin
in the human epidermis, and recently proposed a wholly different explanation for the fate
of melanin within human skin [4]. Our findings to date suggest that the pattern of histo-
chemically detectable melanin in human epidermis results from a preferential segregation
of melanin cargo from the mitotic progenitor KC into the daughter cell that replaces the
mother cell in the S. basale. As a result, only a minor fraction of melanin is “inherited” by
the daughter KC that leaves the S. basale to differentiate and stratify. In this way, most
(~70% in Caucasian epidermis) of the skin’s melanin is retained in the S. basale of the epi-
dermis, where its UVR protection needs are greatest. This example of asymmetric organelle
distribution, preferentially into one daughter cell of a progenitor KC in the S. basale, may in
fact not be as rare of first though. It has been reported recently for mitochondria, albeit
in vitro, where this strategy may be important for the maintenance of cell stemness [51].
Perhaps even more relevant to the melanosome (a lysosome-related organelle), this mode
of organelle inheritance been also recently been reported for lysosomes during HaCaT
keratinocyte cell division [52].

We know much about how melanin moves within MCs [9,10,12,13,15,18,20,23,24]
and also about the multiple ways melanin leaves the MC to enter the KC [39,53–55]. We
have started to explore how melanin remains in large part tethered to the S. basale [4], as
can be seen so strikingly with routine melanin-staining protocols [41]. The current study
focuses on how melanin granules distribute in the epidermis as crucially important UVR-
protective, supra-nuclear caps [2]. We report here several new insights into the regulation
of melanin homeostasis in the human epidermis by exploiting two small cytoskeleton-
disrupting drugs, nocodazole and cytochalasin B, using our short-term ex vivo human full
thickness skin histoculture model [38]. Nocodazole impacted on melanin distribution by
disrupting microtubule (MT) polymerisation to alter the polarity of melanin localisation
within KC, i.e., essentially flipping melanin aggregates from the apical to the opposite
(basal) pole of S. basale KCs. The second drug, cytochalasin B, impacted on melanin
granule aggregation by slowing down actin polymerisation. Importantly, we view the
first scenario (i.e., the outcome of MT depolymerisation) as being reminiscent of the re-
location of melanin observed during asymmetric S. basale KC mitosis in situ, where one
daughter replaces the mother cell in the S. basale, while the remaining daughter stratifies
and terminally differentiates [4]. Thus, we speculate that rearrangement of MTs during cell
division and mitotic spindle formation facilitates the movement of melanin granules from
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the apical domain to the basal pole of the dividing KC, as appears to be modelled here in
the nocodazole-treated epidermis.

Moreover, our data support the view that coordinated MT and actin cytoskeleton
mechanisms work together to maintain the preponderance of eumelanin granules in the
apical domain of the vulnerable proliferative KCs, where they are best placed to protect the
latter from the damaging effects of UV radiation [2]. Perhaps unsurprisingly, similar cellular
machinery (i.e., MTs and actin) for melanin movement also pertains to the MCs [9,56],
although its function/purpose in the context of the melanosome (when in MCs) versus the
melanin granule (when transferred into KCs) may vary. Our data did not show a change in
localisation of the motor protein dynactin 1 (DNCT1) in the epidermis after treatment with
nocodazole. However, we suggest that melanin granules will have already moved at the
time of DNCT1 detection (i.e., end of incubation period) and after the presumptive period
of motor protein action. Currently, the identity of motor proteins involved in melanin
granule movement within the S. basale KCs remains unknown, although we hypothesise
that different motor proteins may be involved in melanin movement within the KCs (versus
within MCs), not least because of the autophagolysosomal compartment context of melanin
granules in the KCs.

To reduce the possibility of ex vivo skin culture artefacts in our study, we analysed
melanin localisation within the first 24 h of culture, when progenitor KCs in the S. basale
were shown to remain proliferative and when even early KC differentiation (as assessed by
K10) was not altered. Moreover, this first 24 h appeared to be sufficient to affect melanin
granule movement within the S. basale.

A limitation of this study is its reliance on the use of an ex vivo human skin model,
which does not allow for a wide range of biological read-outs to be performed. Other
techniques may be useful to identify proteins directly interacting with melanin in KCs. For
example, proteomics may identify specific proteins that interact with melanin granules
within KCs, while live-cell imaging may help visualise melanin granule movement in
concert with potential candidate molecular motors, etc. Unfortunately, such imaging
techniques are extremely challenging to perform within 3D models. Therefore, we heavily
relied on immunohistochemistry at specific timepoints for this study, which gave us a
snapshot in time of melanin localisation rather than revealing the whole melanin movement
process. As previously mentioned, we consider that cell polarity plays a key role in melanin
movement in the human epidermis and it has proven very difficult to retain optimal cell
polarity using 2D or even 3D skin reconstruction models [4]. Thus, an ex vivo human
full-thickness skin histoculture model was chosen for this study, and despite its limitations
in terms of variety of biological read-outs, we found that this model was very successful
in mimicking in vivo epidermal cell polarity. Another limitation of our study relies on
the use of cytochalasin B and nocodazole. Both drugs have a wide range of effects on the
cell cytoskeleton. However, this study reveals, for the first time, melanin localisation and
movement processes in epidermal keratinocytes, which will allow for future studies to
have a more targeted approach.

The importance of the MT cytoskeleton in KC melanin movement was previously
suggested by data showing the apical co-localisation of melanin with the motor protein,
dynein, in human skin [3]. Here, we show that not only is the location of melanin granules
affected by MT function, but so too was the behaviour of centrosomes and centriolar
satellites, with melanin granules apparently moving in tandem with these structures
from the apical to basal domain of epidermal KCs (Figures 2 and 3). The centrosome
exhibits an apical domain localisation in steady-state mouse epidermis [57], similar to
our vehicle control-treated human tissues ex vivo. We show, for the first time, the apical
subcellular localisation of centriolar satellites in human skin ex vivo (Figure 3) and in vivo
(Figure 4). Centriolar satellites tend to spread throughout the cytoplasm by following the
centrosome [58], and have been assessed in different cell types in culture (e.g., endothelial
cells [59] or epithelial (retina) cells [45,60]). The intracellular localisation of centriolar
satellites can be disrupted by either increasing their dispersion throughout the cytoplasm,
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or by causing them to accumulate around the centrosome [61]. In this current study, we
observed that accumulation of centriolar satellites occurred when the skin was treated with
the MT-depolymerisation drug, nocodazole (Figure 3). The change in centriolar satellite
distribution towards accumulation instead of dispersion will probably have functional
consequences in human skin, which remain to be elucidated.

The level of skin pigmentation (i.e., degree of melanisation) did not appear to sig-
nificantly affect centrosome and centriolar satellite (co-)localisation (Figure 4) in the S.
basale KC. Apical localisation of the centrosome and centriolar satellites does not, there-
fore, appear to be a consequence of degree of pigmentation, but rather of KC/epidermis
polarity [62]. Our data on darkly pigmented skin epidermis in situ (SPTV and SPTVI)
showed a very high degree of co-localisation of melanin granule aggregates with the cen-
trosome in S. basale KCs, i.e., beyond simply sharing the general apical domain of the cell
(Figure 5). Moreover, centriolar satellites also showed either full or partial co-localisation
with melanin granules. Importantly, disruption of MTs induced a similar translocation
in melanin granules, centrosomes and centriolar satellites towards the basal domain of
the KCs in both pale and dark skin. Thus, we suggest that melanin granule re-localisation
may be facilitated by the coordinated movement of the centrosome together with its as-
sociated centriolar satellites. Crucially, this may be an important mechanism to control
melanin’s strategic positioning above the KC cell nucleus to regulate UVR protection. We
are still at a very early stage in our understanding on how skin cell polarity influences skin
pigmentation and should not over-extrapolate from either these data or data emerging
from the (nocturnal) mouse [28,63,64]. Rising rates of human skin cancer globally attest
to the pressing need to better understand how the essential human survival trait of skin
pigmentation is regulated.

4. Materials and Methods
4.1. Human Skin Samples

Ethical approval was obtained (#LS-19–71, University College Dublin) (11th of Septem-
ber 2019) to collect anonymised human skin (SPT-II/III) after abdominoplasty or breast
reduction surgery (Blackrock Clinic, Dublin, Ireland). Further highly pigmented skin
samples were kindly provided by Prof. Rachel Watson (University of Manchester) [65] in
accordance with local UK’s Human Tissue Authority Act (2006) regulations and Declaration
of Helsinki principles. Samples were stored at −80 ◦C until use and are indicated below
(Table 1).

Table 1. Information of human skin samples used for histoculture experiments or for low vs. high
pigmentation comparisons in situ. (SPT—skin phototype; F—female; M—male).

SPT Sex Age
(Years)

Histoculture
Samples In Situ

VI F 25 x

VI F 18 x

VI F 77 x

VI F 19 x

VI M 25 x

V F 21 x

V F 27 x

V F 22 x

II/III F 46 x

II/III F 46 x x

II/III F 40 x

II/III F 43 x x

II/III F 43 x
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4.2. Histoculture of Full-Thickness Human Skin Ex Vivo

Skin was transported from the clinic to the laboratory in cooled (4 ◦C) transport
medium of DMEM (Sigma-Aldrich, Poole, Dorset, UK) with 10% FBS (Fisher Scientific,
Loughborough, UK); and antibiotics (InvivoGen, Toulouse, France) and processed within
15 h of surgery into fat-free, rectangular skin tissue pieces (~0.8 mm2). The skin pieces
were cultured in 12-Well Hanging Inserts (Millicell, MCEP12H48, Merck, Dorset, UK),
with the following treatments for 24 and 48 h: 2 µM nocodazole (for inhibition of micro-
tubule polymerisation) (Fisher Scientific, Goteborg, Sweden) and 10 µM cytochalasin B (for
decreased rate of actin polymerisation) (Fisher Scientific, Goteborg, Sweden) in DMEM.
Vehicle control (VC)-(including 0.1% DMSO (Sigma-Aldrich, Poole, Dorset, UK) used for
the nocodazole and cytochalasin B incubations) treated skin samples were included as
negative controls. Treatments were applied to the surface of the epidermis (1.5 mL/well),
and tissues were cultured in the air–liquid interphase. The tissues were washed with PBS
and flash-frozen in OCT medium (VWR; Dublin, Ireland) after 24 and 48 h (in duplicates).

4.3. Immunohistochemistry/Immunofluorescence

Six micrometre cryosections were cut using a cryostat (−27 ◦C), air-dried and fixed
with acetone for 10 min at −20 ◦C. The effect of drug treatments on melanin localisation
was examined with Warthin–Starry stain, as previously reported by our laboratory [41].
Vectashield Hardset antifade mounting medium with DAPI (Vector laboratories, H-1500,
Vector Laboratories, Peterborough, UK) was used to mount the sections and to counterstain
cell nuclei.

The following primary antibodies were used: mouse monoclonal antibodies against
alpha-tubulin (clone B512; Merck, Darmstadt, Germany; T5168; 1:200); phospho-histone
H3 Ser10 (ab14955, Abcam, Cambridge, UK 1:250); cytokeratin 10 (clone RKSE60; Invitro-
gen MAI-06319, 1:200); goat polyclonal antibodies against DCTN1/p150 glued (ab11806,
Abcam Cambridge, UK 1:200); PCM1 (817; Dammermann and Merdes (2002) [36], 1:500);
pericentrin (ab4448, Abcam, Cambridge, UK 1:200). Alexa 488-labelled goat (anti mouse,
A32723; Invitrogen, Dublin, Ireland), Alexa 488-labelled donkey (anti goat, A32814; Invit-
rogen, Dublin, Ireland) and Alexa 555-labelled donkey (anti rabbit, A32794, Invitrogen,
Dublin, Ireland) secondary antibodies were from Invitrogen and used at 1:200. Phalloidin
iFluor 555 (Abcam, Cambridge, UK ab176756, 1:1000) was used to investigate actin.

Immunostaining visualisation was performed using an IX83 Fluorescent Inverted
Microscope (Olympus, Hamburg, Germany). Images were taken using the Olympus
cellSens Software. Z-stack images were taken for centrosome (PCNT) and centriolar
satellite (PCM1) localisation analysis (0.2 µm interval). Apical, basal and perinuclear
localisations of melanin, PCNT and PCM1 in S. basale cells were determined according
to Figure 6. Data were entered and processed in Excel. Statistical analyses, including
t-test and one-/two-way ANOVA, were performed using GraphPad Prism (version 8.0.0
for Windows, GraphPad Software, San Diego, CA, USA). Specifics regarding the type of
statistical analysis performed is indicated in the figure legends.
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Abbreviations

DAPI 4′,6-diamidino-2-phenylindole
DNCT1 Dynactin 1
F Female
KC Keratinocyte
KRT10 Keratin 10
M Male
MC Melanocyte
MT Microtubule
MTOC MT-organising centre
NINL Ninein-like
PCM1 Pericentriolar Material 1
PCNT Pericentrin
RPE Retinal pigmented epithelium
S. stratum
SPT Skin phototype
UVR Ultraviolet radiation
VC Vehicle control
WS Warthin–Starry
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